Abstract

In this work, we demonstrated a normal incident PIN InGaAs/GaAsSb type-II multiple quantum wells (MQW) photodiode on InP substrate for 2 μm wavelength high-speed operation. The photodiode has a responsivity of 0.35 A/W at room temperature at 2 μm, and a 3 dB bandwidth of 3.7 GHz. A carrier dynamic model is developed to study the bandwidth of the multiple quantum wells photodiode. Simulation results match the experimental data well, and analysis shows that hole transport limits the 3 dB bandwidth performance. By optimizing the MQW design, higher bandwidth performance (>10 GHz) can be achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently high speed photodetectors operating at 2 μm wavelength have been gaining increasingly popularity due to its applications on new-generation fiber communication system and gas sensing. The relatively low attenuation at 2 μm of the hollow core photonic bandgap fiber has enabled the new spectral window at this band [1], which demands high speed photodetectors for optical communication. Meanwhile, 2 μm high speed photodetectors also act as the key components of optical lidar system, especially for atmospheric CO2 profile detection [2].

In conventional high speed photodetectors, lattice matched InGaAs photodiodes on InP substrate are widely used due to the high speed and low dark current performance [3]. However, for 2 μm application, In-rich InGaAs has to be used to extend the absorption wavelength, which is lattice mismatched to InP substrate and results in high dark current [4]. Another solution is using InGaAsSb/GaSb based materials [5], but it is expensive and the process technology is not mature. The InGaAs/GaAsSb type-II quantum wells structure lattice matched to InP has been demonstrated for short wavelength infrared operation between 2 and 3 μm [6–9], which shows low dark current and high detectivity (D*) performance at room temperature. Currently, the 3dB bandwidth performance of InGaAs/GaAsSb has been reported in a waveguide-integrated photodiode [10,11], but the device physics has not been fully investigated. For bulk PIN photodiode, existing theoretical model can predict the bandwidth characteristics well [12]. However, it cannot be applied on MQW structure. In reference [13], a thermal activated tunneling model was built to modeling the bandwidth characteristics of quantum dot photodetectors, which agrees with the experiments and shows the physical mechanism of the device. Here, a theoretical model is needed to better understand the frequency response of these type-II QWs devices.

In this work, we, for the first time, developed a carrier transport model based on the rate equation to study the frequency response of these InP based type-II QWs photodiodes, which can also be used to study the other multiple QWs PIN devices. To verify the model, we also processed and characterized the normal incident PIN photodiode with InGaAs/GaAsSb quantum wells absorption layer. The diode shows dark current density around 12 mA/cm2, with optical responsivity of 0.35 A/W at 2 μm and 300 K. The 3 dB bandwidth of the device at different bias is characterized, the highest 3 dB bandwidth of 3.7 GHz can be achieved with a relatively high reverse bias of −14 V. The model we developed in this work can match well the experimental 3 dB bandwidth data at different bias. The results show that the slow hole transport is the main limitation of 3 dB bandwidth performance. The model also shows the potential approaches to enhance the 3 dB bandwidth.

2. Device structure and fabrication

The device structure was epitaxially grown with molecular beam epitaxy (MBE), as listed in Table 1. Between p-type and n-type InGaAs contact layers, the absorption layer consists of 50 periods of InGaAs (5 nm)/GaAsSb (5 nm) type II quantum wells. All these compounds are lattice matched to InP substrate.

Tables Icon

Table 1. Epitaxial layer structure

The diode mesa was patterned by photolithography and then wet etched to the expected height. The contacts were deposited by e-beam evaporation. In order to perform high speed measurement, GSG pads with 150 μm pitch were fabricated by electroplating, and before that, an insulating layer of 2 μm SU-8 was coated and patterned, to separate the pads from the conducting substrate.

3. Measurement result

3.1 DC characteristics

The dark current density of the diodes was measured at various temperature (from 77 K to 300 K). Figure 1 (a) shows the dark current density-voltage (J-V) curves of a 130 μm diameter diode. At 300 K, the dark current density is 12 mA/cm2 at −5 V bias. The dark current scales linearly with device area, indicating that the dark current is mainly bulk component instead of surface leakage. The Arrhenius plot of dark current at −1 V in Fig. 1 (b) shows the activation energy of 0.313 eV, which is around 63% of effective bandgap (0.5 eV), indicating that both the diffusion component and generation-recombination component dominates the dark current. The dark current can be further suppressed by proper passivation or improved structure design [14–16].

 

Fig. 1 (a) Dark current density of a diode in different temperature. (b) Arrhenius plot of the dark current at −1 V bias. (b) Spectral responsivity measured in different temperature at 0 V.

Download Full Size | PPT Slide | PDF

The spectral responsivity at 0 V was measured by a Fourier transform infrared (FTIR) spectrometer, as shown in Fig. 1 (c). Around 2 μm wavelength, the responsivity increases with the rise of temperature. This is due to the red shift of bandgap as temperature increases. For short wavelength below 1.9 μm, the responsivity decreases at the temperature increase, which may be due to the fact that the absorption region is not fully depleted at 0 V, and the photo generated carrier collection drops. Result shows that a 0.35 A/W responsivity is achieved at 2 μm and the cut-off wavelength exceeds 2.4 μm at 300 K. The device saturation performance was also studied in this work as in Fig. 2 (a), since it could be an important parameter in some optical communication systems. No obvious saturation was observed at optical current of 1.2 mA with the reverse bias of −5 V. It is noted that limited by the coupling loss between the fiber and the diode, the slope of the curve shown in Fig. 2 (a) is lower than the real responsivity of the diode. A good crystal quality can be verified by comparing the simulation and measured peaks in the X-ray diffraction patterns as shown in Fig. 2 (b).

 

Fig. 2 (a) DC response of a 40 μm diameter diode at voltage of −5 V. (b) X-ray diffraction (XRD) patterns of the MQW.

Download Full Size | PPT Slide | PDF

3.2 RF characteristics

The total 3 dB bandwidth of a photodiode is mainly limited by transit limit and resistance-capacitance (RC) limit [17]:

f3dB=11fT2+1fRC2,
where fT is the transit limit bandwidth, and fRC is the RC limit.

In order to extract the transit limit bandwidth of the device, the RC limit bandwidth was also studied by fitting the S11 parameter of the device with the equivalent circuit as shown in Fig. 3 (a) using Advanced Design System (ADS) software. Figure 3 (b) show that the S11 of circuit model can match the experimental result very well with the series resistance Rs of 5.5 Ohm and the junction capacitance Cj of 309.3 fF in the Fig. 3 (a). The bandwidth fRC can be simulated based on the equivalent circuit of Fig. 3 (a), which is 9.2 GHz as shown in Fig. 3 (c). The C-V curve measured by LCR meter in Fig. 3 (d) shows that the device is fully depleted at −1 V. It is also noted the measured capacitance is slightly larger than the fitted value in Fig. 3(a), which may be due to the different circuit model used in LCR meter.

 

Fig. 3 (a) Equivalent circuit model of a PIN photodiode. Rs is the series resistance, Cj is the junction capacitance. Rj is the diode body resistance which is mega ohms at reverse bias. Ip is the photocurrent. (b) S11 parameter fitting result. The blue curve is the measured S11 of a 40 μm diameter diode at −5 V bias. The red curve is the fitting curve. (c) Frequency response of equivalent circuit with the fitting results. (d) Capacitance measured by LCR meter.

Download Full Size | PPT Slide | PDF

The total 3 dB bandwidth was measured with the vector network analyzer (VNA) along with 2000 nm fiber laser light modulated by a high speed Mach-Zehnder modulator as shown in Fig. 4 (a). Figure 4 (b) shows the measured frequency response of a 40 μm diameter device at different bias voltages. The 3 dB bandwidth is hundreds of megahertz at low bias, and is significantly improved with the rise of bias voltage. This indicates that the response speed is mainly limited by carrier transit time, since the RC time constant of the diode almost remains constant after depletion and does not vary with the bias voltage. The largest 3 dB bandwidth is 3.7 GHz at −14 V bias. With the experimental 3 dB bandwidth and simulated RC limited bandwidth, the transit time limited bandwidth can be calculated to study the carrier dynamics of the photodiodes.

 

Fig. 4 (a) Setup of frequency response measurement. (b) Measured frequency response of a 40 μm diameter diode.

Download Full Size | PPT Slide | PDF

4. Carrier dynamics and modeling

In this section, a model is developed to study the 3 dB bandwidth of the multiple quantum wells PIN photodiodes, based on the carrier dynamics in these MQW devices. In the model, the transient of carriers between bound states and continuous states are considered, which also includes the carrier thermionic emission and tunneling process within MQW region. The photocurrent and frequency response were calculated afterward based on the rate equation.

4.1 Carrier dynamics

With input light of 2 μm wavelength, the optical-generated carriers are expected to be at their lowest bound states in each quantum wells, assuming the carrier at excited states will quickly relax to ground state in each well by phonon scattering. Here we denote qk the charge of electron at bound state in k-th well, and denote q'k the charge of electron at continuous state within the range of k-th well, as shown in Fig. 5. The carrier in continuous states has a chance to be re-trapped by the nearest quantum well after it escaped to continuous states [18]. We denote this probability to be 1p, which means the larger p is, the less chance that carrier would be re-trapped. So the rate equation of electrons/holes in bound states is expressed as:

dqkdt=Gk(1τE,l+1τE,r+1τT,l+1τT,r+1τ)qk+1τT,rqk1+1τT,lqk+1+1ptDq'k1,
where Gk is the electron generation rate in k-th well, τE,l and τE,r are thermal emission time the carrier needs to overcome the left or right energy barrier, τT,l and τT,r are tunneling time to tunnel to the left or right adjacent wells, τ is electron life time, and tD=W/(Nve) is the drift time over one period of quantum well, W is the total thickness of multiple quantum wells, N is the number of MQW periods and ve is the electron drift velocity. Similarly, the rate equation of electrons/holes in continuous states is expressed as:

 

Fig. 5 Band diagram of InGaAs/GaAsSb type-II MQW. For 2 μm wavelength light absorption, the photo-generated electrons are initialized in the well, and then escape to continuous states, or tunnel to adjacent wells.

Download Full Size | PPT Slide | PDF

dq'kdt=1τE,rqk+1τE,lqk+1+ptDq'k11tDq'k.

In these two equations, each term describes a mechanism that increasing rate of the carrier at bound state or continuous state within one period. The time constants for thermal emission and tunneling can be calculated as the discussion below, and the carrier life time is relatively long and has little effects on results. The only unknown parameter is the probability p. We will discuss the effect of p later with the simulation results. Note that the above equations are applicable for both electron and hole.

Thermal emission and tunneling are included in our model, which are the two dominant mechanisms to sweep out carriers. The time constants of thermal emission and tunneling process can be calculated by [19,20]:

τE,l,r=2πm*Lw2kBTexp(Hl,rkBT)
and
τT,l,r=2m*Lw2πexp(2Lb2m*,bHl,r),
where m* is the effective mass of carrier in wells, m*,b is the effective mass in barrier layers, Lw, Lb are the thickness of well and barrier, kB is Boltzmann constant, ħ is Planck constant, T is temperature, and Hl,r is the left or right effective barrier height which varies in different electrical field [21]:
Hl,r=El,rqFLw
where El,r is the effective barrier height in zero electrical field and is calculated with a kp model [22–24], q is the elementary charge, and F is the electrical field intensity.

Table 2 shows the key parameters used in our simulation, which is based on the literature [25,26], and the absorption coefficient is derived by the measured responsivity. With rate equation and the carrier initial profile, we can calculate the carrier transient progress and then obtain the photocurrent and the frequency response.

Tables Icon

Table 2. Key parameters used in simulation.

4.2 Photocurrent and frequency response

The photocurrent created by the motion of carrier can be calculated by [27]

ip=kxkW(dqkdt+dq'kdt).
where xk is the center position of k-th quantum well.

We can then use an impulse response technique to get the frequency response by applying Fourier transform to the photocurrent of pulse input to calculate the power spectral density [28]. In our simulation, the pulse width of the input light is short enough (less than 10 fs) so that the power spectral density of the photocurrent can accurately represent the frequency response of the diode. Note that the bandwidth we get from the impulse response is the transit limit bandwidth.

Figure 6 (a) shows the simulated photocurrent in different bias voltage and fixed trap probability. And Fig. 6 (b) shows the corresponding frequency response. The total current consists of both electron current and hole current. The pulse width of the total current becomes narrower when the bias voltage increases, this is because the stronger electrical field shortens the time constant as expressed in Eqs. (4) and (5), which leads to a faster sweeping out process and a higher bandwidth. The power spectral density of total current along with the electron and hole current is shown in Fig. 6 (b). It is found that the hole current is very small in time domain and contributes a long tail in the total current, which significantly limits the 3 dB bandwidth of the device.

 

Fig. 6 (a) Impulse response currents in different bias voltages. The total current is summation of electron current and hole current. The hole currents are plotted in 10 times scaled so that the tail can be observed. (b) Power spectral density of the response currents. The solid lines are power spectral density of total current in (a). The dots lines are power spectral density of electron currents, and the dash lines are power spectral density of hole currents.

Download Full Size | PPT Slide | PDF

Since the carrier trap probability in the quantum well is not easy to be evaluated theoretically, we use it as a phenomenological parameter to understand the process of carrier dynamics in these multiple quantum wells. The effect of probability p on device bandwidth was studied as below. For convenience, we denote pe to be the probability of electrons not being trapped by the nearest well after thermionic emission out of the quantum well, and ph is the probability for holes. Larger p means the carrier has less chance to be trapped again by the wells, so that it takes a shorter time for the carriers to be swept out, which leads to higher bandwidth.

Figure 7 (a) depicts the effect of pe on total bandwidth. It shows that the bandwidth is almost constant with different pe. In contrast, bandwidth rises significantly with the increase of ph as shown in Fig. 7 (b). That is due to the reason that hole transport is much slower than electrons, and the faster electron transport with larger pe does not help to improve the total 3 dB bandwidth of the devices. This once again indicates that hole transport limits the total bandwidth.

 

Fig. 7 (a) Effect of pe on bandwidth in different bias voltages (ph is fixed at 0.9). The bandwidths almost remain constants when pe varies. (b) Effect of ph on bandwidth in different bias voltages (pe is fixed at 0.9). The bandwidths rise significantly when ph increases.

Download Full Size | PPT Slide | PDF

The transit limit of the demonstrated diode was compared with the simulation results at various ph as shown in Fig. 8. For each bias voltage, we can find the corresponding ph. At low bias voltage (less than −4 V), the bandwidth is too low, and is sensitive to measurement error and fitting error, so the values are not taken into account. For voltage from −6 V to −12 V, the corresponding ph increase from 0.94 to more than 0.98. This is because carriers obtain larger energy in higher field, and thus it is harder for them to be trapped. However, at −14 V bias, the best fitted ph decreases slightly. That could originate from the avalanche gain in the photodiodes. With such high field (around 280 kV/cm) in the absorption region, some avalanche gain happens and competes with the improvement of the 3 dB bandwidth under higher electrical field. Even though, the 3 dB bandwidth at −14 V is still higher than −12 V, but the avalanche process could degrade the performance slightly [29]. Since the avalanche effect is not yet included in our model to refer this degradation of the bandwidth, the best fitted ph decreases slightly to compensate the avalanche effect.

 

Fig. 8 Comparison of measured bandwidth with simulation results. In simulation, pe was fixed at 0.9 because it has little effect on bandwidth.

Download Full Size | PPT Slide | PDF

5. Bandwidth optimization

In this section, we will study whether the bandwidth can be enhanced by optimizing the MQW structure. According to Eq. (4) and (5), the carrier sweeping out time is related to the effective barrier height, and layer thickness. Since the bandwidth is limited by long hole transport time, one possible method to achieve higher bandwidth is reducing the thickness of the GaAsSb layer in MQW. Here we simulated the bandwidth variation with respect to the thickness of GaAsSb layers, as shown in Fig. 9. The bandwidth is enhanced when the thickness of GaAsSb layer decreases from 5 nm to 2 nm. This is because the hole bound state energy level rises, which shorten thermal emission time and tunneling time for holes as indicated in Fig. 9 (b). However, the thickness cannot be too thin due to the cut-off wavelength limitation as shown in Fig. 9 (a).

 

Fig. 9 (a) Bandwidth variation with respect to the thickness of GaAsSb layer in −4 V bias voltage. In simulation, pe and ph were fixed at 0.9 and 0.95. (b) The hole bound state energy level (H1) variation when reducing GaAsSb thickness.

Download Full Size | PPT Slide | PDF

Another method to improve the bandwidth is using strain balanced InGaAs/GaAsSb type-II quantum wells as absorber in the diode. Increasing the In composition in InGaAs and decreasing the Sb composition in GaAsSb can reduce the valance band offset between InGaAs and GaAsSb, and thus lower the effective barrier height as indicated in Fig. 10 (b). Figure 10 (a) shows the bandwidth simulation results in different In composition. The bandwidth enhancement appears when In composition increases from 0.53 to 0.68. In the simulation, it should be noted that the Sb-composition in GaAsSb also varies from 0.49 to 0.35 to maintain zero strain. The bandwidth exceeds 10 GHz when In0.68Ga0.32As/GaAs0.62Sb0.38 is used, meanwhile, the cut-off wavelength is still larger than 2 μm.

 

Fig. 10 (a) Bandwidth variation with respect to In-composition in InGaAs. The Sb-composition in GaAsSb also varies to maintain zero strain. (b) The energy band variation when adjusting the material composition.

Download Full Size | PPT Slide | PDF

6. Conclusion

A theoretical model is built to investigate the frequency response of the normal incident InGaAs/GaAsSb type-II quantum wells PIN photodiode for 2 μm high speed operation. The simulation results of the dynamic model match the experimental data very well with different reverse bias. Analysis shows that the 3 dB bandwidth of the PIN diode is limited by hole transport, and some bandwidth optimization strategies are discussed. Even though further optimization of the device is needed for future improvement of speed performance, the model developed in this work should pave a way for future exploration of high speed type-II MQW photodiodes.

Funding

Shanghai Sailing Program (17YF1429300); ShanghaiTech University startup funding (F-0203-16-002)

References

1. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef]   [PubMed]  

2. T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011). [CrossRef]  

3. A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009). [CrossRef]  

4. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015). [CrossRef]  

5. R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

6. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011). [CrossRef]  

7. B. Chen and A. L. Holmes Jr., “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013). [CrossRef]   [PubMed]  

8. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011). [CrossRef]  

9. B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012). [CrossRef]  

10. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018). [CrossRef]  

11. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018). [CrossRef]  

12. Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

13. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017). [CrossRef]   [PubMed]  

14. L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018). [CrossRef]  

15. D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018). [CrossRef]  

16. R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005). [CrossRef]  

17. A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication Key Devices, H. Venghaus and N. Grote, eds., 2nd ed. (Springer International Publishing Switzerland, 2017), pp. 249–290.

18. B. Chen and L. H. Archie Jr., “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013). [CrossRef]  

19. H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988). [CrossRef]   [PubMed]  

20. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991). [CrossRef]  

21. G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014). [CrossRef]  

22. B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013). [CrossRef]  

23. B. Chen, “Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers,” Opt. Express 25(21), 25183–25192 (2017). [CrossRef]   [PubMed]  

24. B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017). [CrossRef]  

25. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

26. J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes Jr., “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009). [CrossRef]  

27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2013).

28. R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991). [CrossRef]  

29. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  2. T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
    [Crossref]
  3. A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
    [Crossref]
  4. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
    [Crossref]
  5. R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.
  6. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
    [Crossref]
  7. B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
    [Crossref] [PubMed]
  8. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
    [Crossref]
  9. B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
    [Crossref]
  10. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
    [Crossref]
  11. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
    [Crossref]
  12. Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).
  13. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
    [Crossref] [PubMed]
  14. L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
    [Crossref]
  15. D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
    [Crossref]
  16. R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
    [Crossref]
  17. A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication Key Devices, H. Venghaus and N. Grote, eds., 2nd ed. (Springer International Publishing Switzerland, 2017), pp. 249–290.
  18. B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
    [Crossref]
  19. H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
    [Crossref] [PubMed]
  20. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
    [Crossref]
  21. G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
    [Crossref]
  22. B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
    [Crossref]
  23. B. Chen, “Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers,” Opt. Express 25(21), 25183–25192 (2017).
    [Crossref] [PubMed]
  24. B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
    [Crossref]
  25. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).
  26. J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
    [Crossref]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2013).
  28. R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
    [Crossref]
  29. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [Crossref]

2018 (4)

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

2017 (3)

2015 (1)

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

2014 (1)

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

2013 (3)

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

2012 (1)

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

2011 (3)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

2009 (2)

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

2005 (2)

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

1995 (1)

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

1991 (2)

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

1988 (1)

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

1967 (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Abedin, M. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Addamane, S.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Addamane, S. J.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Arai, S.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Archie, L. H.

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

Babcock, S. E.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Balakrishnan, G.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Beling, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

Birks, T.

Bo, B.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Bowers, J.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Bowers, J. E.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Campbell, J. C.

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

Chao, R.

Chao, R.-L.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Chen, B.

B. Chen, “Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers,” Opt. Express 25(21), 25183–25192 (2017).
[Crossref] [PubMed]

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Chen, Y.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Chi, Y.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Choi, Y.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Collins, J. E.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Collins, S.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Corbett, B.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Couny, F.

Cunningham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

De Young, R.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Emmons, R. B.

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Farr, L.

Fleissner, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Fuchs, F.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Giboney, K.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Gleeson, M.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Gocalinska, A.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Goll, J. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Gossard, A. C.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Gunning, F. C. G.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Han, W.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Hawkins, R. T.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Holmes, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Holmes, A. L.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38(15), 2750–2753 (2013).
[Crossref] [PubMed]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Holmes, W. Y. J. A. L.

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

Huang, J. Y. T.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Inoue, D.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Ismail, S.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Jan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Jiang, W. Y.

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Jones, M. D.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Jung, D.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Kennedy, M. J.

Kim, C. S.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Klitzing, Kv.

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Knight, J.

Koch, G. J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Kuech, T. F.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Lau, K. M.

Lewis, J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Li, Q.

Liang, D.

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Mack, T. L.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Mangan, B.

Mason, M.

Mawst, L. J.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

Meyer, J. R.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Miller, D. A. B.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

Nishiyama, N.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Norman, J.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Notari, A.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Nudds, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

O’Brien, P.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

O’Callaghan, J.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Onat, B. M.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Pavarelli, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Pelucchi, E.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Pepper, S. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

Peters, F. H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Refaat, T. F.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Rehm, R.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Roberts, P.

Robinson, G.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Rodwell, M.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Rubio, M.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Runge, P.

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

Sabert, H.

Schmitz, J.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Schneider, H.

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Shang, C.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Shi, J.-W.

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Silvestre, P.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Singh, U. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

Song, X.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

St J Russell, P.

Stephens, R.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

Thiagarajan, P.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Tomlinson, A.

Tossoun, B.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Vurgaftman, I.

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

Walther, M.

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Wan, Y.

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25(22), 27715–27723 (2017).
[Crossref] [PubMed]

Wang, C.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Wang, Y.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Wey, Y. G.

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

Williams, D.

Wun, J.-M.

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

Yan, X.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Yang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yang, X.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Ye, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yuan, J.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

Zang, J.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Zhang, C.

Zhang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Zhang, Z.

Zhou, G.

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

Zhou, L.

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

Appl. Phys. Lett. (2)

D. Inoue, Y. Wan, D. Jung, J. Norman, C. Shang, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si,” Appl. Phys. Lett. 113(9), 93506 (2018).
[Crossref]

R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with AlxGa 1-xAsySb1-y,” Appl. Phys. Lett. 86(17), 173501 (2005).
[Crossref]

Crystals (Basel) (1)

L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, “Brief Review of Surface Passivation on III-V Semiconductor,” Crystals (Basel) 8(5), 226 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-Based p-i-n Photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[Crossref]

G. Zhou and P. Runge, “Modeling of multiple-quantum-well p-i-n photodiodes,” IEEE J. Quantum Electron. 50(4), 220–227 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photonics Technol. Lett. 23(4), 218–220 (2011).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 µm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb Type-II quantum wells,” IEEE Photonics Technol. Lett. 30(4), 399–402 (2018).
[Crossref]

IEEE Trans. Electron Dev. (1)

B. Chen, “Active region design and gain characteristics of InP-based dilute bismide type-II quantum wells for mid-IR lasers,” IEEE Trans. Electron Dev. 64(4), 1606–1611 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi, M. N. Abedin, and U. N. Singh, “Backscatter 2 µm lidar validation for atmospheric CO2 differential absorption lidar applications,” IEEE Trans. Geosci. Remote Sens. 49(1), 572–580 (2011).
[Crossref]

J. Appl. Phys. (2)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11I), 5815–5875 (2001).

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

J. Lit. Technol. (4)

R. T. Hawkins, M. D. Jones, S. H. Pepper, and J. H. Goll, “Comparison of fast photodetector response measurements by optical heterodyne and pulse response techniques,” J. Lit. Technol. 9(10), 1289–1294 (1991).
[Crossref]

A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lit. Technol. 27(3), 343–355 (2009).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb Type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lit. Technol. 36(20), 4981–4987 (2018).
[Crossref]

Y. G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, and G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lit. Technol. 13(7), 1490–1499 (1995).

J. Phys. D Appl. Phys. (2)

J. Y. T. Huang, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, C. S. Kim, I. Vurgaftman, J. R. Meyer, and A. L. Holmes, “Design and characterization of strained InGaAs/GaAsSb type-II ‘W’ quantum wells on InP substrates for mid-IR emission,” J. Phys. D Appl. Phys. 42(2), 25108 (2009).
[Crossref]

B. Chen and L. H. Archie, “Carrier dynamics in InP-based PIN photodiodes with InGaAs/GaAsSb type-II quantum wells,” J. Phys. D Appl. Phys. 46(31), 315103 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

B. Chen, W. Y. Jiang, A. L. Holmes, and W. Y. J. A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44(3), 103–109 (2012).
[Crossref]

B. Chen and A. L. Holmes, “Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission,” Opt. Quantum Electron. 45(2), 127–134 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Schneider and Kv. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B Condens. Matter 38(9), 6160–6165 (1988).
[Crossref] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2013).

R.-L. Chao, J.-M. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J.-W. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in Photonics Conference (IPC),2016IEEE (2016), pp. 472–473.

A. Beling and J. C. Campbell, “Photodetectors,” in Fibre Optic Communication Key Devices, H. Venghaus and N. Grote, eds., 2nd ed. (Springer International Publishing Switzerland, 2017), pp. 249–290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Dark current density of a diode in different temperature. (b) Arrhenius plot of the dark current at −1 V bias. (b) Spectral responsivity measured in different temperature at 0 V.
Fig. 2
Fig. 2 (a) DC response of a 40 μm diameter diode at voltage of −5 V. (b) X-ray diffraction (XRD) patterns of the MQW.
Fig. 3
Fig. 3 (a) Equivalent circuit model of a PIN photodiode. Rs is the series resistance, Cj is the junction capacitance. Rj is the diode body resistance which is mega ohms at reverse bias. Ip is the photocurrent. (b) S11 parameter fitting result. The blue curve is the measured S11 of a 40 μm diameter diode at −5 V bias. The red curve is the fitting curve. (c) Frequency response of equivalent circuit with the fitting results. (d) Capacitance measured by LCR meter.
Fig. 4
Fig. 4 (a) Setup of frequency response measurement. (b) Measured frequency response of a 40 μm diameter diode.
Fig. 5
Fig. 5 Band diagram of InGaAs/GaAsSb type-II MQW. For 2 μm wavelength light absorption, the photo-generated electrons are initialized in the well, and then escape to continuous states, or tunnel to adjacent wells.
Fig. 6
Fig. 6 (a) Impulse response currents in different bias voltages. The total current is summation of electron current and hole current. The hole currents are plotted in 10 times scaled so that the tail can be observed. (b) Power spectral density of the response currents. The solid lines are power spectral density of total current in (a). The dots lines are power spectral density of electron currents, and the dash lines are power spectral density of hole currents.
Fig. 7
Fig. 7 (a) Effect of pe on bandwidth in different bias voltages (ph is fixed at 0.9). The bandwidths almost remain constants when pe varies. (b) Effect of ph on bandwidth in different bias voltages (pe is fixed at 0.9). The bandwidths rise significantly when ph increases.
Fig. 8
Fig. 8 Comparison of measured bandwidth with simulation results. In simulation, pe was fixed at 0.9 because it has little effect on bandwidth.
Fig. 9
Fig. 9 (a) Bandwidth variation with respect to the thickness of GaAsSb layer in −4 V bias voltage. In simulation, pe and ph were fixed at 0.9 and 0.95. (b) The hole bound state energy level (H1) variation when reducing GaAsSb thickness.
Fig. 10
Fig. 10 (a) Bandwidth variation with respect to In-composition in InGaAs. The Sb-composition in GaAsSb also varies to maintain zero strain. (b) The energy band variation when adjusting the material composition.

Tables (2)

Tables Icon

Table 1 Epitaxial layer structure

Tables Icon

Table 2 Key parameters used in simulation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f 3dB = 1 1 f T 2 + 1 f RC 2 ,
d q k dt = G k ( 1 τ E,l + 1 τ E,r + 1 τ T,l + 1 τ T,r + 1 τ ) q k + 1 τ T,r q k1 + 1 τ T,l q k+1 + 1p t D q ' k1 ,
dq ' k dt = 1 τ E,r q k + 1 τ E,l q k+1 + p t D q ' k1 1 t D q ' k .
τ E,l,r = 2π m * L w 2 k B T exp( H l,r k B T )
τ T,l,r = 2 m * L w 2 π exp( 2 L b 2 m *,b H l,r ),
H l,r = E l,r qF L w
i p = k x k W ( d q k dt + dq ' k dt ).

Metrics