Abstract

We numerically investigate the generation of wavelength-tunable few-cycle pulses in the visible spectral region through soliton-plasma interactions. We found that in a He-filled single-ring photonic crystal fiber (SR-PCF), soliton-plasma interactions could shift the optical spectra of pulses propagating in the fiber to shorter wavelengths. Through adjusting the single pulse energy launched into the fiber, the central wavelength of these blueshifting pulses could be continuously tuned over hundreds of nanometers, while maintaining a high energy conversion efficiency of >57%. Moreover, we observed that during the nonlinear pulse propagation in the SR-PCF, soliton self-compression effects enhanced the plasma density in the fiber at high pulse energies, which could modulate the phase-matching condition of ultraviolet (UV) dispersive wave (DW) generation. Furthermore, we employed the recently-developed model to study numerically the loss and dispersion of the SR-PCF in its resonant and anti-resonant spectral regions, and demonstrated the remarkable influence of the core-cladding resonance on the process of soliton-plasma interactions. The numerical results demonstrated here pave the way to develop wavelength-tunable, few-cycle light sources in the visible region, which may have considerable application potential in pump-probe spectroscopy and strong-field physics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Few-cycle (only a few optical cycles) optical pulses with femtosecond durations have been successfully applied in many research fields such as perovskite nanocuboid laser [1], pump-probe spectroscopy [2], photochemical relaxation process [3], high-harmonic generation (HHG) [4] and attosecond science [5], etc. Direct generation of few-cycle, ultrafast pulses in solid-state or fiber-based lasers has, however, proved difficult to achieve, since the finite bandwidth of the gain medium in these lasers restricts the spectral widths of the laser pulses. In order to overcome this bandwidth limitation in lasers, a number of pulse-compression (spectral-broadening) schemes have been demonstrated for generating ultrafast optical pulses with broad spectral bandwidths. For example, nonlinear spectral broadening through self-phase modulation (SPM) has been extensively studied in conventional glass fibers [6] and bulk materials [7]. In such systems the applicable pulse peak powers are, however, limited by low damage thresholds of these nonlinear media. To solve this problem, the gas-filled hollow-core fibers (HCFs), with much higher damage thresholds, have recently been used as the medium for nonlinear pulse propagation, leading to the generation of intense few-cycle pulses with energies ranging from hundreds of μJ to a few mJ [8]. In these systems based on nonlinear spectral broadening, the generation of ultrafast pulses usually relies on some additional components (such as chirped mirrors) for compensating residual spectral chirps of the output pulses, which restrict, in practice, the minimum achievable pulse durations in such systems due to imperfect compensation of high-order dispersion.

Photonic crystal fibers (PCFs) can offer more flexibilities in their structure design, leading to remarkable fiber performance such as low confinement loss, tailorable nonlinearity and flexible dispersion management. A variety of PCFs have been widely used in multiple fields including optical manipulation [9], temperature sensor [10–12], optomechanical interactions [13], supercontinuum generation [14,15] and ultrafast nonlinear processes [16–19]. In particular, compared with conventional step-index fibers, gas-filled hollow-core photonic crystal fibers (HC-PCFs) [20–22] show considerable flexibilities on the dispersion management. Through adjusting the gas-pressure in their hollow core, the zero-dispersion wavelength (ZDW) of such fibers could be tuned across the ultraviolet (UV), visible and near-infrared (NIR) spectral regions, enabling controllable soliton dynamics [23,24]. Moreover, different from solid-core PCFs [19], the gas-filled HC-PCFs generally offer higher optical-damage thresholds, which can be greater than 1014 W/cm2. The combination of anomalous dispersion and SPM effect in these gas-filled HC-PCFs results in the pulse self-compression. Self-compressed pulses with few-cycle or even sub-cycle durations have been obtained using such schemes, avoiding additional chirp-compensation components [25,26].

From a practical point of view, the broadband wavelength tunability of ultrafast light sources is highly demanded for many applications. For example, few-cycle pulses with wavelength tunability over the visible spectral range are very useful for studying excitonic relaxation and vibrational dynamics in photosynthetic systems, since many molecules have absorption bands in this spectral range [27]. However, the commercial mode-locked lasers usually operate at some fixed wavelengths, for example, the widely-used Ti:Sapphire lasers work at a wavelength range around 800 nm. Most of schemes for wavelength tuning of ultrafast pulses are based on nonlinear frequency conversion, including optical parametric amplification (OPA) [28,29], Raman-induced self-frequency shift [30,31] and dispersive wave (DW) generation [23,32,33], etc. While the OPA scheme is a reliable technique for generating tunable ultrafast pulses, the frequency down-conversion processes of OPA systems usually produce tunable pulses at mid-infrared (MIR) wavelengths. The Raman effects, originating from inelastic scattering of photons by molecule vibrations, usually lead to the shift of the pulse spectrum to longer wavelengths, limiting their applications in visible spectral region. The DW emission, as a result of nonlinear energy conversion from the optical pulses and some linear waves, have recently been demonstrated in gas-filled HC-PCFs [23,32], generating wavelength-tunable light in the UV and MIR regions. The energy conversion efficiency of such schemes is, however, quite low. By contrast, plasma-induced frequency blueshift of optical pulses in gas-filled HC-PCFs [34], offers a possibility to obtain few-cycle pulses with simultaneous wavelength tunability over visible region and high energy-conversion efficiency. Chang et al. [35] theoretically investigated a fundamental soliton propagation and showed the optical pulse can experience a blueshift of its central wavelength from 1500 nm to 815 nm due to soliton-plasma interactions, with an energy-conversion efficiency of 30%. However, few people studied the generation of wavelength-tunable, few-cycle pulses in the visible spectral region through soliton-plasma interactions in the gas-filled HC-PCFs.

In this paper, we demonstrate the first, to the best of our knowledge, study of wavelength-tunable few-cycle pulses in the visible spectral region based on soliton-plasma interactions in a gas-filled single-ring photonic crystal fiber (SR-PCF). Using the recently-developed model [36,37], we calculated the loss and dispersion properties of this SR-PCF at its resonant and anti-resonant spectral regions, revealing the remarkable influence of the core-cladding resonance on the blueshifting soliton. We also studied the competition between SPM and plasma effects in the frequency-chirping phenomenon, and demonstrated the influence of the multiple soliton-compression stages on the generation of UV dispersive waves at high pulse energies. The numerical results show that the interactions of self-compressed soliton and plasma can lead to the generation of few-cycle pulses whose wavelengths can be tuned over hundreds of nanometers through adjusting input pulse energy, while the energy conversion efficiency remains to be >57%. The demonstrated wavelength-tunable, few-cycle light source in visible spectral region may have many potential applications in pump-probe experiments, attosecond science, and HHG [38].

2. Physical model

The physical model describing the nonlinear propagation of ultrafast optical pulses in a gas-filled SR-PCF is based on the well-known single-mode unidirectional field equation that has been validated in a wide range of experiments. This full-field equation is given by [39,40]:

E˜(z,ω)z=i(β(ω)ωvp)E˜(z,ω)α(ω)2E˜(z,ω)+iω22c2ε0β(ω)F{PNL(z,t)},
where z is the propagation distance along the fiber, ω is the angular frequency, E˜(z,ω) is the carrier-resolved full field in the spectral domain, β(ω) is the propagation constant, t is the time in a reference frame travelling with a group velocity of vp at the pump frequency, α(ω) is the fiber loss that is typically 1 dB/m, but with the development of fiber fabrication technique, the loss of anti-resonant reflection (ARR) HC-PCFs can be as low as a few tens of dB/km or even lower [41,42], c is the speed of light in vacuum, ε0 is the vacuum permittivity, F represents the Fourier transform, and PNL(z,t) is the nonlinear polarization in the time domain. We employ the Gaussian envelope of the input laser field given by E˜(z=0,ω)=F{E0exp[(2ln2)(t/tτ)2]exp(iω0t)}, where E0=2I0/(ε0n0c) is the laser field amplitude, n0 is the linear refractive index, the pulse peak intensity is obtained by the pulse peak power over effective mode area as I0=P0/Aeff, tτ is the pulse duration at full width half maximum (FWHM), and ω0 is the central angular frequency.

In general, the nonlinear polarization in the right-hand side of Eq. (1) includes the contributions from three (Kerr, Raman and plasma) effects. It should be noted that the Raman effects are absent in the noble gas and the glass-induced Raman effects can be negligible since the light-glass overlap in the SR-PCF is quite small. Thus the nonlinear polarization can be expressed as a combination of Kerr and plasma effects:

PNL(z,t)=ε0χ(3)E(z,t)3+Pion(z,t),
where χ(3) is the third-order nonlinear susceptibility that is relative to the Kerr effect, E(z,t) is the electric field in the time domain, and Pion(z,t) is the ionization-induced plasma polarization given by:
Pion(z,t)=tρ(z,t)tUiE(z,t)dt+e2metρ(z,t)E(z,t)dtdt,
where ρ is the palsma density, Ui is the ionization potential of the gas, e is the electronic charge, and me is the mass of an electron. The first term in the right-hand side of Eq. (3) decribes the loss of pulse energy due to the ionization process, and the second term describes the variation of the refractive index created by the free electrons.

Here we use the helium gas since its large ionization potential can support a high laser intensity, which effectively enhances the process of soliton self-compression. The calculations show that ions He+ and He2+ appear at high intensity levels euqal to 1015 W/cm2 and 6 × 1015 W/cm2, respectively [43]. For the situation we consider here, the peak intensity of optical pulses launched into the SR-PCF is higher than 5 × 1013 W/cm2. After soliton self-compression in the fiber, the pulse peak intensity can be enhanced to ~1015 W/cm2 which is still lower than 6 × 1015 W/cm2. Therefore, in the simulations we only consider the first ioniztion process, and the plasma density variation can be described as [44]:

ρt=W(I)(ρntρ)+σUiρIf(ρ),
where W is the optical-field-induced (OFI) ionization rate which depends on the intensity of laser pulses, ρnt is the neutral gas density, and σ is the cross section describing the process of the collisional ionization. The function f(ρ)=βrρ2 is used to describe the process of electron recombination, where βr is the recombination coefficient. Since the recombination time of the noble gas is in the nanosecond scale, so the electron recombination plays a negligible role for the femtosecond pulses dynamics. The collisional ionizaiton depends on the ponderomotive or quiver energy, given by Up=e2E02/4meω02. The ponderomotive energy is enhanced with the pulse intensity and the square of wavlength, which meets the scaling law of HHG cut-off energy expressed as E~COIλ2 (for gases). In general, when the gas pressure inside the SR-PCF is high enough and the ponderomotive energy reaches hundreds of eV, the collisional ionization becomes important and should be considered. However, in this work, the pump wavelength is at 800 nm and the ponderomotive energy is a few or tens of eV, which can also be negligible compared to the OFI ionization [45].

A number of approaches have been developed for calculating the OFI ionization rate [46–48]. These approaches are generally catagorized into two regimes by the Keldysh parameter described by γ=(Ui/2Up)1/2. In general, when γ1, the ionization can be expressed as a multiphoton process concerned with low intensities. When γ<1, the ionization can be described as a tunneling process concerned with high intensities. The Ammonsov, Delone, and Krainov (ADK) model [48], based on earlier work by Perelomov, Popov, and Terent’ev (PPT) [46,47], is used to calculate the OFI ionization rate in the tunneling regime. But for the 800-nm pump wavelength and the laser intensities ranging from 5 × 1013 W/cm2 to 1015 W/cm2, the Keldysh parameters correspond to γ1. For this situation, the PPT model describes not only the multiphoton ionization (MPI) process but also the tunneling ionization process. Therefore, we employ in our simulations the PPT method modified with the ADK coefficients to calculate the ionization rate.

The propagation constant is very important parpameter for ultrashort pulses propagation in the gas-filled SR-PCF. Despite its anti-resonant cladding structures, the propagation constant of ARR SR-PCF closely follows that of a capillary fiber created by Marcatili and Schmeltzer, given by [16,49]:

β(ω)=k0neff=k0ngas2(ω,P,T)unm2k02a2k0[1+12PT0P0Tδ(ω)12unm2k02a2],
where k0=ω0/c is the wave number on the vacuum condition, neff is the effective refractive index of SR-PCF, ngas is the refractive index of the filling gas, P and T are the gas pressure and temperature, δ(ω) is the Sellmeier expansion for ngas2, whose coefficients are obtained at a pressure P0 of 1000 mbar and a temperature T0 of 273.15 K [50], unm is the mth zero of the Bessel function Jn1, where m = n = 1 corresponds to the fundamental mode HE11 of fiber, and a is the core radius of the fiber. The first two terms in the right-hand side of Eq. (5) describe the gas contribution to the propagation constant, and the last term accounts for the waveguide contribution that plays a significant role for anomalous dispersion of the fiber. It should be noted that this dispersion expression is obtained from the characteristic equation starting from the boundary conditions under two approximations: (a) the transversal contribution of the wave number is small, (b) the core radius is much larger than wavelength. This capillary-like dispersion works well up to the NIR region. But for wavelengths beyond 1100 nm, a wavelength-dependent effective core radius is required to extend the valid range of the Marcatili-Schmeltzer (MS) capillary model [51].

Figure 1(a) shows the cross section of SR-PCF with core radius a = 18 µm and wall thickness d = 150 nm, and the outer diameter of the anti-resonant tubes D = 24.4 µm and the perimeter gap g = 1.8 µm, respectively. The color map plotted in fiber core represents the intensity distribution of the fundamental core mode in the SR-PCF, calculated by the finite-element modeling (FEM) at 800 nm. Figure 1(b) shows dispersion of the fundamental mode in the SR-PCF filled with 6 bar helium gas, calculated through Eq. (5). As shown in Fig. 1(b) the zero dispersion point (ZDP) is at 293 nm. It should be noted that the MS capillary model provides a very useful tool for numerical simulations of the ultrafast nonlinear dynamics in gas-filled SR-PCFs. The MS capillary model will be used to study plasma-induced blueshifting soliton in Secs. 4 and 5. However, the MS model is invalid in the spectral regions corresponding to the core-cladding resonances of the SR-PCF. In order to make a comparison, in Sec. 6 we will use the recently-developed model to calculate the loss and dispersion of the SR-PCF in its resonant and anti-resonant regions and discuss the influence of the core-cladding resonance on the plasma-induced blueshifting soliton.

 figure: Fig. 1

Fig. 1 (a) The fundamental core mode of SR-PCF calculated through FEM at 800 nm. a and d denote the core radius and the wall thickness. D and g represent the outer diameter of the anti-resonant tubes and the perimeter gap. Here a = 18 µm, d = 150 nm, D = 24.4 µm, and g = 1.8 µm. (b) The wavelength-dependent dispersion of the fundamental mode of SR-PCF, calculated using Eq. (5), and with helium at 6 bar. N and A denote the normal and anomalous dispersion that are separated by red dashed line. ZDP is the zero dispersion point and the corresponding ZDW is 293 nm.

Download Full Size | PPT Slide | PDF

3. SPM- and plasma-induced frequency chirping

Intense laser pulses interacting with nonlinear optical media such as glass or gas gives rise to the new frequency components that can be seen as a direct consequence of the time dependence of the nonlinear phase. For example, most commonly, the SPM effect induced by the bound electrons imparts an intensity-dependent nonlinear phase shift to the pulses, which results in spectral broadening. The contribution of SPM effect to the nonlinear refractive index is described as n2I(z,t) and then the nonlinear phase shift can be expressed as ϕSPM=k0n2I(z,t)Δz, where n2 is the Kerr coefficient and Δz is the interaction length. The frequency difference between new frequency component and pump frequency is given as [52]:

Δω(z,t)=ω(z,t)ω0=ϕSPMt=k0n2ΔzI(z,t)t,
where the minus sign depends on the factor exp(iω0t) in equation of pulse electrical field. The time dependence of Δω is referred as frequency chirping. It should be noted that Δω is negative on the rising edge of the pulse electrical field, which corresponds to a spectral redshift, while a positive Δω at the falling edge of the field can result in a spectral blueshift. If only the SPM effect is considered, the new frequency components are generated continuously and show a symmetric spectral broadening in the frequency domain when the pulses propagate in the gas-filled SR-PCF.

Moreover, the combination of the SPM effect and anomalous dispersion results in the soliton self-compression to few-cycle or even shorter, enhancing the pulse peak intensity. When the pulse peak intensity is high enough to ionize the gases in the SR-PCF, the plasma contribution to the refractive index can be expressed as ρ(z,t)/2n0ρcr, where the plasma density ρ(z,t) (the maximum ionization fraction is less than 0.1% in this work) is much smaller than the critical density ρcr=meε0ω02/e2 [34,44]. At critical density ρcr the real part of the refractive index becomes 0. Considering the combined effects of SPM and plasma, Eq. (6) is rewritten as:

Δω(z,t)=ϕSPMtϕplasmat=k0n2ΔzI(z,t)t+k0Δz2n0ρcrρ(z,t)t,
where ϕplasma is the plasma-induced nonlinear phase shift. The plasma accumulates as the pulse intensity increases, especially at the peak intensity of the pulse the plasma density reaches its maximum value. This fast accumulation of plasma creates a strong and steep phase-shock on the laser pulse, resulting in a spectral blueshift. The recombination process of free electrons is relatively slow (in nanosecond scale for noble gases) compared to femtosecond pulse duration, therefore the phase modulation and frequency shifts due to the plasma effect can only lead to a frequency up-conversion of the optical pulse. Note that the SPM effect imparts a spectral redshift on the rising edge of electric field, leading to a competition with the plasma effect on the leading edge of pulse envelope. At the back edge of pulse envelope, the plasma density remains the maximum value and does not contribute to the frequency chirping. In addition, if one employs the molecular gases, the contribution of Raman effects to the refractive index should be considered.

4. Plasma-induced blueshifting soliton

In the numerical simulations, a 30-fs Gaussian-shape pulse with 12-µJ input energy, centered at 800 nm, was launched into a 30-cm long SR-PCF with a core diameter of 36 µm and a fiber loss of 0.1 dB/m. The fiber was filled using helium gases with a gas pressure of 6 bar. Figures 2(a) and 2(b) show the temporal and spectral evolutions of the pulse as a function of positions in the fiber when the ionization effect is not included in Eq. (1). As shown in Fig. 2(b), at the beginning of the nonlinear pulse propagation the spectral broadening is mainly due to the SPM effect. As the spectrum broadens, the anomalous dispersion provided by hollow waveguide becomes more and more important, which compensates the positive nonlinear phase due to the SPM effect, resulting in soliton temporal self-compression within the fiber. The increased peak intensity in turn enhances the SPM effect which further drives spectral broadening (pulse-compression) process, as shown in Figs. 2(a) and 2(b). The maximum pulse peak power is ~2.7 GW (corresponding to peak intensity ~5.5 × 1014 W/cm2) marked as red dashed line, corresponding to a pulse duration of ~4.5 fs. Note that the pulse shows a self-steepening phenomenon due to the optical shock effect. The main effect of the shock term results from the intensity-dependent group velocity, which leads to greater delay for the higher-intensity part of the pulse.

 figure: Fig. 2

Fig. 2 Simulated evolutions of a 30-fs Gaussian pulse with 12-µJ energy, centered at 800 nm, propagating in a 30-cm long and 36-µm core diameter helium-filled SR-PCF with fiber loss of 0.1 dB/m at 6 bar when ionization is not included (a)-(c) and when it is included (d)-(f). (a) and (d) Temporal evolutions, (b) and (e) spectral evolutions, (c) and (f) frequency chirping evolutions. The red dashed line show the pulses at the maximum peak power point. N and A denote normal and anomalous dispersion, they are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. (i) shows the UV DW emission. The white numbers 1-3 represent the different spectral bands.

Download Full Size | PPT Slide | PDF

In Fig. 2(b), the pulse spectrum shows both blueshift and redshift that are dependent on frequency chirping calculated by Eq. (6). Figure 2(c) shows the calculated results of frequency chirping. The blue and red regions, created by the leading and trailing edges of the pulse electrical field, correspond to spectral redshift and blueshift, respectively. Noted that the optical shock effect steepens the trailing edge of the pulses, leading to the maximum positive value larger than the maximum negative value. As a result, in Fig. 2(b), the width of spectral band “1” is slight broader than spectral band “3” (this effect is more obvious in the frequency coordinate). However, the duration of the pulse leading edge is greater than that of the trailing edge, which leads to a longer time slot for generating new frequency components, resulting in that spectral band “3” has a higher intensity than spectral band “1”.

Moreover, the pulse spectrum shows a multi-peak structure (spectral bands “1” to “3”) that can be understood as a result of intra-pulse interference. In general, the same frequency chirping occurs at two values of time, generating light components with the same frequencies but different phases. These two newly-generated light components interfere constructively or destructively depending on their relative phase difference, enabling the multi-peak structure of the pulse spectrum. The narrowing tendency of the pulse spectrum after the maximum pulse peak power, can be understood as a result of both the SPM effect and anomalous dispersion. If the propagation distance is long enough, the pulses will experience a periodic cycle of spectral broadening and narrowing due to the high-order soliton effect (here the soliton order is 3.23). In addition, the emission of a weak UV dispersive wave, marked by green arrow in Fig. 2(b) is observed in the normal dispersion region. It is the transfer of radiation from the self-compressed pulse to some linear waves, when the phase matching condition is matched between the pump pulse and the dispersive waves.

Figures 2(d) and 2(e) show the temporal and spectral evolutions of the pulse along the fiber when the ionization effect is included in the simulations. The pulse duration decreases along the fiber due to the soliton self-compression but increases slightly after the maximum peak power point due to the spectral narrowing, as shown in Fig. 3(a) (blue solid line). Meanwhile the increased peak intensity of the pulses starts to ionize the gases, producing the free electrons. In Fig. 3(b), the plasma density (green solid line) shows a fast accumulation starting from the propagation length of 20 cm, and reaches its maximum value with an ionization fraction of ~0.02% at the position of ~25.8 cm (marked as red dashed line). At the same time, the pulse energy (orange solid line) decreases rapidly due to the gas-ionization process. The presence of the free electrons lowers the refractive index of the gas, resulting in an acceleration of the pulses, as shown in Fig. 2(d). The plasma effect also leads to the blueshifting soliton as marked in spectral band “1” in Fig. 2(e), and obviously broadens the shorter-wavelength side of the spectrum compared to the Fig. 2(b). These phenomena can be understood using the frequency-chirping theory demonstrated above. As shown in Fig. 2(f), at the maximum pulse peak power, the maximum positive frequency chirping is larger than the maximum negative frequency chirping, resulting in a stronger blueshift of pulse spectrum than the redshift. Figures 3(c) and 3(d) show the electric field (blue solid line) and frequency chirping (red solid line) at the point of maximum pulse peak power without and with the plasma effect, respectively. It shows that the maximum positive value is larger when ionization is considered. Moreover, in Fig. 2(e), the spectral band “2” is away from pump central wavelength (marked as white dashed line) and moves toward the shorter-wavelength side due to the plasma effect. The spectral band “3” becomes narrow after the maximum peak power point, since the SPM-induced spectral redshift is limited by the plasma effect at the leading edge of pulse envelope. Figure 3(a) shows the average wavelength (red solid line) of the pulse as a function of positions in the fiber, which is calculated using ω¯0=ωI(ω)dω/I(ω)dω [52], where I(ω) is the light intensity at frequency of ω. The simulation results show that due to the plasma effect, the average wavelength of the output pulse is shifted about 130 nm at an input pulse energy of 12 µJ.

 figure: Fig. 3

Fig. 3 (a) Numerically calculated pulse duration (blue solid line) and average wavelength (red solid line) for different positions in fiber when ionization is included. (b) The calculated plasma density (green solid line) and pulse energy (orange solid line) for different fiber positions. The red dashed line show the maximum peak power point. Electric field intensity (blue solid line) and frequency chirping (red solid line) at the maximum peak power point are shown without (c) and with (d) the influence of ionization.

Download Full Size | PPT Slide | PDF

5. Wavelength-tunable few-cycle pulses

Here we study the bright solitons that only occur in the anomalous dispersion region. The soliton dynamics are dependent on the two parameters: the ZDW and the soliton order. In general, the ZDW is decided by the core diameter of the fiber, the gas type and the gas pressure. In this work, we employ the helium-filled SR-PCF with a core diameter of 36 µm at the pressure of 6 bar, so that the ZDW of the fiber is maintained at 293 nm. Thus, the soliton order depends only on the input pulse energy. In Fig. 2(d), we investigated the soliton self-compression induced by the combined effects of both the SPM effect and anomalous dispersion at an input pulse energy of 12 µJ (corresponding to a soliton order of 3.23). The self-compressed pulse, with increased peak intensity, could lead to a higher plasma density which restricts the process of soliton self-compression.

In the simulations we observe that when the input pulse energy increases, the corresponding to higher soliton order can lead to the second and stronger soliton self-compression process in a limited propagation length. In fact, if the fiber is long enough, the soliton self-compression processes can occur several times even at low input pulse energies. Figures 4(a) and 4(b) show the temporal and spectral evolutions of the optical pulse as a function of fiber positions when the input pulse energy is 13.3 µJ (corresponding to soliton order 3.4), and the calculated frequency chirping is shown in Fig. 4(c). As shown in Fig. 4(a), the first and intense soliton self-compression process (marked as white letter “A”) occurs in the range from 20 to 26 cm, after that, the second and stronger soliton self-compression (marked as white letter “B”) starts from 27 cm to the output end of the fiber. The maximum peak power of the pulses is close to 4 GW that creates a larger ionization fraction of ~0.09% compared to the former case shown in Fig. 2, leading to a higher plasma density. As a result, in Fig. 4(b), the band “1” of the pulse spectrum shows an obvious and continuous blueshift after propagation length of about 20 cm. In particular, the strong plasma created by the second soliton self-compression process pushes further the blueshift of the pulse to the visible spectral region (already hundreds of nanometers away from the central frequency of the pump pulse). This remarkable phenomenon is also demonstrated in Fig. 4(c). The maximum positive value of the frequency chirping is 5 times larger than that in Fig. 2(f). Moreover, the maximum negative value is also 2 times larger, leading to a larger spectral redshift (marked as white numbers “4” and “5”) in the last few-cm fiber length, as shown in Fig. 4(b). This can be explained as that the SPM-induced frequency chirping on the back edge of pulse envelope is also enhanced due to the second pulse self-compression process marked as the region of “B” in Fig. 4(a).

 figure: Fig. 4

Fig. 4 Temporal (a), spectral (b) and frequency chirping (c) evolutions with input pulse energy of 13.3 µJ. N and A represent normal and anomalous dispersion that are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. The numbers 1-5 show the different spectral bands that are also marked in Figs. 5(b) and 5(d). The white letters A and B indicate the first and second soliton-self compression within fiber, respectively.

Download Full Size | PPT Slide | PDF

Figures 5(a) and 5(b) show the temporal and spectral evolutions of the pulses at output end of the SR-PCF as a function of input pulse energy, the corresponding normalized temporal and spectral intensities are shown in Figs. 5(c) and 5(d). As shown in Fig. 5(c), the temporal envelopes of the pulses exhibit some oscillations (region (i)) on the back edge of the pulses after an input pulse energy of 12.9 µJ and these oscillations become more and more profound as the input pulse energy increases. It can be explained as that the increased input pulse energy can enhance the spectral broadening of the pulse due to the SPM effect. Then the combination of the SPM effect and anomalous dispersion results in stronger soliton self-compression and higher the pulse peak intensities. The stronger gas-ionization processes and therefore higher plasma densities due to higher pulse intensities, can lead to these oscillations. In particular, when the input pulse energy is high enough, the plasma-induced pulse fission occurs [24]. In Fig. 5(d), for the input pulse energy ranging from 12.9 to 13.3 µJ (marked as red double arrowed line), the dispersive wave emission at UV wavelengths can be observed on the pulse spectrum, having wavelengths at ~100 nm (region (ii)). This can be understood as that at these high pulse energies, the generated strong plasma changes the dispersion property of the fiber, which modulates the phase matching condition of the dispersive wave generation.

 figure: Fig. 5

Fig. 5 Simulated temporal (a) and spectral (b) evolutions after propagating a 30-cm long and 36-µm core diameter SR-PCF filled with 6 bar of helium as a function of input energy (30-fs and 800-nm Gaussian pulse) from 12 µJ to 13.3 µJ. Corresponding normalized temporal (c) and spectral (d) intensities. (i) and (ii) show the oscillations at the back edge of the pulses and UV DW emission, respectively. The black dashed line mark the ZDW (293 nm), N and A indicate normal and anomalous dispersion. The numbers 1-5 correspond to the different spectral bands. The UV DW emission occurs on linear scale for input energy from 12.9 µJ to 13.3 µJ, which is labeled with the red double arrowed line.

Download Full Size | PPT Slide | PDF

Moreover, the stronger soliton self-compression at higher input pulse energies leads to shorter output pulse duration after propagating the 30-cm long SR-PCF. As shown in Fig. 6(a), the pulse duration (blue square line) decreases as a function of the input pulse energy, and the results show that the pulse duration can be compressed to <1 fs when incident pulse energy is large enough. At the same time, the plasma-induced energy loss also increases, resulting in a drop in the fiber transmission (red square line). The simulation results in Fig. 4 show that the higher input pulse energy can lead to the stronger spectral blueshift. Figure 6(b) shows the wavelength (green circle line) of the blueshifting soliton marked in number “1” in Fig. 5(d) and the conversion efficiency (orange circle line) that defined as the ratio of the blueshifting soliton energy to the total output pulse energy. Note that the blueshifting soliton can be tuned by a few hundred nanometers, and its conversion efficiency can be maintained at >57%.

 figure: Fig. 6

Fig. 6 (a) Numerically calculated pulse duration (blue square line) and energy transmission (red square line) at the output of fiber as a function of input energy. (b) Soliton wavelength (green circle line) marked by number 1 in Fig. 5(d) and corresponding conversion efficiency (orange circle line). (c) Peak power (blue triangle line) and plasma density (red triangle line) of output pulses. (d) Electric field intensity (blue solid line) and its envelope (red solid line) at the output of fiber are shown with (upper plot) and without (lower plot) a super-Gaussian filter for input energy of 12.8 µJ.

Download Full Size | PPT Slide | PDF

In addition, in Fig. 6(c), the peak power (blue triangle line) of the output pulses is enhanced at the beginning, while for energies greater than 12.7 µJ, it shows an alternating change since the peak power of the pulses is dependent on a few factors including the pulse energy, pulse duration and its temporal profile. The generated plasma density (red triangle line) only depends on the peak intensity of the pulses based on OFI process. Furthermore, we employ a super-Gaussian function to filter the blueshifting soliton (spectral band “1” in Fig. 5(d)) for input pulse energy of 12.8 µJ, the calculated temporal envelope and electric field are shown in Fig. 6(d) with (upper plot) and without (lower plot) filter, respectively. After using the filter, the pulse duration changes from ~1.1 to ~1.5 fs and the peak power of the electric field changes from ~2.6 to 2.2 GW.

6. Effect of core-cladding resonance

For ARR SR-PCF, the broad transmission window is interrupted by several sharp resonance bands since the modes of the cladding features are in resonance with the core mode. These resonances can be explained as a result of the presence of a thin glass capillary in the fiber core boundary, where the loss is very high and the dispersion is considerably affected. The resonant wavelength can be expressed as [53,54]:

λq=2dng2(λq)1/q,
where ng is the refractive index of the cladding material at wavelength λq, q is an integer number.

Here we employ a recent method termed bouncing-ray (BR) model [36] that can calculate the mode loss in the resonant bands. The resulting expression through the BR model is given by:

αBRH=(αBRTE+αBRTM),
where αBRH is the mode loss for hybrid modes including the fundamental mode HE11, αBRTE and αBRTM represent the TE and TM modes, and the loss coefficients are:
αBRTE=2unm/{a2k0[4cos2(δd)+(κ/δ+δ/κ)2sin2(δd)]},
αBRTM=2unm/{a2k0[4cos2(δd)+(ng2κ/δ+δ/ng2κ)2sin2(δd)]},
where δ is the transverse wavenumber in the cladding material that can to a good approximation δk0ng21, κ is the core transverse wavenumber and it meets the simple relation κa=unm under the perfect-conductor assumption. In order to describe the total loss including mode loss and material loss in the UV and MIR, the transverse wavenumber ratio δ/κ for the TE case and δ/ng2κ for the TM case need to be replaced with:
(δ/κ)*=(δ/κ)[1+(κ/δ)tanh(ngn˜gZg2δd)]/[1+(δ/κ)tanh(ngn˜gZg2δd)],
(δ/ng2κ)*=(δ/ng2κ)[1+(ng2κ/δ)tanh(ngn˜gZg2δd)]/[1+(δ/ng2κ)tanh(ngn˜gZg2δd)],
where n˜g is the imaginary part of the complex refractive index n¯g=ng+in˜g in the cladding material that can be obtained by n˜g=αg/(2k0), αg is the wavelength-dependent loss coefficient of the cladding material, Zg=(ng21)0.5. Moreover, an overall corrected factor fFEM is used to match the FEM data, thus the modified total loss is:
αBRH=fFEMαBRH.
It was found that fFEM=0.01 agreed well with the FEM data of the fundamental hybrid mode.

More recently, Hasan et al. proposed an empirical formula to describe the effective mode index of the resonant and anti-resonant regions, without the time consuming numerical simulations [37]. The effective index can be given as:

neffL=ngas2[unmλ/(2πaeff)]2+qσqλ2/λq2,
where aeff=f1a[1f2λ2/(ad)] is the effective radius, f1 and f2 are two fitting parameters which are given by
f1=1.095exp[0.097041/(a/g)],
f2=0.007584ntubeexp[0.76246/(a/g)]0.002ntube+0.012,
ntube is the number of the anti-resonant tubes, and σq describes the resonant strength that is checked for resonance number q ranging from 1 to 4, and its expression is:
σq[d/(nga)]2.303A/ng[(q+2)/(3q)]3.57A,
where A=1.83+(2.3d/a).

Figures 7(a) and 7(b) show the calculated loss and dispersion for the wall thickness of 150 nm through Eqs. (14) and (15), respectively. The first resonant wavelength λ1 occurs ~328 nm and this wavelength shows a high loss ~1.9 m−1 (corresponding to ~8.4 dB/m). We consider the influence of core-cladding resonance by introducing the loss and dispersion into Eq. (1). As shown in Figs. 7(c) and 7(d), the core-cladding resonance has a minor impact on the pulse propagation compared to the case of Figs. 4(a) and 4(b) except for the emission of narrow spectral peak (marked in (i)) near the region of the first resonance. This enhanced narrow band can be understood as a consequence of phase matching induced by parametric nonlinear process such as four-wave mixing (FWM) or/and DW generation. This effect has been confirmed by a recent experiment in [54]. In Fig. 8, when the wall thickness is increased to 250 nm, the resonance-induced loss is enhanced. At the first resonant wavelength of ~535 nm, the corresponding loss is ~3.2 m−1 (corresponding to ~13.7 dB/m). Note that the core-cladding resonance presents a strong and negative impact on spectral blueshift near the first resonant region. In addition, the emission of narrow spectral peak (marked in (ii)) becomes wider and stronger as the resonant wavelength is closer to the pump wavelength. Therefore, in order to minimize the impact of core-cladding resonance on the pulse propagation, one can adjust wall thickness to shift the resonance far away from the pump wavelength.

 figure: Fig. 7

Fig. 7 The simulation parameters come from Figs. 1 and 4, and the core-cladding resonance induced loss and dispersion are considered. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 150 nm. (b) The calculated dispersion (red solid line) through the empirical formulae from Eq. (15). (c) and (d) correspond to the temporal and spectral evolutions with different positions in fiber. (i) shows an emission of narrow spectral peak.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8

Fig. 8 As Fig. 7, but the wall thickness is increased to 250 nm. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 250 nm. (b) The calculated dispersion (red solid line) by the empirical formulae from Eq. (15). (c) and (d) are the temporal and spectral evolutions with different propagation length. (ii) shows a wider and stronger emission of narrow spectral peak.

Download Full Size | PPT Slide | PDF

7. Discussion

There are a few points needed to be considered on the experiments. First, for ARR SR-PCF, the broad transmission bands are interrupted by localized high-loss regions as the resonance between core mode and cladding mode. The resonant wavelength is dependent on the wall thickness, thus we can control the wall thickness to shift the resonances out of the wavelength range we are interested in. Second, the gas types also have an influence for blueshifting soliton. For example, the first ionization potential of argon gas (~15.76 eV) is less than helium gas (~24.59 eV), which means the argon gas is easier to be ionized during soliton self-compression. By contrast, helium gas can support a larger peak intensity, thus the self-compressed pulses can reach the shorter duration when the free-electron population effectively builds up, resulting in the larger spectral blueshift based on the relation ofΔω(z,t)~tρ(z,t). Third, similarly, the input pulse duration should be short to effectively achieve spectral blueshift in a limited propagation length.

In addition, the pulse duration measurements are also important. The common methods to measure ultrashort pulses such as the second-harmonic generation frequency-resolved optical gating (SHG-FROG) [55,56] and the spectral phase interferometry for direct electric-field reconstruction (SPIDER) [57], are both valid to measure the few-cycle duration or even single-cycle and sub-cycle for long-wavelength pulses [26]. However, in comparison with long-wavelength pulses, the lasting time of one optical cycle for short-wavelength pulses is quite short, which is very difficult to measure. For example, the shortest pulse duration that can be measured experimentally should be more than one optical cycle (~2.7 fs) at central wavelength of 800 nm. Furthermore, if the spectral components of the blueshifting soliton are tuned below 400 nm, these two methods will be invalid since the frequency-doubled signals based on χ(2) process are out of the transmission window of the crystal. Another approach such as the self-diffraction frequency-resolved optical gating (SD-FROG) can be employed and the self-diffracted signals through the χ(3) process work well in the broad spectral range including UV region. It should be noted that this method requires high pulse energy [58]. One can use a larger core diameter SR-PCF that supports intense input pulse energy, but this large core waveguide provides the limited anomalous dispersion, which is not conducive to soliton self-compression. Therefore, we need to keep a good balance between blueshifting spectral range, compressed pulse duration and the pulse energy.

8. Conclusions

In conclusion, we theoretically studied the soliton-plasma interactions in a 30-cm long and 36-µm core diameter SR-PCF filled with helium gas at pressure of 6 bar. The simulation results show that the system can be used for generating wavelength-tunable, few-cycle pulses in the visible spectral region. The blueshift of the pulse spectrum due to the soliton-plasma interactions can be tuned over hundreds of nanometers through adjusting input pulse energy, while maintaining a high conversion efficiency of >57%. In addition, we found at high input pulse energies, the oscillations on the trailing edges of the output pulses become more and more profound, and the second soliton self-compression process appears which further enhances soliton-plasma interactions and modulates the phase-matching condition of the dispersive wave generation at UV wavelengths. Besides, we used the BR model and empirical formulas to describe the loss and dispersion of the resonant and anti-resonant spectral regions in the SR-PCF, and we also investigated the effect of the core-cladding resonance on the blueshifting soliton. The emission of a narrow-bandwidth spectral peak was observed near the spectral resonance of the SR-PCF due to the phase matching, and such emission will be enhanced when the resonant wavelength is closer to the pump pulse wavelength. We believe the tunable few-cycle light source proposed here could be used to study both pump-probe spectroscopy such as ultrafast electronic vibrational dynamics and strong-field physics such as HHG. The numerical results demonstrated here may also provide some useful insight for understanding the soliton-plasma interactions in gas-based ultrafast nonlinear optics.

Funding

Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB1603), International S&T Cooperation Program of China (Grant No. 2016YFE0119300), Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1404200), National Natural Science Foundation of China (Grant No. 61521093).

Acknowledgments

The authors would like to thank Fei Yu for useful discussions.

References

1. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018). [CrossRef]   [PubMed]  

2. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000). [CrossRef]   [PubMed]  

3. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004). [CrossRef]   [PubMed]  

4. N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017). [CrossRef]   [PubMed]  

5. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]  

6. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984). [CrossRef]  

7. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5(3), 641–647 (1988). [CrossRef]  

8. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996). [CrossRef]  

9. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018). [CrossRef]  

10. R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018). [CrossRef]   [PubMed]  

11. C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017). [CrossRef]  

12. S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017). [CrossRef]  

13. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016). [CrossRef]  

14. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015). [CrossRef]  

15. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017). [CrossRef]  

16. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011). [CrossRef]  

17. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014). [CrossRef]  

18. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017). [CrossRef]  

19. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef]   [PubMed]  

20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef]   [PubMed]  

21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011). [CrossRef]   [PubMed]  

22. M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017). [CrossRef]  

23. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017). [CrossRef]   [PubMed]  

24. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017). [CrossRef]   [PubMed]  

25. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015). [CrossRef]   [PubMed]  

26. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015). [CrossRef]   [PubMed]  

27. D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015). [CrossRef]   [PubMed]  

28. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994). [CrossRef]   [PubMed]  

29. Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017). [CrossRef]  

30. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).

31. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018). [CrossRef]  

32. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef]   [PubMed]  

33. X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017). [CrossRef]   [PubMed]  

34. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011). [CrossRef]   [PubMed]  

35. W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013). [CrossRef]   [PubMed]  

36. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).

37. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018). [CrossRef]  

38. F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017). [CrossRef]   [PubMed]  

39. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011). [CrossRef]   [PubMed]  

40. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010). [CrossRef]  

41. S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018). [CrossRef]   [PubMed]  

42. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012). [CrossRef]   [PubMed]  

43. C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001). [CrossRef]  

44. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007). [CrossRef]  

45. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992). [CrossRef]   [PubMed]  

46. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

47. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

48. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

49. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964). [CrossRef]  

50. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008). [CrossRef]   [PubMed]  

51. M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014). [CrossRef]   [PubMed]  

52. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

53. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993). [CrossRef]  

54. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018). [CrossRef]  

55. D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993). [CrossRef]  

56. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993). [CrossRef]  

57. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998). [CrossRef]   [PubMed]  

58. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11(9), 1595–1608 (1994). [CrossRef]  

References

  • View by:

  1. Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
    [Crossref] [PubMed]
  2. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
    [Crossref] [PubMed]
  3. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
    [Crossref] [PubMed]
  4. N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
    [Crossref] [PubMed]
  5. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  6. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [Crossref]
  7. C. Rolland and P. B. Corkum, “Compression of high-power optical pulses,” J. Opt. Soc. Am. B 5(3), 641–647 (1988).
    [Crossref]
  8. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  9. I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
    [Crossref]
  10. R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
    [Crossref] [PubMed]
  11. C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
    [Crossref]
  12. S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
    [Crossref]
  13. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
    [Crossref]
  14. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  15. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
    [Crossref]
  16. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
    [Crossref]
  17. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  18. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  22. M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
    [Crossref]
  23. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
    [Crossref] [PubMed]
  24. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
    [Crossref] [PubMed]
  25. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
    [Crossref] [PubMed]
  26. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
    [Crossref] [PubMed]
  27. D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
    [Crossref] [PubMed]
  28. V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
    [Crossref] [PubMed]
  29. Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
    [Crossref]
  30. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).
  31. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
    [Crossref]
  32. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [Crossref] [PubMed]
  33. X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
    [Crossref] [PubMed]
  34. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
    [Crossref] [PubMed]
  35. W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
    [Crossref] [PubMed]
  36. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).
  37. M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
    [Crossref]
  38. F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
    [Crossref] [PubMed]
  39. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
    [Crossref] [PubMed]
  40. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
    [Crossref]
  41. S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref] [PubMed]
  42. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  43. C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
    [Crossref]
  44. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [Crossref]
  45. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
    [Crossref] [PubMed]
  46. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).
  47. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).
  48. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).
  49. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  50. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [Crossref] [PubMed]
  51. M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
    [Crossref] [PubMed]
  52. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  53. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
    [Crossref]
  54. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
    [Crossref]
  55. D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
    [Crossref]
  56. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
    [Crossref]
  57. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [Crossref] [PubMed]
  58. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11(9), 1595–1608 (1994).
    [Crossref]

2018 (7)

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

2017 (12)

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
[Crossref] [PubMed]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).

C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
[Crossref]

S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
[Crossref]

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

2016 (1)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

2015 (4)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

2014 (2)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (5)

2010 (1)

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

2009 (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

2008 (1)

2007 (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

2004 (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2001 (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

2000 (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

1998 (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[Crossref] [PubMed]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

1994 (2)

1993 (3)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[Crossref]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101–1111 (1993).
[Crossref]

1992 (1)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

1988 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

1984 (1)

1967 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Akhmediev, N.

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Apolonski, A.

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Bai, Z. Y.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Bang, O.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Benabid, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Boppart, S. A.

Börzsönyi, A.

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Buczynski, R.

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Burnett, K.

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

Cassataro, M.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Chang, W.

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Cižmár, T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Corkum, P. B.

Couairon, A.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Courtois, C.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cros, B.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Cuschieri, A.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Dai, D. H.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

DeLong, K. W.

Dianov, E. M.

Ding, W.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Du, J.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Fan, D. Y.

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Frosz, M. H.

Gao, S. F.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Gerome, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Gu, S.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Günendi, M. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

Han, D.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Hasan, M. I.

He, W.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Heidt, A.

Heiner, Z.

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Hou, M. X.

Hu, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Huang, Y. J.

Iaconis, C.

Iegorov, R.

Ilday, F. Ö.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Jiang, D. L.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Jiang, X.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Kalashnikov, M. P.

Kane, D. J.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Keding, R.

Kinsler, P.

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Klimczak, M.

Knight, J. C.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Kobayashi, T.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Kohler, B.

Kosolapov, A. F.

Köttig, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

Kovács, A. P.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Krausz, F.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

Laegsgaard, J.

Leite, I. T.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Leng, Y.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Li, J.

Li, R.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Li, Z. Y.

Liang, Y. H.

Liao, C. R.

Lin, C. P.

Liu, X.

Liu, Y.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Mak, K. F.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Marquès, J. R.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Martynkien, T.

Matthieussent, G.

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Mergo, P.

Miyatake, T.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Ning, T. G.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Nold, J.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Novoa, D.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Osvay, K.

Pang, M.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Pei, L.

Pennetta, R.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Pervak, V.

Plotnichenko, V. G.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Pronin, O.

Pryamikov, A. D.

Rae, S. C.

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

Rolland, C.

Roth, P.

Russell, P. S. J.

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Russell, P. St. J.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Seidel, M.

Semjonov, S. L.

Shank, C. V.

Shi, T.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Šiler, M.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Siwicki, B.

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Sobon, G.

Sotor, J.

St J Russell, P.

Stolen, R. H.

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

Svane, A. S.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Tamaya, T.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Tamiaki, H.

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Tanaka, K.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Tang, X.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Tani, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

Tarnowski, K.

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

Tomaszewska, D.

Tomlinson, W. J.

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19(21), 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28(12), A11–A26 (2011).
[Crossref]

Trebino, R.

Tu, H.

Turchinovich, D.

Turtaev, S.

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Wadsworth, W. J.

Walmsley, I. A.

Wang, J. S.

Wang, P.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. P.

Wang, Y. Y.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Weiss, T.

Weng, S. J.

Wilson, K. R.

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Wolf, J. P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

Xie, S.

Yakovlev, V. V.

Yang, J.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Yang, J. L.

Yoshikawa, N.

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Yu, F.

Zeltner, R.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

Zhang, X.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Zhang, Z.

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

Zhong, H. Z.

ACS Nano (1)

Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, “Robust subwavelength single-mode perovskite nanocuboid laser,” ACS Nano 12(6), 5923–5931 (2018).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 39(15), 2586–2631 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Chem. Rev. (1)

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1757 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” IEEE J. Quantum Electron. 29(2), 571–579 (1993).
[Crossref]

J. Lightwave Technol. (2)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Empirical formulae for dispersion and effective mode area in hollow-core antiresonant fibers,” J. Lightwave Technol. 36(18), 4060–4065 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (1)

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Commun. 8(1), 813 (2017).
[Crossref] [PubMed]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6(1), 6117 (2015).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Nat. Photonics (4)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10(7), 454–458 (2016).
[Crossref]

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. St. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

I. T. Leite, S. Turtaev, X. Jiang, M. Šiler, A. Cuschieri, P. St. J. Russell, and T. Čižmár, “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
[Crossref] [PubMed]

V. V. Yakovlev, B. Kohler, and K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19(23), 2000–2002 (1994).
[Crossref] [PubMed]

F. Tani, M. H. Frosz, J. C. Travers, and P. St J Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42(9), 1768–1771 (2017).
[Crossref] [PubMed]

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell, “Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber,” Opt. Lett. 38(16), 2984–2987 (2013).
[Crossref] [PubMed]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
[Crossref] [PubMed]

R. Zeltner, R. Pennetta, S. Xie, and P. S. J. Russell, “Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber,” Opt. Lett. 43(7), 1479–1482 (2018).
[Crossref] [PubMed]

Photon. Res. (9)

C. P. Lin, Y. Wang, Y. J. Huang, C. R. Liao, Z. Y. Bai, M. X. Hou, Z. Y. Li, and Y. P. Wang, “Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement,” Photon. Res. 5(2), 129–133 (2017).
[Crossref]

S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res. 5(2), 103–107 (2017).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5(6), 710–727 (2017).
[Crossref]

X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. Ö. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5(6), 750–761 (2017).
[Crossref] [PubMed]

Y. Li, Y. H. Liang, D. H. Dai, J. L. Yang, H. Z. Zhong, and D. Y. Fan, “Frequency-domain parametric downconversion for efficient broadened idler generation,” Photon. Res. 5(6), 669–675 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100 fs pulses tunable from 1700 to 2100 nm from a compact frequency-shifted Er-fiber laser,” Photon. Res. 5(3), 151–155 (2017).

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800-2000 nm range,” Photon. Res. 6(5), 368–372 (2018).
[Crossref]

M. H. Frosz, P. Roth, M. C. Günendi, and P. St. J. Russell, “Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers,” Photon. Res. 5(2), 88–91 (2017).
[Crossref]

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. St. J. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6(2), 84–88 (2018).
[Crossref]

Phys. Plasmas (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8(7), 3445–3456 (2001).
[Crossref]

Phys. Rev. A (2)

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[Crossref] [PubMed]

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[Crossref]

Phys. Rev. Lett. (3)

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107(20), 203901 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[Crossref]

Rev. Mod. Phys. (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized light excitation,” Science 356(6339), 736–738 (2017).
[Crossref] [PubMed]

Sov. Phys. JETP (3)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23(5), 924–934 (1966).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24(1), 207–217 (1967).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64(6), 1191–1194 (1986).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The fundamental core mode of SR-PCF calculated through FEM at 800 nm. a and d denote the core radius and the wall thickness. D and g represent the outer diameter of the anti-resonant tubes and the perimeter gap. Here a = 18 µm, d = 150 nm, D = 24.4 µm, and g = 1.8 µm. (b) The wavelength-dependent dispersion of the fundamental mode of SR-PCF, calculated using Eq. (5), and with helium at 6 bar. N and A denote the normal and anomalous dispersion that are separated by red dashed line. ZDP is the zero dispersion point and the corresponding ZDW is 293 nm.
Fig. 2
Fig. 2 Simulated evolutions of a 30-fs Gaussian pulse with 12-µJ energy, centered at 800 nm, propagating in a 30-cm long and 36-µm core diameter helium-filled SR-PCF with fiber loss of 0.1 dB/m at 6 bar when ionization is not included (a)-(c) and when it is included (d)-(f). (a) and (d) Temporal evolutions, (b) and (e) spectral evolutions, (c) and (f) frequency chirping evolutions. The red dashed line show the pulses at the maximum peak power point. N and A denote normal and anomalous dispersion, they are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. (i) shows the UV DW emission. The white numbers 1-3 represent the different spectral bands.
Fig. 3
Fig. 3 (a) Numerically calculated pulse duration (blue solid line) and average wavelength (red solid line) for different positions in fiber when ionization is included. (b) The calculated plasma density (green solid line) and pulse energy (orange solid line) for different fiber positions. The red dashed line show the maximum peak power point. Electric field intensity (blue solid line) and frequency chirping (red solid line) at the maximum peak power point are shown without (c) and with (d) the influence of ionization.
Fig. 4
Fig. 4 Temporal (a), spectral (b) and frequency chirping (c) evolutions with input pulse energy of 13.3 µJ. N and A represent normal and anomalous dispersion that are separated by the ZDW (293 nm) marked in black dashed line. The dashed white line indicate the pump wavelength. The numbers 1-5 show the different spectral bands that are also marked in Figs. 5(b) and 5(d). The white letters A and B indicate the first and second soliton-self compression within fiber, respectively.
Fig. 5
Fig. 5 Simulated temporal (a) and spectral (b) evolutions after propagating a 30-cm long and 36-µm core diameter SR-PCF filled with 6 bar of helium as a function of input energy (30-fs and 800-nm Gaussian pulse) from 12 µJ to 13.3 µJ. Corresponding normalized temporal (c) and spectral (d) intensities. (i) and (ii) show the oscillations at the back edge of the pulses and UV DW emission, respectively. The black dashed line mark the ZDW (293 nm), N and A indicate normal and anomalous dispersion. The numbers 1-5 correspond to the different spectral bands. The UV DW emission occurs on linear scale for input energy from 12.9 µJ to 13.3 µJ, which is labeled with the red double arrowed line.
Fig. 6
Fig. 6 (a) Numerically calculated pulse duration (blue square line) and energy transmission (red square line) at the output of fiber as a function of input energy. (b) Soliton wavelength (green circle line) marked by number 1 in Fig. 5(d) and corresponding conversion efficiency (orange circle line). (c) Peak power (blue triangle line) and plasma density (red triangle line) of output pulses. (d) Electric field intensity (blue solid line) and its envelope (red solid line) at the output of fiber are shown with (upper plot) and without (lower plot) a super-Gaussian filter for input energy of 12.8 µJ.
Fig. 7
Fig. 7 The simulation parameters come from Figs. 1 and 4, and the core-cladding resonance induced loss and dispersion are considered. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 150 nm. (b) The calculated dispersion (red solid line) through the empirical formulae from Eq. (15). (c) and (d) correspond to the temporal and spectral evolutions with different positions in fiber. (i) shows an emission of narrow spectral peak.
Fig. 8
Fig. 8 As Fig. 7, but the wall thickness is increased to 250 nm. (a) The loss (blue solid line) of the fundamental mode calculated by BR model with wall thickness of 250 nm. (b) The calculated dispersion (red solid line) by the empirical formulae from Eq. (15). (c) and (d) are the temporal and spectral evolutions with different propagation length. (ii) shows a wider and stronger emission of narrow spectral peak.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( z , ω ) z = i ( β ( ω ) ω v p ) E ˜ ( z , ω ) α ( ω ) 2 E ˜ ( z , ω ) + i ω 2 2 c 2 ε 0 β ( ω ) F { P N L ( z , t ) } ,
P N L ( z , t ) = ε 0 χ ( 3 ) E ( z , t ) 3 + P i o n ( z , t ) ,
P i o n ( z , t ) = t ρ ( z , t ) t U i E ( z , t ) d t + e 2 m e t ρ ( z , t ) E ( z , t ) d t d t ,
ρ t = W ( I ) ( ρ n t ρ ) + σ U i ρ I f ( ρ ) ,
β ( ω ) = k 0 n e f f = k 0 n g a s 2 ( ω , P , T ) u n m 2 k 0 2 a 2 k 0 [ 1 + 1 2 P T 0 P 0 T δ ( ω ) 1 2 u n m 2 k 0 2 a 2 ] ,
Δ ω ( z , t ) = ω ( z , t ) ω 0 = ϕ S P M t = k 0 n 2 Δ z I ( z , t ) t ,
Δ ω ( z , t ) = ϕ S P M t ϕ p l a s m a t = k 0 n 2 Δ z I ( z , t ) t + k 0 Δ z 2 n 0 ρ c r ρ ( z , t ) t ,
λ q = 2 d n g 2 ( λ q ) 1 / q ,
α B R H = ( α B R T E + α B R T M ) ,
α B R T E = 2 u n m / { a 2 k 0 [ 4 cos 2 ( δ d ) + ( κ / δ + δ / κ ) 2 sin 2 ( δ d ) ] } ,
α B R T M = 2 u n m / { a 2 k 0 [ 4 cos 2 ( δ d ) + ( n g 2 κ / δ + δ / n g 2 κ ) 2 sin 2 ( δ d ) ] } ,
( δ / κ ) * = ( δ / κ ) [ 1 + ( κ / δ ) tan h ( n g n ˜ g Z g 2 δ d ) ] / [ 1 + ( δ / κ ) tan h ( n g n ˜ g Z g 2 δ d ) ] ,
( δ / n g 2 κ ) * = ( δ / n g 2 κ ) [ 1 + ( n g 2 κ / δ ) tan h ( n g n ˜ g Z g 2 δ d ) ] / [ 1 + ( δ / n g 2 κ ) tan h ( n g n ˜ g Z g 2 δ d ) ] ,
α B R H = f F E M α B R H .
n e f f L = n g a s 2 [ u n m λ / ( 2 π a e f f ) ] 2 + q σ q λ 2 / λ q 2 ,
f 1 = 1.095 exp [ 0.097041 / ( a / g ) ] ,
f 2 = 0.007584 n t u b e exp [ 0.76246 / ( a / g ) ] 0.002 n t u b e + 0.012 ,
σ q [ d / ( n g a ) ] 2.303 A / n g [ ( q + 2 ) / ( 3 q ) ] 3.57 A ,

Metrics