Abstract

In this research, surface plasmon resonance (SPR) spectroscopy was used for sensing copper ion by combining the SPR with nanocrystalline cellulose modified by hexadecyltrimethylammonium bromide and graphene oxide composite (CTA-NCC/GO) thin film. The binding of Cu2+ on CTA-NCC/GO thin film was monitored by using SPR spectroscopy. By using the obtained SPR curve, detection range, binding affinity, sensitivity, full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have been calculated. The results showed that the sensor detection range was 0.01 until 0.5 ppm, and that it reached a saturation value. Moreover, the resonance angle shift followed the Langmuir isotherm model with a binding affinity constant of 4.075 × 103 M−1. A high sensitivity of 3.271° ppm−1 also was obtained for low Cu2+ concentration ranged from 0.01 to 0.1 ppm. For the FWHM, the lowest value calculated was at 0.08 and 0.1 ppm, which is 3.35°. The DA of the SPR signal consecutively highest at 0.08 and 0.1 ppm. Besides that, the SNR of the SPR signal increases with the Cu2+ concentrations. The CTA-NCC/GO thin film morphological properties were also studied by using atomic force microscopy. The rms roughness values, which were obtained before and after in contact with Cu2+, were 3.51 nm and 2.46 nm, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

After iron and zinc, the most abundant transition metal ion is copper. Copper or the most usual forms of copper is Cu2+ has many crucial roles in human biological systems. Although only small amount of metal needed in the human body, copper and some proteins are reported to be essential in producing about 20 enzymes important for life [1–4]. The amount of copper in a human body is only about 70-100 mg and stored mainly in the liver with some are found in the brain, kidney, muscles, and heart [5,6]. Besides that, copper is important to help in producing bones, tissue formation, cellular respiration, and brain functions [7]. However, excess copper in the human body as copper is widely used for industrial purposes can seriously damage the biological systems. For instances, excess copper can cause Parkinson, hypoglycemia, dyslexia, Alzheimer, and Wilson diseases [7–9]. Previous study also reported that the copper concentration in the human body is limited to 23.6 μM and in the range of 15-30 μM in drinking water [10–12].

Surface plasmon resonance (SPR) spectroscopy is one of the optical sensors that used the basic principle of physics where light beam that passes from a material with higher refractive index into a material with lower refractive index, total internal reflection will occur if the incident light angle is higher than the critical angle. SPR was previously reported to have high sensitivity, high selectivity, rapid detection, cost-effective, and fast measurement capacity with no reference necessity [13,14]. Since the past decades, SPR has gained attention from the scientific community and were studied for chemical detection and various applications [15–23]. By using Kretschmann configuration as shown in Fig. 1, when an incident light of p-polarization propagates through the prism and onto the metallic film, the free electrons on the metal surfaces is excited and form a surface plasmon [24–26]. At a certain angle, the surface plasmon will resonate with the incident angle thus reduce the incident light intensity [27]. This angle is defined as resonance angle or SPR. The only limitation of SPR is not sensitive for low concentration of ion solution [28]. Thus, the modification of the gold thin film to increase the sensitivity has been attempted [29–36]. In this study, the gold thin film was modified with nanocrystalline cellulose and graphene oxide composite that was reported to have good adsorption towards Cu2+ ion [37,38].

 figure: Fig. 1

Fig. 1 Kretschmann configuration.

Download Full Size | PPT Slide | PDF

Cellulose is the most abundant natural material in the world that is present in the forms of biomasses such as trees, plants, tunicate, and bacteria [39]. Cellulose is composed of linear polysaccharides consisted of two anhydroglucose rings linked by repeated β-1,4 glycoside bonds [40]. Due to these properties, cellulose has attracted researchers as cellulose can be processed into smaller particles either in micro-sized or nano-sized to enhance their properties [41]. Nanocrystalline cellulose (NCC) can be obtained from acid hydrolysis cellulose and one of the interesting properties of NCC is the existences of negative charge on their surface [42]. Another way to enhance cellulose properties is by modification of hydroxyl functional group in cellulose using several methods [43–47]. Graphene oxide was chosen to be combined with NCC due to their excellent optical and electrical properties that make GO a great candidate for sensing metal ion [48,49]. To best of our knowledge, nanocrystalline cellulose and graphene oxide composite are yet applied to detect Cu2+ using SPR sensor. In this work, NCC and GO composite was used to be incorporated with SPR sensor to detect Cu2+ in water. NCC has also been attempted to be partially hydrophobic by modification of NCC with hexadecyltrimethylammonium bromide (CTA) that envisaged can increase the sensitivity of the sensor.

2. Materials and method

2.1 Reagent and materials

Graphene oxide, hexadecyltrimethylammonium bromide (CTA), copper ion solution (1000 ppm), and nanocrystalline cellulose (NCC) were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.2 Preparation of chemicals

All chemical were analytical grade and deionized water was used for all solution preparation. To prepare CTA-NCC, previous method reported by Abitbol et al. was used [50]. First, 5 g of NCC was diluted in 100 ml (0.1 wt.% suspension) are mixed with 0.1 wt.% CTA. The obtained CTA-NCC solution then was centrifuged for 10 minutes and repeated 3 times. To prepare CTA-NCC/GO, the process begins by dispersing 1 ml of the GO into 1 ml of CTA-NCC to produce CTA-NCC/GO. This composite mixture was then sonicated in the bath sonicator at a temperature of 70°C for about 1 hour.

The copper standard solution of 1000 ppm concentration was diluted with deionized water by using dilution formula M1V1 = M2V2 and the prepared solutions were 0.01, 0.05, 0.08, 0.1, 0.5, 1, 5, 10, 20, 40 and 60 ppm [17].

2.3 Preparation of thin film

Substrate glass with an area of 24 mm x 24 mm and thickness 0.13-0.16 mm were purchased from Menzel-Glaser. The substrate first was cleaned with acetone to remove dirt and fingerprint marks on the glass surface. Then, gold layer was deposited on the glass surface using SC7640 Sputter Coater. To dispersed CTA-NCC/GO solution uniformly on top of the gold layer, spin coating technique was used. About 1 ml of CTA-NCC/GO solution was placed on the gold layer surface and the glass slip was spun at 6000 rpm at 30 seconds using spin coater P-6708D.

2.4 Surface plasmon resonance

Surface plasmon resonance (SPR) spectroscopy setup that consisted of He-Ne laser beam (632.8nm, 5 mW), stepper motor (Newport MM 3000), polarizer, optical chopper (SR 540), prism (n = 1.77861), photodiode detector, and lock-in amplifier (SR 530) was designed in the laboratory to test the ability of the thin film in sensing copper ion as shown in Fig. 2 [51]. The thin film is sandwiched between the prism and the dielectric medium which is the Cu2+ solution. The Cu2+ solution with the concentrations of 0.01 ppm until 60 ppm then was injected into the hollow one by one and the reflected beam was recorded [52].

 figure: Fig. 2

Fig. 2 Schematic diagram of surface plasmon resonance spectroscopy.

Download Full Size | PPT Slide | PDF

2.5 Atomic force microscopy

The surface morphology of CTA-NCC/GO thin film was analyzed using atomic force microscopy (AFM) (Bruker Multimode 8). Two CTA-NCC/GO thin films were prepared, before and after in contact with Cu2+ to be characterized by AFM.

3. Results and discussion

3.1 SPR signal for Cu2+ on gold single layer thin film

Initially, SPR test with bare gold layer thin film in contact with deionized water was conducted. About 1 ml of deionized water was injected into the cell. The result of the SPR test is shown in Fig. 3 where the resonance angle obtained is 53.65°.

 figure: Fig. 3

Fig. 3 The SPR curve of gold layer in contact with deionized water.

Download Full Size | PPT Slide | PDF

Then, the SPR test was continued by using different concentrations of Cu2+ solution ranging from 0.1 to 60 ppm. The Cu2+ solution were injected into the cell one by one. The SPR curves for Cu2+ for all concentrations are shown in Fig. 4. When compared, the resonance angle of all concentrations of Cu2+ remains the same as deionized water which is 53.65° as shown in Fig. 5. This result probably due to the very small amount of Cu2+ ion that was attached at the gold surface thus does not change the resonance angle [13]. Besides that, it is also reported that the resonance angle of any metal ions of different concentration below 100 ppm will not change [53]. The constant resonance angle for all Cu2+ concentration can be explained by the refractive index value of the Cu2+. As the shift of resonance angle depends on the changes of the metal layer surface refractive index, Cu2+ refractive index below 100 ppm is almost equal to deionized water refractive index, i.e. 1.33 at room temperature [54]. Hence, the resonance angle remains at 53.65°.

 figure: Fig. 4

Fig. 4 The SPR curves for Cu2+ (0.1-60 ppm) in contact with the gold layer.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 The resonance angle shifts of gold surface in contact with different Cu2+ concentration.

Download Full Size | PPT Slide | PDF

3.2 SPR signal for Cu2+ using CTA-NCC/GO thin film

The SPR experiment to detect Cu2+ then is continued by using gold thin film immobilized with hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite (CTA-NCC/GO). The SPR experiment was first tested with deionized water followed by the Cu2+ solution with concentrations of 0.01-60 ppm injected into the cell one by one. The resonance angle of deionized water for CTA-NCC/GO thin film was 54.67° compared to 53.65° when in contact with the bare gold thin film. This changes of deionized water resonance angle might be affected by the change of refractive index when CTA-NCC/GO that was coated on top of the gold surface [55]. The SPR curve for CTA-NCC/GO thin film in contact with deionized water is shown in Fig. 6.

 figure: Fig. 6

Fig. 6 SPR curve for CTA-NCC/GO thin film in contact with deionized water.

Download Full Size | PPT Slide | PDF

The SPR curves of CTA-NCC/GO thin film when in contact with different concentrations of Cu2+ solution are shown in Figs. 7(a) and 7(b). The resonance angle then was determined from the SPR curves of 0.01, 0.05, 0.08, 0.1, 0.5, 1, 5, 10, 20, 40, and 60 ppm respectively. To find the shift of resonance angle, the resonance angle for each concentrations of Cu2+ solution were used to be compared with deionized water resonance angle. Table 1 shows the resonance angle shift for each concentrations of Cu2+. The resonance angle of 0.01 ppm Cu2+ concentration have slightly shifted from deionized water resonance angle when in contact with CTA-NCC/GO thin film as shown in Fig. 7(a). The resonance angle of CTA-NCC/GO thin film also was shifted further when the higher concentrations were used until 0.5 ppm. In addition, at 0.01 until 0.05 ppm, the refractive index of the CTA-NCC/GO thin film changes due to the binding of the Cu2+ to the CTA-NCC/GO surface that results in the impedance mismatch. Correspondently, the resonance angle was shifted to ensure the impedance matching occurred [56]. When the surface of the thin film is fully covered with ions, the changes of the thin film refractive index are minimized [57]. The performance of the impedance and the SPR effects remain the same when the Cu2+ concentration exceeds 0.5 ppm. Therefore, the resonance angles remain the same for Cu2+ concentrations ranging from 0.5 ppm to 60 ppm as shown in Fig. 7(b). This result concluded that the shift of resonance angle of CTA-NCC/GO in Cu2+ detection is 0.01 until 0.5 ppm. From the SPR results, Cu2+ may interact with CTA-NCC/GO thin film that formed a pair of shared electrons between the positive charge of Cu2+ ion and negative charge of the NCC surfaces [42].

 figure: Fig. 7

Fig. 7 SPR reflectivity curves for CTA-NCC/GO thin film in contact with Cu2+ solution (a) 0.01-0.5 ppm and (b) 0.5-60 ppm.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Resonance angle and resonance angle shift for all Cu2+ solution concentrations in contact with CTA-NCC/GO thin film.

3.3 Binding affinity constant, K

By using Langmuir isotherm model, the binding affinity of Cu2+ towards CTA-NCC/GO thin film can be acquired with the following equation [58,59].

Δθ=ΔθmaxC1K+C
where Δθmax is the maximum SPR shift at saturation, C is the Cu2+ concentration, and K is the affinity constant. The plot that fitted with the Langmuir model is shown in Fig. 8 for CTA-NCC/GO thin film and gold thin film. The fitting SPR curve for Cu2+ using Langmuir model isotherm yielded an R2 value which is 0.98 and the Δθmax is 0.4847°, slightly higher than experimental value of maximum angle of SPR shift, i.e., 0.4687° [60].

 figure: Fig. 8

Fig. 8 Langmuir isotherm model of resonance angle shift for Cu2+ ions in contact with CTA-NCC/GO thin film and gold thin film.

Download Full Size | PPT Slide | PDF

From the Langmuir model, the binding affinity constant, K, for Cu2+ towards CTA-NCC/GO also calculated and the value obtained was 4.075 × 103 M−1 while the binding affinity constant of Cu2+ towards bare gold layer was 0.99 M−1 [61,62]. The high affinity constant of Cu2+ ions towards CTA-NCC/GO thin film proved that the CTA-NCC/GO layer has high potential as sensing layer to detect Cu2+.

3.4 Sensitivity of CTA-NCC/GO thin film

The sensitivity of CTA-NCC/GO thin film in sensing Cu2+ has been determined by comparing the resonance angle shift when in contact with different concentrations of Cu2+. Figure 9 shows the resonance angle shift against Cu2+ concentrations ranged from 0.01 until 0.1 ppm. The figure clearly shows that the shift of resonance angle increased linearly with the concentration of Cu2+. Besides that, linear regression analysis produces the slope of 3.271° ppm−1, which represents the sensitivity of the sensor with correlation coefficients R2 of 0.96.

 figure: Fig. 9

Fig. 9 Comparison of the shift of resonance angle for Cu2+ in contact with CTA-NCC/GO thin film from 0.01 to 0.1 ppm.

Download Full Size | PPT Slide | PDF

3.5 Full width at half maximum of SPR

Full width at half maximum (FWHM) is defined as the angular width of the SPR curve for the half value of the maximum reflectance. The FWHM of the SPR curves can be obtained by calculating the width of the SPR curve correspondingly at half value of the maximum reflectance as shown in Fig. 10. The calculations were made for all concentrations for Cu2+ [63]. The FWHM of SPR sensor with CTA-NCC/GO thin film for Cu2+ detection was 3.52° for both 0.01 ppm and 0.05 ppm. At 0.08 ppm and 0.1 ppm, the FWHM values are the lowest approximately 3.35°, while for concentration 0.05 until 60 ppm, the FWHM values remain the same at 3.41°. The possible explanation for the high value of the FWHM at 0.01 ppm and 0.05 ppm might due to the intensified internal loss produced by the increase in total thickness of Au [64]. At 0.08 until 60 ppm, the FWHM values are the lower compared with below 0.05 ppm. This might due to the available functional groups of the CTA-NCC/GO layer that reduced the scattering of free electrons thus, narrowed the FWHM [65].

 figure: Fig. 10

Fig. 10 FWHM of SPR curve (for deionized water) corresponding to half from its maximum value.

Download Full Size | PPT Slide | PDF

3.6 Detection accuracy and signal-to-noise ratio

Detection accuracy (DA) is the inverse of FWHM. The detection accuracy depends on the width of SPR curve. The narrower the FWHM value, the higher the DA. Figure 11 shows that the SPR sensor in sensing Cu2+ using CTA-NCC/GO thin film. The highest detection accuracy for CTA-NCC/GO SPR sensor was at 0.08 ppm and 0.1 ppm as the FWHM for these concentrations are the lowest. The DA then remains the same from 1 until 60 ppm.

 figure: Fig. 11

Fig. 11 Detection accuracy for CTA-NCC/GO thin film in Cu2+ ion sensing.

Download Full Size | PPT Slide | PDF

Another parameter that was obtained by combination of resonance angle shift and DA is the signal-to-noise ratio (SNR). The SNR is also known as the basic figure-of-merit (FOM) of SPR and can be determined by multiplying resonance angle shift with DA [58]. The SNR of CTA-NCC/GO SPR sensor for Cu2+ detection is represented in Fig. 12. It can be observed that despite the uncertain variation of DA, the SNR of the SPR sensor still increases with the Cu2+ concentration. The result also show that SNR is one of binding affinity indication due to the quantity is dependent on the resonance angle shift [66]. The summary of the resonance angle shift, FWHM, DA, and SNR is shown in Table 2 for SPR sensor in detecting Cu2+ ion from 0.01 ppm to 60 ppm using CTA-NCC/GO thin film.

 figure: Fig. 12

Fig. 12 Signal-to-noise ratio for CTA-NCC/GO thin film in Cu2+ ion sensing.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Resonance angle shift, FWHM, DA, and SNR data for CTA-NCC/GO SPR sensor in detecting Cu2+ ion from 0.01 ppm to 60 ppm.

3.7 Surface morphology of CTA-NCC/GO

Atomic force microscopy was used to study the surface morphology of CTA-NCC/GO thin film. Figure 13(a) and 13(b) shows the AFM images before and after in contact with Cu2+ solution respectively. From the images, the CTA-NCC/GO AFM image matched those displayed by Miri et al. (2016) where the surface of the GO has totally covered with NCC [67]. Before in contact with Cu2+, the RMS roughness of CTA-NCC/GO thin film was 3.51 nm. The RMS roughness then reduced to 2.46 nm after in contact with Cu2+. This is probably due to the reaction between Cu2+ ions with the surface of the samples thus, decreasing the samples RMS roughness [68].

 figure: Fig. 13

Fig. 13 AFM images of CTA-NCC/GO thin film (a) before and (b) after in contact with Cu2+ solution.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this work, an optical sensor for Cu2+ has been developed by combining the SPR with nanocrystalline cellulose modified by hexadecyltrimethylammonium bromide and graphene oxide composite (CTA-NCC/GO) thin film. The binding of the Cu2+ ion on gold thin film and CTA-NCC/GO on the gold surface were monitored by SPR and the detection limit, binding affinity, sensitivity, full width at half maximum (FWHM), data accuracy (DA), and signal-to-noise ratio (SNR) have been calculated. The SPR sensor in Cu2+ sensing was enhanced in the presence of CTA-NCC/GO when compared with bare gold thin film. CTA-NCC/GO-SPR sensor can detect Cu2+ as low as 0.01 ppm until 0.5 ppm. Moreover, CTA-NCC/GO thin film has high binding affinity constant towards Cu2+, i.e. 4.075 × 103 M−1. A high sensitivity of 3.271° ppm−1 was obtained and for the FWHM, the lowest value calculated were at 0.08 and 0.1 ppm which is 3.35°. The DA of the SPR signal calculated were the highest at 0.08 and 0.1 ppm. The SNR of the SPR signal increases with the concentrations of Cu2+. For the surface morphology, the rms roughness values obtained before and after in contact with Cu2+ were 3.51 nm and 2.46 nm respectively.

References

1. P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011). [CrossRef]   [PubMed]  

2. Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007). [CrossRef]  

3. C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011). [CrossRef]   [PubMed]  

4. D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010). [CrossRef]  

5. J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011). [CrossRef]  

6. M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005). [CrossRef]   [PubMed]  

7. J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014). [CrossRef]  

8. J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013). [CrossRef]   [PubMed]  

9. H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012). [CrossRef]  

10. E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011). [CrossRef]  

11. Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013). [CrossRef]  

12. W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013). [CrossRef]  

13. Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013). [CrossRef]  

14. N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018). [CrossRef]  

15. C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017). [CrossRef]   [PubMed]  

16. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011). [CrossRef]  

17. Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018). [CrossRef]  

18. Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013). [CrossRef]  

19. N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018). [CrossRef]  

20. Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017). [CrossRef]   [PubMed]  

21. N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018). [CrossRef]  

22. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

23. C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016). [CrossRef]  

24. W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

25. Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009). [CrossRef]   [PubMed]  

26. H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009). [CrossRef]  

27. P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016). [CrossRef]  

28. Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007). [CrossRef]   [PubMed]  

29. A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013). [CrossRef]  

30. Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015). [CrossRef]  

31. S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017). [CrossRef]  

32. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013). [CrossRef]  

33. K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001). [CrossRef]  

34. S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004). [CrossRef]  

35. J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004). [CrossRef]  

36. C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004). [CrossRef]   [PubMed]  

37. X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016). [CrossRef]   [PubMed]  

38. R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016). [CrossRef]  

39. S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

40. S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010). [CrossRef]  

41. L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018). [CrossRef]   [PubMed]  

42. B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011). [CrossRef]  

43. C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004). [CrossRef]  

44. M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002). [CrossRef]  

45. A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009). [CrossRef]  

46. M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012). [CrossRef]  

47. H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006). [CrossRef]   [PubMed]  

48. M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016). [CrossRef]   [PubMed]  

49. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011). [CrossRef]   [PubMed]  

50. T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014). [CrossRef]  

51. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018). [CrossRef]  

52. Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015). [CrossRef]   [PubMed]  

53. Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011). [CrossRef]  

54. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength : a simple approximation,” Proc. SPIE 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (13 October 2003); doi: 10.1117/12.518857(2003).

55. A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018). [CrossRef]   [PubMed]  

56. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

57. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012). [CrossRef]  

58. N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017). [CrossRef]   [PubMed]  

59. E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007). [CrossRef]  

60. J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017). [CrossRef]  

61. J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006). [CrossRef]   [PubMed]  

62. A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006). [CrossRef]  

63. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012). [CrossRef]  

64. K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010). [CrossRef]   [PubMed]  

65. P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012). [CrossRef]   [PubMed]  

66. N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013). [CrossRef]   [PubMed]  

67. N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016). [CrossRef]   [PubMed]  

68. N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
    [Crossref] [PubMed]
  2. Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
    [Crossref]
  3. C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
    [Crossref] [PubMed]
  4. D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
    [Crossref]
  5. J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
    [Crossref]
  6. M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
    [Crossref] [PubMed]
  7. J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
    [Crossref]
  8. J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
    [Crossref] [PubMed]
  9. H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
    [Crossref]
  10. E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
    [Crossref]
  11. Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
    [Crossref]
  12. W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
    [Crossref]
  13. Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
    [Crossref]
  14. N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
    [Crossref]
  15. C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
    [Crossref] [PubMed]
  16. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
    [Crossref]
  17. Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
    [Crossref]
  18. Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
    [Crossref]
  19. N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
    [Crossref]
  20. Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
    [Crossref] [PubMed]
  21. N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
    [Crossref]
  22. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).
  23. C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
    [Crossref]
  24. W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).
  25. Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
    [Crossref] [PubMed]
  26. H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
    [Crossref]
  27. P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
    [Crossref]
  28. Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
    [Crossref] [PubMed]
  29. A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
    [Crossref]
  30. Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
    [Crossref]
  31. S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
    [Crossref]
  32. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
    [Crossref]
  33. K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
    [Crossref]
  34. S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
    [Crossref]
  35. J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
    [Crossref]
  36. C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
    [Crossref] [PubMed]
  37. X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
    [Crossref] [PubMed]
  38. R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
    [Crossref]
  39. S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).
  40. S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
    [Crossref]
  41. L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
    [Crossref] [PubMed]
  42. B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
    [Crossref]
  43. C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
    [Crossref]
  44. M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
    [Crossref]
  45. A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
    [Crossref]
  46. M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
    [Crossref]
  47. H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
    [Crossref] [PubMed]
  48. M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
    [Crossref] [PubMed]
  49. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
    [Crossref] [PubMed]
  50. T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
    [Crossref]
  51. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
    [Crossref]
  52. Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
    [Crossref] [PubMed]
  53. Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
    [Crossref]
  54. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength : a simple approximation,” Proc. SPIE 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (13 October 2003); doi: 10.1117/12.518857(2003).
  55. A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
    [Crossref] [PubMed]
  56. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).
  57. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
    [Crossref]
  58. N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
    [Crossref] [PubMed]
  59. E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
    [Crossref]
  60. J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
    [Crossref]
  61. J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
    [Crossref] [PubMed]
  62. A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
    [Crossref]
  63. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
    [Crossref]
  64. K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
    [Crossref] [PubMed]
  65. P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
    [Crossref] [PubMed]
  66. N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
    [Crossref] [PubMed]
  67. N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
    [Crossref] [PubMed]
  68. N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
    [Crossref]

2019 (1)

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

2018 (8)

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

2017 (5)

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

2016 (6)

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

2015 (2)

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

2014 (2)

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

2013 (8)

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

2012 (5)

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

2011 (10)

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

2010 (3)

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

2009 (4)

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

2007 (3)

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

2006 (3)

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

2005 (1)

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

2004 (4)

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

2002 (1)

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

2001 (1)

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Abdelouahdi, K.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Abdi, M. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Abdullah, J.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Abe, K.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Abitol, T.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Ai, K.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Al-Rekabi, S. H.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

Alwahib, A. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Amjadi, M.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Anas, N. A. A.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Aranguren, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Ariffin, H.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Arsad, N.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Avérous, L.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Bakar, A. A. A.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Barakat, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Becker, J. Y.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Benight, A. S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Berglund, L. A.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Bhushan, V.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Bidin, N.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Bismarck, A.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Buhot, A.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Capadona, J. R.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Cennamo, N.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Cerrada, M. L.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Chah, S.

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

Chang, M. N.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chang, W. L.

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Chanzy, H.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Chao, C. C.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chau, Y. C.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chau, Y. F. C.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chau, Y.-F. C.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chen, C. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Chen, H.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Chen, P.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Chen, X.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Chen, Y. P.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Cheney, M. A.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Cherian, B. M.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Chiang, H. P.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Chiang, H.-P.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chik, C. E. N. C. E.

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Chiu, P. K.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Chou Chao, C.-T.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Chou Chau, Y. F.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Cohen, B.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Conte, L.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Cranston, E. D.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Cui, M. L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Curvelo, A. A. S.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Daniyal, W. M. E. M. M.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

Dhar, N.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Dufresne, A.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Eichhorn, S. J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

El Achaby, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

El Miri, N.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Fen, Y. W.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Fihri, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Fleury, E.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Foley, K.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Forzani, E. S.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Fu, Y. P.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Gagor, A.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Galatus, R.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Gindl, W.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Goussé, C.

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

Grunert, M.

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Guo, J. S.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Hallaj, T.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Halperin, A.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Hong, S.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Hsiao, C. N.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Huang, C. C.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Huang, H. J.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Ishak, N. S.

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Ismadji, S.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Jang, D. O.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Jang, G.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Jawaid, M.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Jeong, D. Y.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Jiang, S. L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Jiao, L.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Joo, S. W.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Ju, Y. H.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Junior de Menezes, A.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Kaith, B. S.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Kalia, S.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Kamaruddin, N. H.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Kameoka, J.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Kang, T.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Kang, X.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Karim, Z.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Kaur, P.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Keckes, J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Kian, L. K.

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Kim, J.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Kim, S.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Kim, W. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Ko, H.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Koh, K.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Korin, E.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Kroft, S. H.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Kuga, S.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Kumara, N. T. R. N.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Lai, C. H.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Lai, E. P. C.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Larzek, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Lee, D. Y.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Lee, K. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Lee, T. S.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Levinson, B. S.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Li, C.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Li, H.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Li, L.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Liao, B. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Lim, C. M.

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Lin, C. T.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Lin, L. P.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Lin, L. Y.

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Lin, Q.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Ling, T. K.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Liu, H. L.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Liu, J.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Liu, J. M.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Lu, L.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Mahdi, M. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

Mahmood Mat Yunus, W.

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Mangalam, A.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Marcovich, N. E.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Marway, H.

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Massarotti, D.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

McKenna, R. W.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Miller, M. L.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Mobarak, N. N.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Mohammadi, A.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Moksin, M. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Monaghan, S. A.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Moon, J.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Musielak, M.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Nakagaito, A. N.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Nassiopoulos, E.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Nishiyama, Y.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Njuguna, J.

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

Nogi, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Noor, A. S. M.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Ock, K.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Oh, S.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

Omar, N. A. S.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Osredkar, J.

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Panta, Y. M.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Peijs, T.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Peng, B. L.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Perkins, W. D.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Putro, J. N.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Qian, S.

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

Qiao, R.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Ramdzan, N. S. M.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Renneckar, S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Roh, Y.

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Roman, M.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Rowan, S. J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Sadeghi, S.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Sadrolhosseini, A. R.

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Salajková, M.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

Saleviter, S.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Santoso, S. P.

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Sareen, D.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Shen, L.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Shen, Y.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Shiao, M. H.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Shokri, R.

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Simonsen, J.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Singh, K.

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Singh, N.

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Siqueira, G.

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

Sitko, R.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Solhy, A.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Son, J. M.

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

Su, C. B.

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Sun, R. J.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Sustar, N.

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

Talib, Z. A.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Talik, E.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Tam, K. C.

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Tan, W.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Tao, N.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Teng, Y. L.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Thielemans, W.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Toledo, F.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Tseng, F. G.

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

Veigel, S.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Voo, N. Y.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Wada, M.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Wang, C. K.

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Wang, G. A.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Wang, T. J.

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Wang, W.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Wang, X. X.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Wang, Z.

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Weder, C.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Wei, T. B.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Weng, Y. Q.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Westerhoff, P.

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Willis, M. S.

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Wing Fen, Y.

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Winter, W. T.

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Wu, C. M.

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Xu, F.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Xu, M.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Xu, Q. H.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Xu, Y. S.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Yaacob, M. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Yang, H.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Yang, P. Y.

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

Yang, S.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Yano, H.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

Ye, B. H.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Yi, J.

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

You, T.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Yu, J. C. C.

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Yu, K.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Yuan, H.

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Yue, F.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Yunus, W. M. M.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Yusof, N. A.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Zahouily, M.

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Zainuddin, N. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Zainudin, A. A.

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Zan, M. S. D.

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

Zare, R. N.

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

Zawisza, B.

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Zeng, C. C.

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Zeni, L.

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Zhang, G.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zhang, L.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Zhang, L. H.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Zhang, Y. M.

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Zhao, B.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zheng, Z. Y.

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

Zhong, Y. R.

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

Zhou, F.

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

Zhou, Q.

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

Zhou, S.

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Zhou, Z.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Zhu, X.

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

Zhu, Y.

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Zhulina, E. B.

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Zong, C.

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

ACS Omega (1)

Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, “Depolying tunable metal-shell / dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime,” ACS Omega 3(7), 7508–7516 (2018).
[Crossref]

Am. J. Clin. Pathol. (1)

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. McKenna, W. D. Perkins, B. S. Levinson, V. Bhushan, and S. H. Kroft, “Zinc-induced copper deficiency,” Am. J. Clin. Pathol. 123(1), 125–131 (2005).
[Crossref] [PubMed]

Anal. Chem. (1)

C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.,” Anal. Chem. 83(8), 3126–3132 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Zijlstra, P. M. R. Paulo, K. Yu, Q. H. Xu, and M. Orrit, “Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization,” Angew. Chem. Int. Ed. Engl. 51(33), 8352–8355 (2012).
[Crossref] [PubMed]

Biomacromolecules (1)

H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, “Surface acylation of cellulose whiskers by drying aqueous emulsion,” Biomacromolecules 7(3), 696–700 (2006).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

C. M. Wu and L. Y. Lin, “Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance,” Biosens. Bioelectron. 20(4), 864–871 (2004).
[Crossref] [PubMed]

Can. J. Chem. Eng. (1)

B. L. Peng, N. Dhar, H. L. Liu, and K. C. Tam, “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective,” Can. J. Chem. Eng. 89(5), 1191–1206 (2011).
[Crossref]

Carbohydr. Polym. (1)

N. El Miri, M. El Achaby, A. Fihri, M. Larzek, M. Zahouily, K. Abdelouahdi, A. Barakat, and A. Solhy, “Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites,” Carbohydr. Polym. 137, 239–248 (2016).
[Crossref] [PubMed]

Dyes Pigm. (1)

Q. Lin, P. Chen, J. Liu, Y. P. Fu, Y. M. Zhang, and T. B. Wei, “Colorimetric chemosensor and test kit for detection copper(II) cations in aqueous solution with specific selectivity and high sensitivity,” Dyes Pigm. 98(1), 100–105 (2013).
[Crossref]

Electrochim. Acta (1)

C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao, and F. G. Tseng, “Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation,” Electrochim. Acta 192, 15–21 (2016).
[Crossref]

IEEE Sens. J. (1)

Y. W. Fen and W. M. M. Yunus, “Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Indian J. Phys. (1)

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-time monitoring of lead ion interaction on gold/chitosan surface using surface plasmon resonance spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Inorg. Chem. Commun. (2)

Y. Q. Weng, Y. L. Teng, F. Yue, Y. R. Zhong, and B. H. Ye, “A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino,” Inorg. Chem. Commun. 10(4), 443–446 (2007).
[Crossref]

H. Yang, Y. Zhu, L. Li, Z. Zhou, and S. Yang, “A phosphorescent chemosensor for Cu2+ based on cationic iridium(III) complexes,” Inorg. Chem. Commun. 16, 1–3 (2012).
[Crossref]

Int. J. Biol. Macromol. (1)

L. K. Kian, M. Jawaid, H. Ariffin, and Z. Karim, “Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose,” Int. J. Biol. Macromol. 114, 54–63 (2018).
[Crossref] [PubMed]

Int. J. Polym. Mater. (1)

A. R. Sadrolhosseini, A. S. M. Noor, M. M. Moksin, M. M. Abdi, and A. Mohammadi, “Application of polypyrrole-chitosan layer for detection of Zn (II) and Ni (II) in aqueous solutions using surface plasmon resonance,” Int. J. Polym. Mater. 62(5), 284–287 (2013).
[Crossref]

Int. J. Polym. Sci. (1)

S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: a review,” Int. J. Polym. Sci. 2011, 1–35 (2011).

J. Clin. Toxicol. (1)

J. Osredkar and N. Sustar, “Copper and Zinc, Biological role and significance of copper/zinc imbalance,” J. Clin. Toxicol. 3(1), 1–18 (2011).
[Crossref]

J. Colloid Interface Sci. (2)

Y. M. Panta, J. Liu, M. A. Cheney, S. W. Joo, and S. Qian, “Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection,” J. Colloid Interface Sci. 333(2), 485–490 (2009).
[Crossref] [PubMed]

J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, “In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy,” J. Colloid Interface Sci. 298(2), 543–549 (2006).
[Crossref] [PubMed]

J. Lumin. (1)

W. L. Chang and P. Y. Yang, “A color-switching colorimetric sensor towards Cu2+ ion: sensing behavior and logic operation,” J. Lumin. 141, 38–43 (2013).
[Crossref]

J. Mater. Chem. (1)

M. Salajková, L. A. Berglund, and Q. Zhou, “Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts,” J. Mater. Chem. 22(37), 19798–19805 (2012).
[Crossref]

J. Mater. Sci. (1)

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs, “Review: current international research into cellulose nanofibres and nanocomposites,” J. Mater. Sci. 45(1), 1–33 (2010).
[Crossref]

J. Phys. Condens. Matter (1)

A. Halperin, A. Buhot, and E. B. Zhulina, “On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions,” J. Phys. Condens. Matter 18(18), S463–S490 (2006).
[Crossref]

J. Polym. Environ. (1)

M. Grunert and W. T. Winter, “Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals,” J. Polym. Environ. 10(1–2), 27–30 (2002).
[Crossref]

Materials (Basel) (1)

X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu, “Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution,” Materials (Basel) 9(7), 582–597 (2016).
[Crossref] [PubMed]

Microchem. J. (1)

K. Ock, G. Jang, Y. Roh, S. Kim, J. Kim, and K. Koh, “Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface,” Microchem. J. 70(3), 301–305 (2001).
[Crossref]

Microporous Mesoporous Mater. (1)

J. N. Putro, S. P. Santoso, S. Ismadji, and Y. H. Ju, “Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose–bentonite nanocomposite: Improvement on extended Langmuir isotherm model,” Microporous Mesoporous Mater. 246, 166–177 (2017).
[Crossref]

Nat. Mater. (1)

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10(8), 569–581 (2011).
[Crossref] [PubMed]

Nord. Pulp Paper Res. J. (1)

T. Abitol, H. Marway, and E. D. Cranston, “Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide,” Nord. Pulp Paper Res. J. 29(1), 46–57 (2014).
[Crossref]

Opt. Photonics J. (1)

Y. W. Fen and W. M. M. Yunus, “Characterization of the optical properties of heavy metal ions using surface plasmon resonance technique,” Opt. Photonics J. 1(03), 116–123 (2011).
[Crossref]

Optik (Stuttg.) (5)

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. S. Omar, “Preparation and characterization of hexadecyltrimethylammonium bromide modified nanocrystalline cellulose/graphene oxide composite thin film and its potential in sensing copper ion using surface plasmon resonance technique,” Optik (Stuttg.) 173(5), 71–77 (2018).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

N. S. M. Ramdzan, Y. W. Fen, N. A. S. Omar, N. A. A. Anas, W. M. E. M. M. Daniyal, S. Saleviter, and A. A. Zainudin, “Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film,” Optik (Stuttg.) 178, 802–812 (2019).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik (Stuttg.) 168, 134–139 (2018).
[Crossref]

Phys. Rev. (1)

X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic tamm states : the bloch-wave-expansion method,” Phys. Rev. 79(4), 1–7 (2009).

Polymer (Guildf.) (2)

C. Goussé, H. Chanzy, M. L. Cerrada, and E. Fleury, “Surface silylation of cellulose microfibrils: Preparation and rheological properties,” Polymer (Guildf.) 45(5), 1569–1575 (2004).
[Crossref]

A. Junior de Menezes, G. Siqueira, A. A. S. Curvelo, and A. Dufresne, “Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites,” Polymer (Guildf.) 50(19), 4552–4563 (2009).
[Crossref]

RSC Advances (1)

R. Sitko, M. Musielak, B. Zawisza, E. Talik, and A. Gagor, “Graphene oxide/cellulose membranes in adsorption of divalent metal ions,” RSC Advances 6(99), 96595–96605 (2016).
[Crossref]

Sci. Rep. (2)

C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang, “Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial,” Sci. Rep. 7(1), 5446 (2017).
[Crossref] [PubMed]

Y. C. Chau, C. K. Wang, L. Shen, C. M. Lim, H. P. Chiang, C. C. Chao, H. J. Huang, C. T. Lin, N. T. R. N. Kumara, and N. Y. Voo, “Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,” Sci. Rep. 7(1), 16817 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (7)

J. Zhang, B. Zhao, C. Li, X. Zhu, and R. Qiao, “A BODIPY-based “turn-on” fluorescent and colorimetric sensor for selective detection of Cu2+ in aqueous media and its application in cell imaging,” Sens. Actuators B Chem. 196, 117–122 (2014).
[Crossref]

H. Ko, J. Kameoka, and C. B. Su, “Measurements of refractive index change due to positive ions using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 143(1), 381–386 (2009).
[Crossref]

Y. Zhang, M. Xu, Y. Wang, F. Toledo, and F. Zhou, “Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer,” Sens. Actuators B Chem. 123(2), 784–792 (2007).
[Crossref] [PubMed]

S. Chah, J. Yi, and R. N. Zare, “Surface plasmon resonance analysis of aqueous mercuric ions,” Sens. Actuators B Chem. 99(2–3), 216–222 (2004).
[Crossref]

J. C. C. Yu, E. P. C. Lai, and S. Sadeghi, “Surface plasmon resonance sensor for Hg(II) detection by binding interactions with polypyrrole and 2-mercaptobenzothiazole,” Sens. Actuators B Chem. 101(1–2), 236–241 (2004).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix[4]arene-tetrakis in chitosan thin film as an active layer,” Sens. Actuators B Chem. 171, 287–293 (2012).
[Crossref]

E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sens. Actuators B Chem. 123(1), 82–88 (2007).
[Crossref]

Sens. Biosensing Res. (1)

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein,” Sens. Biosensing Res. 20(5), 16–21 (2018).
[Crossref]

Sens. Lett. (2)

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of optical sensor for determination of Co (II) based on surface plasmon resonance phenomenon,” Sens. Lett. 15(10), 862 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface plasmon resonance optical sensor for detection of essential heavy metal ions with potential for toxicity: copper, zinc and manganese ions,” Sens. Lett. 9(5), 1704–1711 (2011).
[Crossref]

Sens. Mater. (2)

W. M. E. M. M. Daniyal, S. Saleviter, and Y. W. Fen, “Development of surface plasmon resonance spectroscopy for metal ion detection,” Sens. Mater. 30(9), 2023–2038 (2018).

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Detection of mercury and copper ions using surface plasmon resonance optical sensor,” Sens. Mater. 23(6), 325–334 (2011).

Sens. Rev. (2)

Y. Wing Fen and W. Mahmood Mat Yunus, “Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions : a review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

Sensors (Basel) (3)

N. H. Kamaruddin, A. A. A. Bakar, N. N. Mobarak, M. S. D. Zan, and N. Arsad, “Binding affinity of a highly sensitive Au/Ag/Au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions,” Sensors (Basel) 17(10), 2277–2293 (2017).
[Crossref] [PubMed]

K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee, and W. M. Kim, “Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach,” Sensors (Basel) 10(12), 11390–11399 (2010).
[Crossref] [PubMed]

N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, “Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber,” Sensors (Basel) 13(1), 721–735 (2013).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

M. Amjadi, R. Shokri, and T. Hallaj, “A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 619–624 (2016).
[Crossref] [PubMed]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 48–52 (2015).
[Crossref] [PubMed]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 191, 111–115 (2018).
[Crossref] [PubMed]

Talanta (2)

J. M. Liu, L. Jiao, L. P. Lin, M. L. Cui, X. X. Wang, L. H. Zhang, Z. Y. Zheng, and S. L. Jiang, “Non-aggregation based label free colorimetric sensor for the detection of Cu2+ based on catalyzing etching of gold nanorods by dissolve oxygen,” Talanta 117, 425–430 (2013).
[Crossref] [PubMed]

P. Kaur, D. Sareen, and K. Singh, “Selective colorimetric sensing of Cu2+ using triazolyl monoazo derivative,” Talanta 83(5), 1695–1700 (2011).
[Crossref] [PubMed]

Tetrahedron (1)

E. Korin, B. Cohen, C. C. Zeng, Y. S. Xu, and J. Y. Becker, “Phenylethylidene-3,4-dihydro-1H-quinoxalin-2-ones: Promising building blocks for Cu2+ recognition,” Tetrahedron 67(34), 6252–6258 (2011).
[Crossref]

Tetrahedron Lett. (1)

D. Y. Lee, N. Singh, and D. O. Jang, “A benzimidazole-based single molecular multianalyte fluorescent probe for the simultaneous analysis of Cu2+ and Fe3+,” Tetrahedron Lett. 51(7), 1103–1106 (2010).
[Crossref]

Trends Analyt. Chem. (1)

P. Zhang, Y. P. Chen, W. Wang, Y. Shen, and J. S. Guo, “Surface plasmon resonance for water pollutant detection and water process analysis,” Trends Analyt. Chem. 85, 153–165 (2016).
[Crossref]

Other (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength : a simple approximation,” Proc. SPIE 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (13 October 2003); doi: 10.1117/12.518857(2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Kretschmann configuration.
Fig. 2
Fig. 2 Schematic diagram of surface plasmon resonance spectroscopy.
Fig. 3
Fig. 3 The SPR curve of gold layer in contact with deionized water.
Fig. 4
Fig. 4 The SPR curves for Cu2+ (0.1-60 ppm) in contact with the gold layer.
Fig. 5
Fig. 5 The resonance angle shifts of gold surface in contact with different Cu2+ concentration.
Fig. 6
Fig. 6 SPR curve for CTA-NCC/GO thin film in contact with deionized water.
Fig. 7
Fig. 7 SPR reflectivity curves for CTA-NCC/GO thin film in contact with Cu2+ solution (a) 0.01-0.5 ppm and (b) 0.5-60 ppm.
Fig. 8
Fig. 8 Langmuir isotherm model of resonance angle shift for Cu2+ ions in contact with CTA-NCC/GO thin film and gold thin film.
Fig. 9
Fig. 9 Comparison of the shift of resonance angle for Cu2+ in contact with CTA-NCC/GO thin film from 0.01 to 0.1 ppm.
Fig. 10
Fig. 10 FWHM of SPR curve (for deionized water) corresponding to half from its maximum value.
Fig. 11
Fig. 11 Detection accuracy for CTA-NCC/GO thin film in Cu2+ ion sensing.
Fig. 12
Fig. 12 Signal-to-noise ratio for CTA-NCC/GO thin film in Cu2+ ion sensing.
Fig. 13
Fig. 13 AFM images of CTA-NCC/GO thin film (a) before and (b) after in contact with Cu2+ solution.

Tables (2)

Tables Icon

Table 1 Resonance angle and resonance angle shift for all Cu2+ solution concentrations in contact with CTA-NCC/GO thin film.

Tables Icon

Table 2 Resonance angle shift, FWHM, DA, and SNR data for CTA-NCC/GO SPR sensor in detecting Cu2+ ion from 0.01 ppm to 60 ppm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = Δ θ max C 1 K + C

Metrics