Abstract

We have demonstrated a frequency-stepped pulse train (FSPT) generation system enabling direct oxygen A-band spectroscopy in the time domain. The FSPT is formed by circulating the initial single-frequency pulses at ~1529.5 nm in an amplified frequency-shifted loop (AFSL). An FSPT with up to 80 equidistant optical frequencies can be generated with a frequency spacing of 200 MHz in this configuration. The fundamental wavelength of the FSPT is then frequency doubled to ~764.75 nm, covering one absorption peak in oxygen A-band, for the proof-of-principle experiment in spectroscopy. The oxygen transmission curves retrieved from FSPT-based differential absorption measurement are in good agreement with the calculated results from HITRAN database. The root-mean-squared errors between the measured and calculated results are 0.68% and 0.55% for clean air at 1 atm. and 1.5 atm., respectively. The wavelength of such an FSPT can be further extended to match the absorption lines of various gases by selecting proper gain media or through nonlinear frequency conversion, thereby making the FSPT-based spectroscopy a promising candidate for trace-gas remote sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Oxygen A-band spectroscopy around 765 nm, enabling simultaneous absorption peak value and line-shape measurement, has proven to be a powerful tool in atmospheric sounding including temperature profiling [1], pressure monitoring [2] and optical depth measurement [3], to name a few. In order to get sufficient data points for precise absorption line-shape fitting, a multi-wavelength laser with wavelength coverage of at least one absorption peak in oxygen A-band should be employed. Therefore, both optical frequency combs (OFCs) which can generate broadband equidistant spaced optical frequencies and wavelength-swept lasers whose output wavelengths can be tuned periodically become the most competitive candidates for oxygen A-band spectroscopy.

However, due to the simultaneous comb teeth generation characteristic of an OFC, all the comb teeth were indistinguishable in the time domain. In order to resolve the comb teeth, a promising method called dual-comb spectroscopy was proposed, where two coherent OFCs (referred to as the signal comb and the local oscillator, respectively) with slightly different comb spacing were utilized in the transmitter to generate tooth-by-tooth multi-heterodyne signals at the receiver. By analyzing the beating signals at radio frequency, the absorption spectrum can be retrieved indirectly [4,5]. Nevertheless, the construction of two OFCs with auxiliary mutual frequency locking blocks would inevitably increase the dimension and cost of the transmitting system. Thanks to the prosperity of ultrafast optics, free-running mode-locked fiber lasers with dual-wavelength-band output have become attractive laser sources for dual-comb spectroscopy in a much simpler configuration [6–8]. However, the mode spacing of a mode-locked laser, namely the spectral resolution of dual-comb spectroscopy, is intrinsically determined by the cavity length and cannot be freely tuned to exceed the stable mode-locked regime. By contrast, the comb spacing for continuous-wave (CW) dual-comb systems incorporating either external electric-optic phase modulator [9,10] or recirculating acousto-optic frequency shifter [11] can be greatly extended from few MHz to tens of GHz. However, the peak powers of these CW OFCs are much lower than their pulsed counterparts, which will constrain them from further efficient nonlinear frequency conversion.

Apart from OFCs, wavelength-swept lasers are also widely used in precise spectroscopy. In these scenarios, the absorption curves are usually retrieved by direct time domain signal processing. Compared to the radio frequency domain approach for multi-heterodyne spectroscopy, the consumption of computational resources for time domain processing can be reduced to a great extent. Among all the wavelength-swept lasers for oxygen A-band spectroscopy, frequency doubled wavelength-swept Erbium doped fiber amplifier (EDFA) is favorable due to its compactness, robustness, excellent beam quality, and wide gain bandwidth [12,13]. However, in the early trials, the wavelength tuning was mostly realized by changing the drive current of the distributed feedback (DFB) semiconductor laser seed [3,14,15]. Although this method possessed fast and simple wavelength-sweeping capability, the poor linearity and repeatability in the wavelength-current relationship of the DFB laser would inevitably make the line-shape fitting process complicated [16,17]. Besides, the current modulation of the DFB laser would also lead to dramatic fluctuation in its transient output power. This fluctuation might become severer after a chain of amplification on account of the gain saturation effect and even get worse after frequency doubling owing to the limited acceptance bandwidth of the nonlinear crystal.

Another possible solution to wavelength-sweeping is successively triggering several seed lasers with slightly different optical frequencies and then combine their output pulses in the wavelength domain [18–20]. Usually, one of the seed lasers is selected as the master laser and is wavelength stabilized by a reference gas cell. The other seed lasers are set as slave lasers, whose wavelengths are locked according to the beating signals with the master laser. Although such a system can offer excellent wavelength repeatability, however, the large amount of seed lasers and their auxiliary wavelength-locking electronics will make the whole system very bulky and expensive.

Different from these, a recirculating frequency shifter incorporating electric-optic single sideband modulation can generate stable equidistant optical frequencies with only one seed laser. Since its advent, this configuration has been employed in the generation of comb-like laser sources in either CW [21–25] or pulsed modes [26]. Nevertheless, the frequency spacing of these laser sources, which was equivalent to the drive frequency applied to the single sideband modulation, was in the range of few GHz to tens of GHz. Such a frequency spacing might be suitable for optical communication or spectroscopy of liquids and solids. However, the absorption linewidths of most gas-phase molecules are within the order of several GHz, thereby making the absorption line-shape retrieval extremely difficult with such a coarse frequency spacing. By contrast, an amplified frequency-shifted loop (AFSL) with an intra-cavity acousto-optic modulator (AOM) as the frequency shifter can also generate equidistant optical frequencies with a much smaller frequency spacing from tens to hundreds of MHz [27–35], which is sufficient for precise gas spectroscopy. Although this configuration has been adopted in both coherent Doppler detection [27,28], self-heterodyne measurement [32,33], signal storage [36], and arbitrary waveform generation [37], it has yet to be used for precise gas spectroscopy. Experimental reports on the reduction of the amplified spontaneous emission (ASE) content and power fluctuation are also inadequate.

Herein, we report a frequency-stepped pulse train (FSPT) generation system based on an AFSL for oxygen A-band spectroscopy. One wavelength-stabilized CW single-frequency DFB laser diode at ~1529.5 nm is served as the initial optical frequency and is externally modulated into periodic pulses by an AOM. An AFSL with an intra-cavity secondary AOM as the frequency-shifter is utilized to multiply the repetition rate of the initial pulse train by circulating the pulses in the loop with an additive frequency shift for each round trip. In this way, the FSPT is formed with up to 80 equidistant optical frequencies at a frequency spacing of 200 MHz. The FSPT is then power amplified and frequency doubled to ~764.75 nm, covering one absorption peak at oxygen A-band for spectroscopy in a gas cell. The transmission curves retrieved from measured signals in the time domain are in good agreement with those calculated from HITRAN database [38] in the optical frequency domain, indicating its great potential in precise gas spectroscopy. In addition, the repetition rate, frequency spacing, and total amount of optical frequencies are independently determined by the optical path length, modulation frequency of the AOM, and the amount of circulating cycles, respectively. Besides, the wavelengths of the FSPT can be extended to meet the spectral requirements of various gases by selecting different gain materials or through nonlinear frequency conversion. Therefore, it is believed that such an FSPT generation system possessing flexible repetition rate, frequency spacing, and wavelength coverage is of great potential for trace-gas remote sensing.

2. Experimental setups

The scheme of the FSPT generation system for oxygen A-band spectroscopy is depicted in Fig. 1. A CW-operated, linearly-polarized, single-frequency DFB laser with a central wavelength of ~1529.5 nm and a linewidth of ~1 MHz is utilized as the initial optical frequency. The DFB laser is then spliced to a polarization-maintaining (PM) coupler with a splitting ratio of 20 dB. Its minor branch is directed to a wavelength locking unit and the major branch is connected to a PM AOM (AOM1) with a modulation frequency of 40 MHz to carve the CW laser into periodic pulses. The fundamental pulse repetition rate is multiplied by an AFSL after AOM1. The AFSL is composed of a 3-dB coupler, a circulator-assisted fiber delay line, an Erbium-doped fiber amplifier (EDFA), a dense wavelength division multiplexer (DWDM) filter and a secondary AOM (AOM2). Most of the active and passive fibers in the loop are PM except for the delay fiber with a length of ~2 km. However, by introducing a Faraday rotation mirror (FRM), the polarization degradation in the non-PM delay fiber can be compensated at the cost of an additional polarization change of 90°. Hence, by orthogonally splicing the PM fibers of the circulator and the Erbium-doped fiber, the polarization directions of the circulating pulses are re-aligned to the slow axis of the PM fiber and thus kept constant at the output end of the loop for each round trip.

 figure: Fig. 1

Fig. 1 Scheme of the FSPT generation system for oxygen A-band spectroscopy. DFB: distributed feedback laser, PM: Polarization maintaining, AOM: acousto-optic modulator, DET: detector, CIR: circulator, FRM: Faraday rotation mirror, FWDM: filter-type wavelength division multiplexer, DWDM: dense wavelength division multiplexer, ISO: isolator, AMP: amplifier, EDF: Erbium-doped fiber, AWG: arbitrary wave generator, SM: single mode, MM: multimode

Download Full Size | PPT Slide | PDF

The EDFA is backward pumped by a single-mode (SM) laser diode at 976 nm with the help of a filter-type wavelength-division multiplexer (FWDM). The length of the gain fiber (PM-ESF-7/125, Nufern) is deliberately reduced to ~50 cm so as to balance the gain coefficient and amplified spontaneous emission (ASE) when operating at ~1529.5 nm. The amplified laser spectrum is then purified by an off-the-shelf PM DWDM filter at C60 channel (ITU Grid) with a pass bandwidth of 100 GHz to reduce the ASE content. The spectrally purified laser pulse is then directed into AOM2 with a modulation frequency of 200 MHz working at + 1st order diffraction. Consequently, the optical frequency of the input pulse is up-shifted by the modulation frequency when passing through AOM2. Moreover, AOM2 is working in pulsed mode and its gating duration is slightly longer than the input pulse width so as to further block the residual ASE within the pass band of the DWDM filter in the time domain. The drive pulse shapes and synchronization of the two AOMs are carefully tuned with a dual channel arbitrary wave generator (AWG 7122C, Tektronix) to optimize the optical signal to noise ratio (OSNR). After frequency shifting, the optical pulse re-enters the 3-dB coupler with half of the pulse energy released and the rest pulse energy iterating the time delay, amplification and frequency shifting procedure within the loop. After the generation of the last pulse with desired optical frequency, AOM2 is turned off to block the undesired subsequent optical frequency while AOM1 generates another pulse with initial optical frequency to restart a new round of FSPT generation process.

Due to the different gain and loss coefficients for each optical frequency, the output pulse energy fluctuates in the time domain. In order to tackle this problem, another 20-dB coupler is connected to the output port of the AFSL to record the pulse energy variation in one cycle. The energy variation is then corrected by modifying the modulation amplitudes of AOM2 and the output power of the pump diode in the following cycle. Normally, this compensating process will iterate several cycles until the pulse energies in each cycle become mostly identical and therefore are good enough for stable power amplification.

The power amplification chain consists of three stages of PM fiber amplifiers. The first stage is constructed in core-pumped configuration, which is similar to that in the AFSL. The succeeding two stages are both cladding-pumped by wavelength-stabilized multi-mode (MM) laser diodes at 976 nm each with a maximal output power of 9 W. The lengths of the gain fibers (IXF-2CF-EY-PM-12-130, IXblue) of these stages are experimentally optimized to ~0.5 m so as to reduce the ASE content around 1535 nm. Besides, DWDM filters as well as isolators are inserted between amplification stages and after the final main amplifier to block the detrimental ASE and protect the amplifiers from possible damage caused by back-scattered light.

The amplified laser beam is focused onto the middle of a multi-channel periodically poled magnesium oxide doped lithium niobate (PPMgLN) crystal with a beam diameter of ~69 μm. The PPMgLN crystal (HCP Photonics) is 15(L) × 12(W) × 1(T) mm3 in dimension consisting of 10 equally spaced channels with different uniform poling periods from 18.2 to 20.9 μm. The channel with a poling period of 18.5 μm is selected and the crystal is heated to 128.2 °C by a temperature-controllable oven for efficient second harmonic generation (SHG) at the working wavelength. The generated second harmonic (SH) wave is separated from the fundamental wave by a dichroic mirror (M1) and is then collimated by a lens (L2) with a focal length of 125 mm. A wedged sampler (W1) is inserted after L2 to sample ~1% of the SH wave for pulse energy reference. The major part of the SH wave is directed into a 0.5-meter-long, multi-pass gas cell with total path length of 20 m. Two identical photodiodes recording the reference signals reflected by W1 and the detecting signals after the gas cell, respectively, are employed for the proof-of-principle oxygen A-band spectroscopy in the time domain.

3. Results and discussion

The time domain characteristics of the seed FSPT are measured by an oscilloscope (DPO 4104, Tektronix) at first. The drive pulse width of AOM1 is ~900 ns with Gaussian shape and the corresponding optical pulse width is reduced to ~390 ns, as is demonstrated in Figs. 2(a) and 2(b), respectively. We attribute this to the time delay in the build-up phase of the acoustic wave. The round trip interval of the AFSL, which is determined by its total optical path length, is measured to be 20.103 μs. This interval is set as the time basis of the loop and the initial optical frequency is periodically produced from AOM1 with intervals equaling integer multiples of this time basis. In this scenario, the generated succeeding frequency-stepped pulses from the AFSL can be uniformly interpolated between adjacent original pulses with initial optical frequency, i.e., the repetition rate of the FSPT is stable without abrupt gaps between frequency-stepped pulse bursts. Figures 2(c)-2(h) depict typical drive signals of AOM1 and the measured FSPT with 20, 50, and 80 equidistant optical frequencies, respectively. Although more optical frequencies may be available for EDFA-based AFSL on account of its broad gain bandwidth. However, in the proof-of-principle experiment, the amount of the equidistant optical frequencies is constrained within 80. Because the wavelength is already at the vicinity of the gain bandwidth of Erbium ions and is close to the edge of the pass band of the DWDM filter. More optical frequencies approaching the shorter wavelength will lead to the severe reduction in pulse energies. This energy reduction is hard to compensate by simply increase the output power of the pump diode without OSNR degradation and ASE growth. Most importantly, an FSPT with 80 equidistant optical frequencies and 200 MHz frequency spacing spans an optical frequency range of 32 GHz after frequency doubling, which is sufficient to cover one absorption peak in oxygen A-band.

 figure: Fig. 2

Fig. 2 Drive pulses of AOM1 and the corresponding optical pulses for FSPT with different amount of equidistant optical frequencies; (a): single drive pulse; (b): single optical pulse; (c)-(h): drive pulses of AOM1 and the corresponding optical pulses for FSPT with 20 (c and d), 50 (e and f), and 80 (g and h) equidistant optical frequencies, respectively.

Download Full Size | PPT Slide | PDF

In order to verify the frequency-stepped behavior, the beating signals between the CW DFB seed and the output pulse sequence generated from the AFSL are measured by the oscilloscope. Figures 3(a)-3(e) depict the beating signals for the first five pulses in the FSPT and the insets of Figs. 3(b)-3(e) show the beating signals around their pulse peaks in a shorter time duration of 10 ns. Figures 3(f)-3(j) demonstrate the corresponding fast Fourier transform (FFT) spectra of the beating signals in the frequency domain. The FFT amplitude peaks at 40 MHz for the first pulse and this frequency is shifted by an additional 200MHz for each successive pulse, reaching 240 MHz, 440 MHz, 640 MHz, and 840 MHz for the second, third, fourth, and fifth pulse, respectively. No evident side band can be observed in each FFT spectrum indicating stable operation and negligible leakage of the AOMs.

 figure: Fig. 3

Fig. 3 Beating signals between the CW DFB seed and the first five pulses of the FSPT together with their corresponding FFT spectra; (a)-(e): beating signals; (f)-(j): FFT spectra; the insets of (b)-(e): beating signals around the pulse peaks in a shorter time duration of 10 ns.

Download Full Size | PPT Slide | PDF

After the time domain measurement, the performance of the FSPT is tested in the wavelength domain by an optical spectrum analyzer (AQ6370D, Yokogawa). The initial optical frequency produced by the DFB laser, the time-averaged spectrum of the seed FSPT with 80 equidistant optical frequencies, and the spectral filtering behavior of the DWDM filter are measured and compared in the inset of Fig. 4. Due to the limited resolution, the measured linewidth of the DFB laser is much larger than its exact value and the individual optical frequencies of the FSPT are indistinguishable. Nevertheless, it can be deduced from the inset of Fig. 4 that the succeeding frequency-stepped pulses are evolved by cyclic shifting the initial optical frequency produced from the DFB to higher frequencies, namely, shorter wavelengths. The original average power of the seed FSPT is 115 μW and is boosted to 690 mW after three stages of amplification. The spectrum of the amplified laser is plotted in Fig. 4. Thanks to the high side-band suppression ratio of the DWDM filter, the measured ASE peak around 1535 nm is more than 40 dB lower than the time-averaged signal peak of the FSPT, which is good enough for gas spectroscopy.

 figure: Fig. 4

Fig. 4 Time-averaged spectrum of the amplified FSPT with 80 equidistant optical frequencies. Inset: spectral comparison of the DFB laser, seed FSPT and the DWDM filter

Download Full Size | PPT Slide | PDF

After power amplification, the wavelength of the fundamental FSPT is frequency doubled to ~764.75 nm with a maximal average power of 151 mW. Meanwhile, the frequency spacing and total optical bandwidth are also doubled by the SHG process, i.e., the SH FSPT with 80 equidistant optical frequencies covers a bandwidth of 32 GHz with a frequency spacing of 400 MHz in the optical frequency domain. On the other hand, these optical frequencies are successively produced in 80 pulses spanning 1608.24 μs with an interval of 20.103 μs in the time domain. As a result, the transmittance in the optical frequency domain can be retrieved from pulse energy comparison between the reference and the detecting signals in the time domain according to this spectral-temporal relationship. Figures 5(a)-5(d) plot the pulses before and after the gas cell filled with clean air at 1 atm. and 1.5 atm., respectively, in one cycle. The retrieved data points in transmittance for these two cases are depicted in Fig. 5(e). The calculated transmission curves from HITRAN database are also plotted and compared in the same panel. It is obvious that the test points are mostly in good agreement with the calculated curves. The root-mean-squared (RMS) errors of the measured transmittance are only 0.68% and 0.55% from theoretical calculations under the conditions of 1 atm. and 1.5 atm., respectively, indicating its great potential for precise remote oxygen concentration and pressure measurement by FSPT-based spectroscopy.

 figure: Fig. 5

Fig. 5 Direct time domain oxygen A-band spectroscopy measured by a SH FSPT; (a)-(b): reference and detecting signals at 1.0 atm.; (c)-(d): reference and detecting signals at 1.5 atm.; (e): transmittance retrieved from the measured data and calculated from HITRAN database (γ0 = 392018 GHz).

Download Full Size | PPT Slide | PDF

It is worth mentioning that the frequency spacing of the FSPT can be easily changed by selecting an AOM with a different modulation frequency. In addition, by cascading several AOMs with either + 1st or −1st order diffraction, the frequency spacing can be further extended from several MHz (with different diffraction order) to tens of GHz (with the same diffraction order). As a result, such an FSPT can provide versatile frequency spacing according to the spectral resolution requirement under different circumstances. Similarly, the repetition rate of the FSPT can also be altered by simply changing the length of the delay fiber. Most importantly, since the frequency spacing and repetition rate are dependent on two different components of the AFSL, these two parameters can be optimized separately, offering high design flexibility. It is also worth mentioning that the linewidth is one of the most crucial parameters for spectroscopy. Generally, the linewidth of each frequency-stepped pulse should be much narrower than the absorption linewidth of the detecting gas. For an FSPT, the linewidth of each pulse is limited by the Fourier transform relation and this value is within the level of few MHz for an optical pulse with hundreds of ns in width. Considering that the absorption linewidths for most gases are about several GHz, the linewidths of the frequency-stepped pulses are about three orders of magnitude narrower and thereby making this method precise enough for gas spectroscopy. Such linewidths should be more than sufficient for liquids and solids, whose absorption linewidths are much broader than gases.

4. Conclusion

In summary, we have demonstrated an FSPT generation system enabling direct oxygen A-band spectroscopy in the time domain. The FSPT is formed by cyclic frequency shifting the initial single-frequency pulse in an AOM-based AFSL. An FSPT at ~1529.5 nm is constructed with up to 80 equidistant optical frequencies and 200 MHz spacing in this configuration. Its optical frequencies are then doubled to ~764.75 nm, covering one absorption peak in oxygen A-band, for the proof-of-principle experiment in spectroscopy. The transmission curves at 1 atm. and 1.5 atm. are retrieved by direct time domain measurement based on the SH FSPT and the RMS errors are only 0.68% and 0.55%, respectively, comparing with theoretical calculations from HITRAN database. The operating wavelengths of such an FSPT can be further extended to match the absorption peaks of various gases by adopting different gain media and/or through nonlinear frequency conversion. It is believed that such an FSPT is of great potential for gas spectroscopy owing to its simple time domain signal processing scheme, flexible frequency spacing, and low repetition rate operation capabilities.

Funding

National Natural Science Foundation of China (NSFC) (61875219, 61505236, 61805268); Key Laboratory Foundation of Chinese Academy of Sciences (CXJJ-17S026).

Acknowledgments

Dr. Tao Chen acknowledges Prof. Zhigang Zhang from Peking University, Prof. Guoqing (Noah) Chang from Institute of Physics, Chinese Academy of Sciences, Prof. Zhigang Zhao from Shandong University, Prof. Qunbi Zhuge from Shanghai Jiao Tong University, and Dr. Wei Liu from Stanford University for their useful discussions.

References

1. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987). [CrossRef]  

2. M. A. Stephen, J. Mao, J. B. Abshire, X. Sun, S. R. Kawa, and M. A. Krainak, “Oxygen Spectroscopy Laser Sounding Instrument for Remote Sensing of Atmospheric Pressure,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA19.

3. H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017). [CrossRef]  

4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016). [CrossRef]  

5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008). [CrossRef]   [PubMed]  

6. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016). [CrossRef]   [PubMed]  

7. N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018). [CrossRef]   [PubMed]  

8. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018). [CrossRef]   [PubMed]  

9. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015). [CrossRef]   [PubMed]  

10. P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018). [CrossRef]   [PubMed]  

11. V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018). [CrossRef]   [PubMed]  

12. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]  

13. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers [Invited],” J. Opt. Soc. Am. B 34(3), A49–A62 (2017). [CrossRef]   [PubMed]  

14. F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017). [CrossRef]  

15. M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007). [CrossRef]   [PubMed]  

16. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012). [CrossRef]   [PubMed]  

17. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014). [CrossRef]   [PubMed]  

18. J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018). [CrossRef]  

19. K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012). [CrossRef]   [PubMed]  

20. M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015). [CrossRef]  

21. J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017). [CrossRef]  

22. J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017). [CrossRef]  

23. J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. A. Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22(7), 7852–7864 (2014). [CrossRef]   [PubMed]  

24. X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, “Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop,” Opt. Express 20(20), 21833–21839 (2012). [CrossRef]   [PubMed]  

25. J. Li, C. Yu, and Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014). [CrossRef]   [PubMed]  

26. M. Wan, L. Wang, F. Li, Y. Cao, X. Wang, X. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24(24), 27614–27621 (2016). [CrossRef]   [PubMed]  

27. H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017). [CrossRef]  

28. A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011). [CrossRef]  

29. A. T. Pedersen and K. Rottwitt, “Frequency noise in frequency swept fiber laser,” Opt. Lett. 38(7), 1089–1091 (2013). [CrossRef]   [PubMed]  

30. K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006). [CrossRef]   [PubMed]  

31. K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007). [CrossRef]  

32. X. Chen, M. Han, Y. Zhu, B. Dong, and A. Wang, “Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement,” Appl. Opt. 45(29), 7712–7717 (2006). [CrossRef]   [PubMed]  

33. H. Tsuchida, “Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method,” Opt. Lett. 36(5), 681–683 (2011). [CrossRef]   [PubMed]  

34. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: I. Experiment,” Appl. Opt. 32(33), 6718–6726 (1993). [CrossRef]   [PubMed]  

35. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: II. Theoretical analysis,” Appl. Opt. 33(15), 3209–3219 (1994). [CrossRef]   [PubMed]  

36. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32(1), 99–106 (2014). [CrossRef]  

37. H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018). [CrossRef]   [PubMed]  

38. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017). [CrossRef]  

References

  • View by:

  1. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
    [Crossref]
  2. M. A. Stephen, J. Mao, J. B. Abshire, X. Sun, S. R. Kawa, and M. A. Krainak, “Oxygen Spectroscopy Laser Sounding Instrument for Remote Sensing of Atmospheric Pressure,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA19.
  3. H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
    [Crossref]
  4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  6. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  7. N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
    [Crossref] [PubMed]
  8. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
    [Crossref] [PubMed]
  9. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
    [Crossref] [PubMed]
  10. P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
    [Crossref] [PubMed]
  11. V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
    [Crossref] [PubMed]
  12. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  13. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers [Invited],” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
    [Crossref] [PubMed]
  14. F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
    [Crossref]
  15. M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007).
    [Crossref] [PubMed]
  16. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
    [Crossref] [PubMed]
  17. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
    [Crossref] [PubMed]
  18. J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
    [Crossref]
  19. K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
    [Crossref] [PubMed]
  20. M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
    [Crossref]
  21. J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
    [Crossref]
  22. J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
    [Crossref]
  23. J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. A. Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22(7), 7852–7864 (2014).
    [Crossref] [PubMed]
  24. X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, “Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop,” Opt. Express 20(20), 21833–21839 (2012).
    [Crossref] [PubMed]
  25. J. Li, C. Yu, and Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014).
    [Crossref] [PubMed]
  26. M. Wan, L. Wang, F. Li, Y. Cao, X. Wang, X. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24(24), 27614–27621 (2016).
    [Crossref] [PubMed]
  27. H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
    [Crossref]
  28. A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
    [Crossref]
  29. A. T. Pedersen and K. Rottwitt, “Frequency noise in frequency swept fiber laser,” Opt. Lett. 38(7), 1089–1091 (2013).
    [Crossref] [PubMed]
  30. K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006).
    [Crossref] [PubMed]
  31. K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
    [Crossref]
  32. X. Chen, M. Han, Y. Zhu, B. Dong, and A. Wang, “Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement,” Appl. Opt. 45(29), 7712–7717 (2006).
    [Crossref] [PubMed]
  33. H. Tsuchida, “Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method,” Opt. Lett. 36(5), 681–683 (2011).
    [Crossref] [PubMed]
  34. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: I. Experiment,” Appl. Opt. 32(33), 6718–6726 (1993).
    [Crossref] [PubMed]
  35. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: II. Theoretical analysis,” Appl. Opt. 33(15), 3209–3219 (1994).
    [Crossref] [PubMed]
  36. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic radio frequency memory using frequency shifting recirculating delay line structure,” J. Lightwave Technol. 32(1), 99–106 (2014).
    [Crossref]
  37. H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
    [Crossref] [PubMed]
  38. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
    [Crossref]

2018 (6)

N. B. Hébert, D. G. Lancaster, V. Michaud-Belleau, G. Y. Chen, and J. Genest, “Highly coherent free-running dual-comb chip platform,” Opt. Lett. 43(8), 1814–1817 (2018).
[Crossref] [PubMed]

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
[Crossref] [PubMed]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref] [PubMed]

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

2017 (7)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers [Invited],” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
[Crossref] [PubMed]

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
[Crossref]

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

2016 (3)

2015 (2)

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (3)

2011 (2)

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
[Crossref]

H. Tsuchida, “Laser frequency modulation noise measurement by recirculating delayed self-heterodyne method,” Opt. Lett. 36(5), 681–683 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (2)

M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007).
[Crossref] [PubMed]

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

2006 (2)

1994 (1)

1993 (1)

1987 (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Abshire, J.

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Abshire, J. B.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Acedo, P.

Allan, G.

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Allan, G. R.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007).
[Crossref] [PubMed]

Auwera, J. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Azaña, J.

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

Barbe, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Brunel, M.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Burla, M.

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Cao, Y.

Chai, L.

Chan, E. H. W.

Chance, K. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Chen, G. Y.

Chen, J.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Chen, J. R.

Chen, T.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Chen, X.

Chi, N.

Clarkson, W. A.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Császár, A. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Dai, J.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Dai, Y.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Devi, V. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Dong, B.

Dong, Z.

Drouin, B. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Durán, V.

Engin, D.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Feng, X.

Feng, Y.

Flaud, J. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Fu, S.

Furtenbacher, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Gamache, R. R.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Gangi, J. D.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Genest, J.

Gonzales, B.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Guan, B. O.

Guillet de Chatellus, H.

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref] [PubMed]

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

Han, L.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Han, M.

Harrison, J. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Hartmann, J. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Hasselbrack, W.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Hébert, N. B.

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Hodges, J. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Horiguchi, T.

Hu, G.

Hu, M.

Hu, Y.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Ito, H.

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006).
[Crossref] [PubMed]

Jacquemart, D.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Jerez, B.

Johnson, T. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Jolly, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Kagann, R. H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Karman, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Kawa, S. R.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Kleiner, I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Kong, W.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Koyamada, Y.

Krainak, M.

Kyuberis, A. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Lancaster, D. G.

Largo-Izquierdo, P.

Li, C.

Li, F.

Li, J.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
[Crossref]

J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. A. Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22(7), 7852–7864 (2014).
[Crossref] [PubMed]

J. Li, C. Yu, and Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014).
[Crossref] [PubMed]

Li, X.

Li, Z.

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
[Crossref]

J. Li, C. Yu, and Z. Li, “Complementary frequency shifter based on polarization modulator used for generation of a high-quality frequency-locked multicarrier,” Opt. Lett. 39(6), 1513–1516 (2014).
[Crossref] [PubMed]

Liao, R.

Lin, J.

Liu, A.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Liu, H.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Liu, J.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Liu, W.

Liu, Y.

Loos, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Lyulin, O. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Ma, H.

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
[Crossref]

Mao, J.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

Martín-Mateos, P.

Massie, S. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Mathason, B.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Michaud-Belleau, V.

Mikhailenko, S. N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Minasian, R. A.

Moazzen-Ahmadi, N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Müller, H. S. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Nakagawa, K.

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006).
[Crossref] [PubMed]

Naumenko, O. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Newbury, N.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nguyen, T. A.

Niazi, S. A.

Nicholson, J.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Nikitin, A. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Nilsson, J.

Norwood, R. A.

Numata, K.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
[Crossref] [PubMed]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
[Crossref] [PubMed]

K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
[Crossref] [PubMed]

Olesen, A. S.

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
[Crossref]

Pan, Y.

Pedersen, A. T.

A. T. Pedersen and K. Rottwitt, “Frequency noise in frequency swept fiber laser,” Opt. Lett. 38(7), 1089–1091 (2013).
[Crossref] [PubMed]

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
[Crossref]

Perevalov, V. I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Perrin, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Peyghambarian, N.

Polyansky, O. L.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Ramanathan, A.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Rey, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Richardson, D. J.

Riris, H.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007).
[Crossref] [PubMed]

Rodriguez, M.

Romero Cortés, L.

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

Rotger, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Rottwitt, K.

A. T. Pedersen and K. Rottwitt, “Frequency noise in frequency swept fiber laser,” Opt. Lett. 38(7), 1089–1091 (2013).
[Crossref] [PubMed]

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
[Crossref]

Schnébelin, C.

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref] [PubMed]

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Shao, Y.

Sharpe, S. W.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Shi, H.

Shi, W.

Shimizu, K.

Shine, K. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Shu, R.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Smith, M. A. H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Song, Y.

Starikova, E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Stephen, M.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

M. Stephen, M. Krainak, H. Riris, and G. R. Allan, “Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter,” Opt. Lett. 32(15), 2073–2075 (2007).
[Crossref] [PubMed]

Storm, M.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Sun, X.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Sung, K.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Takahashi, Y.

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

Takano, K.

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006).
[Crossref] [PubMed]

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Tashkun, S. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Tennyson, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Toon, G. C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Tran, H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Tsuchida, H.

Tyuterev, V. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Vallet, M.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Wagner, G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Wai, P. K. A.

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Wan, M.

Wang, A.

Wang, L.

Wang, X.

Wcislo, P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Wilzewski, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Wu, S.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Wu, S. T.

Xi, L.

Xu, K.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Xu, S.

Yang, H.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Yang, M.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

Yang, S.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Yang, Z.

Yasui, T.

Yin, F.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Ying, M.

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

You, F.

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

Yu, A.

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

Yu, C.

Yu, J.

Yu, S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Zak, E. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

Zhang, H.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, X.

Zhao, B.

Zhao, C.

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

Zhao, X.

Zheng, Z.

Zhou, Y.

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

Zhu, X.

Zhu, Y.

Appl. Opt. (3)

Atmos. Meas. Tech. (1)

J. B. Abshire, A. Ramanathan, H. Riris, G. R. Allan, X. Sun, W. E. Hasselbrack, J. Mao, S. Wu, J. Chen, K. Numata, S. R. Kawa, M. Ying, M. Yang, and J. D. Gangi, “Airborne Measurements of CO2 Column Concentrations made with a Pulsed IPDA Lidar using a Multiple-Wavelength-Locked Laser and HgCdTe APD Detector,” Atmos. Meas. Tech. 11(4), 1–36 (2018).
[Crossref]

IEEE Photonics J. (4)

H. Yang, M. Brunel, H. Zhang, M. Vallet, C. Zhao, and S. Yang, “RF up-conversion and waveform generation using a frequency shifting amplifying fiber loop, application to Doppler velocimetry,” IEEE Photonics J. 9(6), 7106609 (2017).
[Crossref]

J. Li, H. Ma, Z. Li, and X. Zhang, “Optical frequency comb generation based on dual polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops,” IEEE Photonics J. 9(5), 2745558 (2017).
[Crossref]

J. Liu, A. Liu, J. Dai, Y. Zhou, J. Li, Y. Dai, F. Yin, and K. Xu, “A broadband, rectangular and self-sustained optical frequency comb generation employing recirculation frequency shifter,” IEEE Photonics J. 9(5), 7803207 (2017).
[Crossref]

F. You, T. Chen, W. Kong, H. Liu, Y. Hu, and R. Shu, “Frequency doubling of a pulsed wavelength-agile Erbium-doped fiber MOPA for Oxygen A-band spectroscopy,” IEEE Photonics J. 9(5), 2736546 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Takano, K. Nakagawa, Y. Takahashi, and H. Ito, “Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA,” IEEE Photonics Technol. Lett. 19(7), 525–527 (2007).
[Crossref]

J Quant. Spectrosc. and Radiat. Trans. (1)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 Molecular Spectroscopic Database,” J Quant. Spectrosc. and Radiat. Trans. 203, 3–69 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9(1), 2438 (2018).
[Crossref] [PubMed]

Opt. Express (13)

K. Takano, K. Nakagawa, and H. Ito, “Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA,” Opt. Express 14(22), 10313–10323 (2006).
[Crossref] [PubMed]

M. Wan, L. Wang, F. Li, Y. Cao, X. Wang, X. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24(24), 27614–27621 (2016).
[Crossref] [PubMed]

J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. A. Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22(7), 7852–7864 (2014).
[Crossref] [PubMed]

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, “Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop,” Opt. Express 20(20), 21833–21839 (2012).
[Crossref] [PubMed]

K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express 20(13), 14234–14243 (2012).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
[Crossref] [PubMed]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
[Crossref] [PubMed]

H. Riris, M. Rodriguez, J. Mao, G. Allan, and J. Abshire, “Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar,” Opt. Express 25(23), 29307–29327 (2017).
[Crossref]

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
[Crossref] [PubMed]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Stephen, A. Yu, J. Chen, J. Nicholson, D. Engin, B. Mathason, S. Wu, G. Allan, W. Hasselbrack, B. Gonzales, L. Han, K. Numata, M. Storm, and J. Abshire, “Fiber-based, trace-gas, laser transmitter technology development for space,” Proc. SPIE 9612, 96120B (2015).
[Crossref]

A. S. Olesen, A. T. Pedersen, and K. Rottwitt, “Frequency stepped pulse train modulated wind sensing lidar,” Proc. SPIE 8159, 81590O (2011).
[Crossref]

Rev. Sci. Instrum. (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226–2237 (1987).
[Crossref]

Other (1)

M. A. Stephen, J. Mao, J. B. Abshire, X. Sun, S. R. Kawa, and M. A. Krainak, “Oxygen Spectroscopy Laser Sounding Instrument for Remote Sensing of Atmospheric Pressure,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JMA19.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the FSPT generation system for oxygen A-band spectroscopy. DFB: distributed feedback laser, PM: Polarization maintaining, AOM: acousto-optic modulator, DET: detector, CIR: circulator, FRM: Faraday rotation mirror, FWDM: filter-type wavelength division multiplexer, DWDM: dense wavelength division multiplexer, ISO: isolator, AMP: amplifier, EDF: Erbium-doped fiber, AWG: arbitrary wave generator, SM: single mode, MM: multimode
Fig. 2
Fig. 2 Drive pulses of AOM1 and the corresponding optical pulses for FSPT with different amount of equidistant optical frequencies; (a): single drive pulse; (b): single optical pulse; (c)-(h): drive pulses of AOM1 and the corresponding optical pulses for FSPT with 20 (c and d), 50 (e and f), and 80 (g and h) equidistant optical frequencies, respectively.
Fig. 3
Fig. 3 Beating signals between the CW DFB seed and the first five pulses of the FSPT together with their corresponding FFT spectra; (a)-(e): beating signals; (f)-(j): FFT spectra; the insets of (b)-(e): beating signals around the pulse peaks in a shorter time duration of 10 ns.
Fig. 4
Fig. 4 Time-averaged spectrum of the amplified FSPT with 80 equidistant optical frequencies. Inset: spectral comparison of the DFB laser, seed FSPT and the DWDM filter
Fig. 5
Fig. 5 Direct time domain oxygen A-band spectroscopy measured by a SH FSPT; (a)-(b): reference and detecting signals at 1.0 atm.; (c)-(d): reference and detecting signals at 1.5 atm.; (e): transmittance retrieved from the measured data and calculated from HITRAN database (γ0 = 392018 GHz).

Metrics