Abstract

We experimentally demonstrate a disruptive approach to control magnetooptical nonreciprocal effects. It has been known that the combination of a magneto-optically (MO) active substrate and extraordinary transmission (EOT) effects through deep-subwavelength nanoslits of a noble metal grating, leads to giant enhancements of the magnitude of the MO effects that would normally be obtained on just the bar substrate. This was demonstrated both in the transmission configuration, where the OET is directly observed, as well as in reflection configuration, where an increase of a transmitted power results in a decrease in reflected power. We show here that even more than just an enhancement, the MO effects can also undergo a sign reversal by achieving a hybridization of the different types of resonances at play in these EOT nanogratings. By tuning the geometrical profile of the grating’s slits, one can engineer — for a fixed wavelength and fixed magnetization — the transverse MO Kerr effect (TMOKE) reflectivity of such a magnetoplasmonic system to be enhanced, extinguished or inversely enhanced. We have fabricated gold gratings with varying nanoslit widths on a Bi-substituted gadolinium iron garnet and experimentally confirmed such a behavior using a customized magneto-optic Mueller matrix ellipsometer. This demonstration allows new design paradigms for integrated nonreciprocal circuits and biochemical sensors with increased sensitivity and reduced footprint.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Magnetoplasmonics [1] — a recently coined term referring to any physical system exploiting the combined effect of a magnetic and a plasmonic functionality — is attracting a surge of interest in recent years. This research domain knows two main driving forces. On the one hand, the use of a magnetic field to add an active control, such as switching and modulation, to plasmonic-based nanophotonic circuitry [2] has been proven a compact, reliable and fast alternative [3–6] to more complex control agents such as nonlinearities [7, 8]. Secondly and more importantly, plasmonic field concentration has been exploited to enhance the unique time reversal breaking properties of magneto-optic (MO) materials [9]. In recent years numerous experimental reports have demonstrated the strong enhancement of all traditional nonreciprocal MO phenomena — complex Kerr and Faraday rotation and complex transverse Kerr phase shift — due to coupling with propagating surface plasmon polaritons (SPP) or excitation of localised plasmon resonances. A wide range of magnetoplasmonic configurations has been investigated: semi-transparent dielectric magnetic iron garnet films coupled to noble metal nanogratings [6, 10–14], 2D arrays of noble metal nanoparticles or nanoholes in noble metal sheet [15, 16], nanogratings of pure ferromagnetic (FM) metal thin films [17, 18], FM nanoparticles [19, 20] and nanowires [21] on dielectric substrates, hybrid ferromagnetic/noble metal sandwiches both in nanoparticle or nanowires [22–24], systems of coupled plasmonic and ferromagnetic nanoparticles [25], inverted Babinet nanohole layouts [26, 27] and propagating SPP layout [28, 29], and magnetic/plasmonic core-shell nanoparticles [30–32].

All these demonstrations share the same conceptual approach to boost the magneto-optic properties of the system: by operating closely to a high quality factor plasmonic resonance the impact of an otherwise weak MO phenomenon is sharply enhanced. A particularly convincing example of plasmonic enhanced magneto-optics is the demonstration of giant transverse MO Kerr reflectivity (TMOKE) when applying a one-dimensional plasmonic slit grating on a transparent magneto-optic iron garnet substrate (which can be possibly used as an optical waveguide) that is magnetized in-plane and parallel to the grating’s slits [33, 34]. By themselves, lossless MO materials (such as iron garnets in the near infrared region) can fundamentally not exhibit nonreciprocal TMOKE intensity effects [35, Eq. (1.138)]. However by coupling a transparent MO garnet to the Wood anomalies of a gold extraordinary optical transmission (EOT) grating, nonreciprocal intensity reflectivities are obtained that even exceed those of strongest lossy FM metals.

In many optimized layouts for nonreciprocal circuits (such as isolators and circulators) it is inevitable to have antisymmetric magnetized regions in order to break also the spatial inversion symmetries [36, 37], to optimize the MO interaction with the symmetries of the modes at play [38, 39] or to achieve a more powerful push-pull configuration for the nonreciprocal effect [40, 41]. Gaining control over the sign of the nonreciprocity by plasmonic engineering would allow realizing such layouts without the need for complicated inverted magnetic domains and just having a uniform magnetization in the whole structure.

Despite the fact, that behavior of the EOT resonances and their interactions in noble metal plasmonic structures were studied in details [42, 43], the influence of the possible coupling on the MO response was never deeply analyzed before. Differently and adding to these demonstrations of magnetoplasmonic nonreciprocity enhancement, we report here on the anomalous control of the sign of the nonreciprocal phenomena when exploiting the different resonances in a magnetoplasmonic system [44]. Apart from the obvious interest of investigating controlled tuning of resonances in magnetoplasmonic systems and their impact on the MO enhancement, there is another important motivation for controlling the sign of the nonreciprocity at play. Time reversal breaking (or thus nonreciprocity) is governed by the sense of the magnetization in the system. Up to first order, inverting the magnetization will invert the sign of the nonreciprocal phenomenon at play. Naturally, in design of the magnetoplasmonic gratings and arrays, the optical reciprocity can be tuned by controlling of the wavevector/angle of incidence [11]. In this paper we demonstrate approach of static controlling of the magnetooptical nonreciprocity based on tuning of the coupling between resonances without changes of the electromagnetic wave properties.

2. Magnetoplasmonic grating structure design, fabrication, optical characterization and numerical modeling methods

To investigate magnetoplasmonic sign control and enhancement, we have designed and fabricated one-dimensional (1D) lamellar gold nanogratings on the 4 µm thick, compositionally optimized, Bi-substituted gadolinium iron garnet (Bi:GIG), Gd1.24Pr0.48Bi1.01Lu0.27Fe4.38Al0.6O12 grown by liquid phase epitaxy (LPE) on the substituted Gadolinium Gallium Garnet (CaMg-GGG, lattice parameter as = 12.498 Å) substrate. Fig. 1(a) schematically represents the studied structure. A number of square patches containing 600 periods (Λ = 500 nm) of 300 µm long and 93.7 nm thick Au stripes separated by nanoslits, have been processed by standard lift-off techniques. [45]

 

Fig. 1 (a) Definition of parameters in the model describing the magnetoplasmonic structure in planar diffraction configuration, (b) fabricated set of diffraction gratings with SEM images of developed plasmonic gratings showing good quality of the grating lamelas and observed widths of nanoslits r.

Download Full Size | PPT Slide | PDF

The first set of 15 samples was fabricated by varying the e-beam exposure dose per written patch: the width r of the nanoslit is varied from patch to patch (see Fig. 1b). In this way we expect all developed patches have the same period and thickness of deposited gold. Therefore, the effect of the nanoslit width on the magnetoplasmonic properties of the grating structure is directly comparable. To complete our study in investigation of the sign control, two additional sets of patches with gold thickness of 118 nm and 134 nm were fabricated. The new fabricated sets of patches were analyzed and two patches with similar nanoslit widths were selected. Therefore, MO response of the patches which are different only in the thickness can be directly compared.

The grating’s optical response has been probed by using a Mueller matrix spectroscopic ellipsometer (SE) Woollam RC2-DI (J.A. Woollam Co.) in specular reflection configuration. The ellipsometer uses a combination of a halogen bulb and deuterium lamp as a light source and it operates in the spectral region from 0.74 eV to 6.42 eV (193-1700 nm). The spectral resolution of the setup was 2.5 nm in infrared spectral region and 1 nm in visible and ultraviolet spectral regions. For characterization of the optical response of the developed gratings we have used micro focusing probes with a focal length of 27 mm to reduce the spot size to approximately 150 µm. Focused beam allows reducing the beam spot size to individually measure each grating. To measure magnetooptical response of the samples, the ellipsometer was extended with in-house design computer controlled in-plane permanent magnet circuit.

The Rigorous Coupled Wave Algorithm (RCWA) was used for optical modeling and fitting of experimental SE data measured on the plasmonic grating. From data measured on the first batch of 15 patches the widths of nanoslits have been obtained by a single global least-squares fit of model to all measured SE data. See ref. [45] for more details about used SE setup, parametrized model of the studied plasmonic gratings and used optical and magnetooptical functions of materials.

3. Operational principle of resonant modes in magnetoplasmonic grating structure

In the following we will explain the phenomena of tuning the plasmon resonances and MO sign conversion by a simple model of coupling SPP and Fabry-Pérot (FP) modes. We firstly describe the case without MO effect and then add the MO perturbation.

3.1. Optical observation of the effect of coupling between different grating resonances (without MO effect)

In a first approximation, the plasmonic resonance shift as a function of the nanoslit width r cannot be explained by the diffractive folding of the Au/garnet SPP dispersion, as this latter is parametrically dependent only on the grating’s period Λ, the incidence angle φ, and the Au and Bi:GIG permittivity, εAu and εBi:GIG. In previous theoretical work we demonstrated how variations of the grating’s geometry (in particular its thickness h) cause an anticrossing interaction of the diffractively coupled SPP resonances and the FP slit resonances undergone by the guided TM mode in the subwavelength metal/insulator/metal slit. [4849] Increasing thickness leads to an increasing geometric phase of the fundamental TM slit mode, ωcneff,TM0h, thereby redshifting the FP EOT resonances. Due to anticrossing the SPP reflection anomalies therefore eventually also redshifts with the grating thickness h.

In a first approximation the spectral position of the grating’s resonances as a function of its geometrical parameters (h, r, and Λ), can be obtained by solving the following dispersion equations for the photon energy E:

SPP:±kSPP(E)±m12πΛ=Ecεi(E)sin(φinc),m1andi{air,Bi:GIG},[kSP(E)=EcεAu(E)εi(E)εAu(E)εi(E)]
FP:Ec2neff,FP(E)h+ϕrair(E)+ϕrBi:GIG(E)=2m2π,m20.

Here neff,FP is the effective index of the fundamental TM mode of the Au/air/Au plasmonic slot/slit waveguide formed by the nanoslit and obtained by solving [49]

tanh(rE2cneff,FP21)=neff,FP2εAu(E)εAu(E)neff,FP21.

The reflection phase shifts, ϕri, at both ends of the slit cavity can in first approximation be those of normal plane wave incidence, ri=|ri|exp(iϕri)=neff,FPεineff,FP+εi. Beside the SPP resonances depend only on Λ and φinc, and are independent of the grating’s geometrical parameters governing the FP spectral location, h and r, as seen from Eqs. 13. Varying therefore only, for instance, the nanoslit width r at fixed incidence angle and grating periodicity may lead to SPP-FP resonance coupling.

Figure 2(b) illustrates this for the case of φinc = 20° and h = 100 nm. In order to numerically observe the dispersion of the resonant modes, the structure was simulated with a semi-infinite Bi:GIG substrate. From Eq. (3) one can deduce how the decreasing slit width r will cause an increase of neff,FP, which in turn by Eq. (2) will redshift the FP resonance. The FP slit resonance (blue) is seen to cross the 2nd−order Au/garnet SPPs (red) for nanoslits widths between 20 and 40 nm. Due to anticrossing mode coupling the otherwise fixed energy of the 2nd−order SPPs will be perturbed even for slit widths values beyond this range. This is demonstrated in Fig. 2(c) where we have numerically calculated the specular reflectivity spectrum Rp for a range of slit widths (at φinc = 20°) using an extended coupled-mode formalism [(ECMF), see Ref. [50]]. The reflection minima corresponding to the different mentioned grating resonances can be distinguished, but more importantly their coupling and anticrossing in the region predicted in Fig. 2(b) are convincingly observed. Fig. 2(a) zooms in on the redshift of the 2nd−order Au/garnet SPP. The experimentally observed redshift of the plasmonic grating reflection anomaly can therefore be correctly attributed to a coupling between FP and SPP resonances. This experimental observation confirms for the first time the previously suggested theoretical possibility of tuning the strength of the EOT effects only by tuning one geometrical parameter [44, 51].

 

Fig. 2 Analysis of coupling between FP and SPP modes based on variation of the grating nanoslit width r (without MO effect). Subplot (a) shows red-shift of coupled SPP/FP mode at cross-cuts for nanoslit width r = 40, 60, 80, and 100 nm. Subplot (b) shows positions of the SPP modes without geometrical dispersion and dispersive FP mode (calculated from Eq. (1, 2)). Subplot (c) shows dispersion map of SPPs and FP modes calculated using extended coupled-mode formalism.

Download Full Size | PPT Slide | PDF

3.2. Study of magnetooptical perturbation of the SPPs EOT modes

Turning our attention to the magnetic character of the garnet substrate of the studied plasmonic nanograting, we explore the impact of the observed coupling between the grating’s resonances on the magneto-optical activity of the system. In MO materials the presence of a magnetization creates antisymmetric off-diagonal components in the permittivity tensor, ε¯=(ε+igzigyigzε+igx+igyigxε), where in first order the gyration vector g = g1M is parallel to the magnetization and its magnitude is linearly proportional to that of M, g ∼|M|. For lossless MO media ε¯ must be hermitian, so that both ε and g must be real. In the most general case this gives rise to a nonreciprocal polarization change of a polarized beam [52] when reflected from a surface of a MO layer. The fundamental process induced by the magnetization is the Lorentz force on electrons. Therefore, in a unique configuration of a magnetization perfectly perpendicular to the incidence plane, the s-wave having its E-field perfectly parallel to the magnetization, will not undergo any MO effect. In this so-called transverse configuration only the p-polarization will undergo a nonreciprocal correction. The ensuing transverse MO Kerr effect leads to a nonreciprocal first-order correction on the Fresnel reflection coefficient, rp=rp0(1+igδrp), where rp0 is the isotropic conventional reciprocal Fresnel coefficient (for M = 0) and the small effect correction δrp=rp0gky2εMOkz,MO. On a lossless MO material and below its critical incidence angle, TMOKE is then solely a reflection phase shift since Im(gδrp) = 0, and the power reflectivity Rp remains perfectly reciprocal, ΔRp = |rp(M)|2 −|rp(−M)|2 = 0. Nonreciprocal power reflectivity can only be realized on absorbing media. However on bare lossy ferromagnetic metals such as Co or Fe, ΔRp doesn’t exceed 10−3. [52]

Alternatively, TMOKE power nonreciprocity on a lossless MO garnet can be obtained by cladding it with a plasmonic grating [33]. The gold/garnet SPP dispersion gets a small nonreciprocal correction due to the nonreciprocal phase shift by the transverse MO garnet substrate and the intrinsic relation between the real and imaginary parts of the complex SPP effective index (Kramers-Kroenig relation) leads to the nonreciprocal power shift. In combination with the sharp reflection resonances of the grating’s FP, this leads to a huge enhancement. [44]

In this way, including the effect of the gyrotropy in the boundary conditions at the interface between gold and a transversely magnetized garnet, the following nonreciprocal dispersion equation is obtained for the surface magnetoplasmon polaritons:

εAu(εBi:GIGneff,SPP2)+εBi:GIGεAuneff,SPP2εBi:GIGneff,SPP2g2εBi:GIG=igneff,SPPεAuneff,SPP2where:neff,SPP=kyk0

The gyrotropy clearly breaks the inversion symmetry neff,SPP →−neff,SPP. Linearizing this equation with respect to g — for the considered garnet [45] in the near infrared g ≈ 0.003 (g = 0.0096 @ 1.67 eV) — and solving to first order of g:

neff,SPP=±εAuεBi:GIGεAu+εBi:GIG+igεAu2(εAu2εBi:GIG2)εAu+εBi:GIG.

Similarly with non-MO configuration described by Eqs. (13) FP-SPP coupling occurs. The dependence of the imaginary part of neff,SPP with g induces non-reciprocal response of coupled FP-SPP modes. The model of MO SPP describes the spectral shift of the SPP mode by MO effect by a perturbation linearly dependent on gyrotropy g. It could thus be used to predict the effect and to design devices based on non-reciprocal reflection or transmission with locally inverted sign.

4. Experimental demonstration of control of plasmonic and magnetoplasmonic peak position

Optical and magnetooptical activity of samples were studied in planar diffraction configuration. For straightforward comparison of measured and calculated optical data the following ratio of reflected intensity of p-and s-polarized light and quantification of the MO response is used in this paper:

=RpRs=|rp|2|rs|2,
δ=(+M)(M),
where M = ±|M | x define orientation of the magnetization applied on the magnetoplasmonic structure.

Traditionally, the TMOKE is normalized by the intensity of the reflected light from structure without applied magnetic field, because of the relative high reflectivity from metallic flat surfaces. We have used modified definition of the MO effect due to the fact, that MO activity in magnetoplasmonic structures presents as a shift of a dip in p-polarized light intensity. Therefore quantity δℛ directly shows change of the reflected light intensity without artificial numerical enhancement by division of small numbers.

We firstly analyse the experimental plasmonic grating reflection, and secondly its magneto-optical response, for different slit widths. The third paragraph is dedicated to the experimental magneto-optical gold grating reflection for different slit heights.

4.1. Measured optical response of plasmonic nanogratings with different nanoslit widths

Figure 3(a) shows measured optical data for the angle of incidence φ = 20° for grating with nanoslit width r = 63 nm, and the grating thickness h = 93.7 nm.

 

Fig. 3 Spectra of relative reflectance ℛ = Rp/Rs measured for the angle of incidence φ = 20°, grating nanoslit width r = 63 nm, and the grating thickness h = 93:7 nm. In subplot (a) the full spectra is presented with marked position of the 1st and 2nd garnet SPP peaks. The inserted detail of light-cone includes dispersion curves of the predicted SPP (solid blue) crossing the 20°-light line (solid black). The area for air SPP is marked as red line. Subplot (b) detail red/shift of the +2nd Au/garnet SPP peak measured for increasing width of the nanoslit r.

Download Full Size | PPT Slide | PDF

The red curve on subplot 3(a) shows flat profile of the spectral dependence of the s-polarized intensity. On the other hand, profile of the blue curve representing the measured ratio ℛ [defined by Eq. (6)] shows drops in reflected intensity. Therefore observed dips are related to the decrease of the p-polarized intensity which is the result of the light absorption by excitation of surface plasmon polaritons. The vertical arrows point on spectral positions of excitation of ±1st and +2nd SPPs modes described by Eq. (1) (with m1 = ±1, +2 and i= Bi:GIG). The SPP minima occur slightly blueshifted with respect to these peaks [46, 47]. Due to the overall smooth Rs, the sharp Fano-like minima in ℛ therefore correspond to the detection of the Wood plasmon transmission anomalies of the gold grating. For clear understanding of the role of EOT and grating resonances, the reflection, transmission and TMOKE spectra and corresponding field distribution plots are introduced in Appendix A. The observed fringes in measured data are caused by interferences of the transmitted light in the Bi:GIG layer.

The inset of the Figure 3(a) shows part of the eV–K y dispersion diagram. Blue curves represent dispersion curves of the SPPs modes on Au-Bi:GIG interface calculated from Equations 1. Solid black line represents the 20°−light line with black dashed lines to highlight spectral position of the crossing points related to the observed dips in experimental data. The red line represents SPP mode on the air-Au interface.

By the analysis of SE data measured on the set of 15 samples we have determined widths of nanoslits of different patches. Figure 3(b) shows detail on the spectral region of the +2nd Au/Bi:GIG SPP peak. The number of curves was limited to 6 cases and legend with fitted widths of the nanoslits were added. Interestingly, when zooming in on the measured reflectivity spectra the redshift of the extraordinary reflection resonance is observed for gratings with decreasing width of nanoslit.

4.2. Measured magnetooptical response of plasmonic nanogratings with different nanoslit widths

Figures 4(a) and 4(b) directly compare measured MO data on 15 samples having different width of nanoslit with MO numerical simulation data. The other parameters are the same as in simulations of Fig. 2. Experimental data were measured at the nominal angle of incidence of 20°. Numerical simulations were calculated for the incident angle of 20°. The systematic shift of the peak position in model proves observed trend in the experiment. In Fig. 4(b) the neff,SPP gyrotropy dependence (from Eq. (5)) introduces spectral shift of typically ≈ 30 meV whatever the slit. Clearly at a given photon energy, for example 1.68 eV, the TMOKE response can be positive (nanoslit width r=120 nm) or negative (r=70 nm). In other words, for a given optical signal and a given magnetization the non-reciprocity sign is inverted by changing only the slit width.

 

Fig. 4 Experimentally observed MO response (a) (δℛ) measured at incident angle of 20° on 15 different patches of samples with various opening r is compared with numerical model calculated for various nanoslit width r. (b) Black dashed line at photon energy 1.67 eV highlighting the change of the MO peak sign with the grating nanoslit width r.

Download Full Size | PPT Slide | PDF

4.3. Measured magnetooptical response of plasmonic nanogratings structure with different thicknesses and comparable slit widths

For complete analysis of the FP and SPP modes coupling here we also demonstrate tuning of TMOKE via plasmonic grating thickness. According to Eq. (2) the dispersion of the FP modes is strongly affected by the length of the resonant cavity, which is in our case presented by thickness of the gold grating h. For direct demonstration of the induced coupling, two sets of the grating samples with different thicknesses were fabricated by the same procedure of electron beam dose variation as was described above. Samples were measured and characterized with the Mueller matrix ellipsometry. By the detailed analysis of all fabricated patches we have determined thickness and nanoslits width of all samples.

The gold grating thickness of new set of samples was determined to be h = 118 nm and h = 142 nm, respectively. For direct demonstration of impact of SPP and FP modes coupling on MO response, the two patches with comparable nanoslit widths r = 148 nm and r = 137 nm were selected. Figure 5 shows detail on MO response δℛ observed for both mentioned samples at position of the 2nd SPP peak. In our case it is clearly visible that measured MO response (blue and red circles) at 1.7 eV (black line in Fig. 5) is positive for the patch with thickness h = 118 nm and negative for the patch with grating thickness h = 142 nm. The MO sign inverting phenomena by the grating thickness is observed for the 2nd SPP peak, the same SPP peak as used for the switching demonstration by the grating nanoslit width. In addition in Fig. 5 calculated MO response is shown with red and blue solid lines. The MO response was calculated from the model used for the determination of the geometry of individual patches. Very good agreement between measured and calculated data proves validity of the used model. Therefore our simplified model of the developed structure can be used for further design and optimization of magnetoplasmonic structures. Comparing to the previous case, Fig. 4, the MO effect peak-to-peak width increases from approximately 34 meV to 51 meV and 92 meV for grating thicknesses of 93 nm, 118 nm and 148 nm, respectively. This spectral spreading of the MO response of the plasmonic grating was previously observed and discussed [ [44], Fig. 8 ].

 

Fig. 5 Magneto-optical data measured on gratings with thickness 118 nm and 142 nm (geometry was determined using numerical fitting procedure) are compared with model data. A significant shift of the TMOKE peak due to grating’s thickness change is observed, while the nanoslit width variation is negligible. The black solid line shows spectral position on which switching of sign of the MO effect was directly experimentally observed.

Download Full Size | PPT Slide | PDF

5. Conclusion

In this paper we have demonstrated unique approach for fine local tuning and switching of the magnetooptical effect in 1D periodic plasmonic gratings. By tuning geometrical parameters of the grating, the non-reciprocal reflectivity not only can be enhanced but also tuned in terms of sign and magnitude. The MO tuning was experimentally and numerically demonstrated for two cases: variation of the grating nanoslit width r and variation of the grating thickness h. We have proved correctness of our models used for determination of individual gratings geometry by direct comparison of measured and calculated MO response. We have also demonstrated how these significant effects can be correctly modeled with a linear analytic approach, giving easy design tool. The presented study offers possibility of additional enhancement of the optical nonreciprocity in the magnetoplasmonic structure. In addition, the preferred sigh of the MO effect (under the static magnetic field) can be adjusted in the design by playing on technologically realistic combination of grating of the same thickness and different slits for advanced circuits including non-reciprocal functions.

Appendix A Resonant modes in magnetoplasmonic gratings

In order to establish the main ideas of the magnetoplasmonic gratings principle Fig. 6 shows the specular reflectivity of the structure (middle red line) and the corresponding TMOKE spectrum (upper, blue curve) for p-polarized light impinging at φ0 = 10° on a typical EOT grating configuration (Λ = 500 nm, h1 = 150 nm, r = 20 nm). This configuration of the model was chosen because it provides all discussed modes separated in the spectral domain. Therefore each resonant mode can be observed separately. From the bottom green line one can observe extra-ordinary optical transmission resonances as pronounced dips in the specular reflection peaks in the specular transmission. It should also be noted that these reflection dips are not related to Wood-Rayleigh (WR) anomalies. The observed dips in the reflection curve originate therefore from the grating’s own resonant modes, or in other words its Bloch modes. Depending on their nature these resonances might experience a more or less important MO response (nonreciprocal spectral shift) upon magnetization reversal, as can be seen from the magnitude of the corresponding TMOKE signature for each EOT resonance (see top subplot in Fig. 6).

 

Fig. 6 Specular reflectivity (middle red line), specular transmission (bottom green line) and associated TMOKE spectrum (top red line) of p-polarized light incident on the grating structure in Fig. 1 with Λ = 500 nm, h1 = 150 nm and r = 20 nm.

Download Full Size | PPT Slide | PDF

In Fig. 7 we have plotted field distributions in the grating (in particular |Hx|2) that have been calculated at the different indicated resonances in the EOT spectrum of Fig. 6. This confirms that the high−Q resonances with strong TMOKE effect (A) and (B) are indeed Au/MO substrate SPPs coupled to ±1 diffraction orders. The proximity of the first order substrate Rayleigh anomalies also reveals their origin. It is also confirmed that (C) is indeed a low Q FP slit resonance.

 

Fig. 7 Field color map of the magnitude squared of the magnetic field component Hx at 0.973 eV (A), at 1.097 eV (B), at 1.403 eV (C), at 1.683 eV (D), at 2.053 eV (E), and at 2.077 eV (F). Field distribution is plotted for grating with the period Λ =500 nm, the thickness h1 = 150 nm, the air-slit width r = 20 nm and the incidence of p-polarization at φ0 = 10°.

Download Full Size | PPT Slide | PDF

Funding

IT4Innovations national supercomputing center (CZ.02.1.01/0.0/0.0/16_013/0001791); French RENATECH network; Grant Agency of the Czech Republic (18-22102S)

Acknowledgments

This work was supported by the European Regional Development Fund in the IT4Innovations national supercomputing center -path to exascale project, CZ.02.1.01/0.0/0.0/16_013/0001791 within the Operational Programme Research, Development and Education. The authors gratefully acknowledge the support by the French RENATECH network and by the Grant Agency of the Czech Republic (Project 18-22102S).

References

1. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013). [CrossRef]  

2. M. I. Stockman, “Nanoplasmonics: Past, present, and glimpse into future,” Opt. Express 19, 22029 (2011). [CrossRef]   [PubMed]  

3. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010). [CrossRef]  

4. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013). [CrossRef]   [PubMed]  

5. V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012). [CrossRef]  

6. G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008). [CrossRef]  

7. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009). [CrossRef]  

8. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010). [CrossRef]  

9. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013). [CrossRef]  

10. A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010). [CrossRef]  

11. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011). [CrossRef]   [PubMed]  

12. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013). [CrossRef]   [PubMed]  

13. L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

14. D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017). [CrossRef]  

15. A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015). [CrossRef]  

16. V. Dmitriev, F. Paixao, and M. Kawakatsu, “Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect,” Opt. Lett. 38, 1052–1054 (2013). [CrossRef]   [PubMed]  

17. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009). [CrossRef]  

18. E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010). [CrossRef]  

19. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011). [CrossRef]   [PubMed]  

20. N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013). [CrossRef]   [PubMed]  

21. J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007). [CrossRef]  

22. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008). [CrossRef]   [PubMed]  

23. D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of no-ble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express 19, 8336–8346 (2011). [CrossRef]   [PubMed]  

24. G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012). [CrossRef]   [PubMed]  

25. I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017). [CrossRef]   [PubMed]  

26. G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015). [CrossRef]   [PubMed]  

27. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017). [CrossRef]  

28. V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994). [CrossRef]   [PubMed]  

29. T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal,” Opt. Express 23, 11537–11555 (2015). [CrossRef]   [PubMed]  

30. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009). [CrossRef]   [PubMed]  

31. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011). [CrossRef]   [PubMed]  

32. D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011). [CrossRef]   [PubMed]  

33. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009). [CrossRef]  

34. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

35. Štefan Višňovský, Optics in magnetic multilayers and nanostructures (CRC, 2006).

36. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008). [CrossRef]  

37. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010). [CrossRef]   [PubMed]  

38. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005). [CrossRef]   [PubMed]  

39. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15, 7737–7751 (2007). [CrossRef]   [PubMed]  

40. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008). [CrossRef]  

41. P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016). [CrossRef]  

42. Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011). [CrossRef]  

43. J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018). [CrossRef]  

44. L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013). [CrossRef]  

45. L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014). [CrossRef]  

46. G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011). [CrossRef]  

47. F. J. de Abajo García, “Colloquium : Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]  

48. L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016). [CrossRef]  

49. J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006). [CrossRef]  

50. F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008). [CrossRef]  

51. A. T. M. Anishur Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood–Rayleigh anomaly and the Fabry–Perot resonance,” Opt. Lett. 37, 1742 (2012). [CrossRef]  

52. A. K. Zvezdin and A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publishing, 1997). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
    [Crossref]
  2. M. I. Stockman, “Nanoplasmonics: Past, present, and glimpse into future,” Opt. Express 19, 22029 (2011).
    [Crossref] [PubMed]
  3. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
    [Crossref]
  4. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
    [Crossref] [PubMed]
  5. V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012).
    [Crossref]
  6. G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
    [Crossref]
  7. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
    [Crossref]
  8. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010).
    [Crossref]
  9. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
    [Crossref]
  10. A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
    [Crossref]
  11. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
    [Crossref] [PubMed]
  12. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  13. L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).
  14. D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
    [Crossref]
  15. A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
    [Crossref]
  16. V. Dmitriev, F. Paixao, and M. Kawakatsu, “Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect,” Opt. Lett. 38, 1052–1054 (2013).
    [Crossref] [PubMed]
  17. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
    [Crossref]
  18. E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
    [Crossref]
  19. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
    [Crossref] [PubMed]
  20. N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
    [Crossref] [PubMed]
  21. J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
    [Crossref]
  22. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
    [Crossref] [PubMed]
  23. D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of no-ble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express 19, 8336–8346 (2011).
    [Crossref] [PubMed]
  24. G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
    [Crossref] [PubMed]
  25. I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
    [Crossref] [PubMed]
  26. G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
    [Crossref] [PubMed]
  27. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
    [Crossref]
  28. V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
    [Crossref] [PubMed]
  29. T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal,” Opt. Express 23, 11537–11555 (2015).
    [Crossref] [PubMed]
  30. C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
    [Crossref] [PubMed]
  31. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
    [Crossref] [PubMed]
  32. D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
    [Crossref] [PubMed]
  33. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
    [Crossref]
  34. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).
  35. Štefan Višňovský, Optics in magnetic multilayers and nanostructures (CRC, 2006).
  36. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008).
    [Crossref]
  37. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
    [Crossref] [PubMed]
  38. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005).
    [Crossref] [PubMed]
  39. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15, 7737–7751 (2007).
    [Crossref] [PubMed]
  40. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
    [Crossref]
  41. P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
    [Crossref]
  42. Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
    [Crossref]
  43. J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018).
    [Crossref]
  44. L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
    [Crossref]
  45. L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
    [Crossref]
  46. G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
    [Crossref]
  47. F. J. de Abajo García, “Colloquium : Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [Crossref]
  48. L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
    [Crossref]
  49. J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
    [Crossref]
  50. F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
    [Crossref]
  51. A. T. M. Anishur Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood–Rayleigh anomaly and the Fabry–Perot resonance,” Opt. Lett. 37, 1742 (2012).
    [Crossref]
  52. A. K. Zvezdin and A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publishing, 1997).
    [Crossref]

2018 (1)

J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018).
[Crossref]

2017 (3)

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

2016 (2)

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
[Crossref]

2015 (3)

T. Kaihara, T. Ando, H. Shimizu, V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal,” Opt. Express 23, 11537–11555 (2015).
[Crossref] [PubMed]

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

2014 (2)

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

2013 (8)

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. Dmitriev, F. Paixao, and M. Kawakatsu, “Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect,” Opt. Lett. 38, 1052–1054 (2013).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

2012 (3)

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012).
[Crossref]

A. T. M. Anishur Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood–Rayleigh anomaly and the Fabry–Perot resonance,” Opt. Lett. 37, 1742 (2012).
[Crossref]

2011 (8)

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: Past, present, and glimpse into future,” Opt. Express 19, 22029 (2011).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of no-ble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express 19, 8336–8346 (2011).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

2010 (5)

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

2009 (4)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

2008 (5)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

2007 (3)

F. J. de Abajo García, “Colloquium : Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15, 7737–7751 (2007).
[Crossref] [PubMed]

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

2006 (1)

J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
[Crossref]

2005 (1)

1994 (1)

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Aguanno, G. D.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Akerman, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Akimov, I. A.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Alameh, K.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Alaverdyan, Y.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Ali, T. A.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Alù, A.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Ando, K.

Ando, T.

Anguita, J.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Anishur Rahman, A. T. M.

Armelles, G.

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Atkinson, R.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Atwater, H.

J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
[Crossref]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Barsukova, M. G.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

Bayer, M.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

Ben-Youssef, J.

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

Berger, A.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Block, A. D.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Bloemer, M. J.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Bonanni, V.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Bonetti, S.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Brucoli, G.

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

Bykov, D. A.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

Caballero, B.

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

Carpenter, E. E.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Carrascosa, L. G.

Carroll, K. J.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Cebollada, A.

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Ceglia, D. D.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Chen, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Chetvertukhin, A. V.

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Clavero, C.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Ctistis, G.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Dagens, B.

de Abajo García, F. J.

F. J. de Abajo García, “Colloquium : Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

De León-Pérez, F.

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

Ding, Y.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

Dionne, J.

J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
[Crossref]

Dmitriev, A.

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Dmitriev, V.

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Dolgova, T. V.

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

Doskolovich, L. L.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

Dregely, D.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Dulal, P.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Ezhov, A.

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005).
[Crossref] [PubMed]

Fariña, D.

Fedyanin, A.

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Fedyanin, A. A.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

Ferreiro-Vila, E.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

Fiala, J.

J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018).
[Crossref]

Floess, D.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Fumagalli, P.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Gage, T. E.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Ganshina, E.

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Garcia-Martin, A.

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

García-Martín, J. M.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

García-Vidal, F. J.

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

Giersig, M.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Giessen, H.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Gogol, P.

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

González-Díaz, J.

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

González-Díaz, J. B.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Gösele, U.

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Grishin, A. M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Grunin, A.

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Gu, D.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Guyader, L. L.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Habermeier, H.-U.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Halagacka, L.

L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
[Crossref]

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

Halas, N. J.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Haldren, H. A.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Hendren, W.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Hentschel, M.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Hermann, C.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Hillenbrand, R.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Hofmann, C.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Hsieh, I.-W.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Huba, Z.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Hutchings, D. C.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Inchausti Ezeiza, X.

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

Inoue, M.

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Javed, M. H.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

Jiao, J.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008).
[Crossref]

Kaihara, T.

Kakihara, K.

Kalish, A. N.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

Käll, M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Kapaklis, V.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

Kasture, S.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Kataja, M.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Kawakatsu, M.

Kelly, A. T.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

kerman, J. Å

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

Khartsev, S. I.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Kirilyuk, a.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Kivshar, Y. S.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

Kono, N.

Koshiba, M.

Kosobukin, V.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Kotov, A.

A. K. Zvezdin and A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publishing, 1997).
[Crossref]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Kreilkamp, L. E.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Lampel, G.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Lechuga, L. M.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Levin, C. S.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Lukaszew, R. A.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Maccaferri, N.

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010).
[Crossref]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

Magnusson, R.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

Majewski, P.

Marlière, C.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Martín-Moreno, L.

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

Mattiucci, N.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Meneses-Rodríguez, D.

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Mizumoto, T.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Montero-Moreno, J.

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

Morosan, E.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

Musorin, A. I.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

Navas, D.

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Neshev, D. N.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

Neutzner, S.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Nielsch, K.

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Nogués, J.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Nordlander, P.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Nur-E-Alam, M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Paixao, F.

Pakizeh, T.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Papaioannou, E. T.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

Patoka, P.

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Peretti, J.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Pirzadeh, Z.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Pištora, J.

L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
[Crossref]

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Pollard, R.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Postava, K.

L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
[Crossref]

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

Prieto, P.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Qin, Q. H.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Rasing, T.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Regatos, D.

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Richter, I.

J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018).
[Crossref]

Safarov, V.

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

Saito, H.

Saitoh, K.

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

Sepúlveda, B.

D. Regatos, B. Sepúlveda, D. Fariña, L. G. Carrascosa, and L. M. Lechuga, “Suitable combination of no-ble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express 19, 8336–8346 (2011).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Shimizu, H.

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Shorokhov, A. S.

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

Smolyaninov, I. I.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Song, S. H.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

Stadler, B. J.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: Past, present, and glimpse into future,” Opt. Express 19, 22029 (2011).
[Crossref] [PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Sung, S.-Y.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Sweatlock, L.

J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
[Crossref]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008).
[Crossref]

Temnov, V. V.

V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Tikhodeev, S. G.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Uchida, H.

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

van Dijken, S.

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Vanwolleghem, M.

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora, “Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect,” Opt. Express 21, 21741–21755 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Vasilev, K.

Vasiliev, M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Vaurette, F.

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

L. Halagačka, K. Postava, M. Vanwolleghem, F. Vaurette, J. B. Youssef, B. Dagens, and J. Pištora, “Mueller matrix optical and magneto-optical characterization of Bi-substituted gadolinium iron garnet for application in magnetoplasmonic structures,” Opt. Mater. Express 4, 1903–1919 (2014).
[Crossref]

Vavassori, P.

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

Vázquez, M.

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Venu Gopal, A.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Vincenti, M. A.

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Višnovský, Štefan

Štefan Višňovský, Optics in magnetic multilayers and nanostructures (CRC, 2006).

Waleczek, M.

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

Wang, L.

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Wang, Z.

Wehlus, T.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Wehrspohn, R.

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Weiss, T.

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Whitmire, K. H.

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Yakovlev, D. R.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Yallapragada, V. J.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Yam, N.

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

Yoon, J.

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

Youssef, J. B.

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

Yuasa, S.

Zayats, a. V.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

Zayets, V.

Zhdanov, A.

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010).
[Crossref]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

Zubritskaya, I.

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

A. K. Zvezdin and A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publishing, 1997).
[Crossref]

ACS Nano (1)

C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, P. Nordlander, K. H. Whitmire, and N. J. Halas, “Magnetic-plasmonic core-shell nanoparticles,” ACS Nano 3, 1379–1388 (2009).
[Crossref] [PubMed]

ACS Photonics (2)

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by mie resonances in nanoantennas,” ACS Photonics 4, 2390–2395 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S.-Y. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photonics 3, 1818–1825 (2016).
[Crossref]

Adv. Mater. (1)

J. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. Grunin, A. Zhdanov, A. Ezhov, E. Ganshina, and A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 071117 (2008).
[Crossref]

IEEE Phot. J. (1)

Y. Ding, J. Yoon, M. H. Javed, S. H. Song, and R. Magnusson, “Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission,” IEEE Phot. J. 3, 365–374 (2011).
[Crossref]

J. Magn. Magn. Mater. (1)

A. V. Chetvertukhin, A. I. Musorin, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings”,” J. Magn. Magn. Mater. 383, 110–113 (2015).
[Crossref]

J. Opt Soc. Am. B (2)

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,”,” J. Opt Soc. Am. B 26, 1594–1598 (2009).
[Crossref]

G. D. Aguanno, N. Mattiucci, M. J. Bloemer, D. D. Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt Soc. Am. B 28, 253–264 (2011).
[Crossref]

Langmuir (1)

G. Armelles, A. Cebollada, A. García-Martín, J. Montero-Moreno, M. Waleczek, and K. Nielsch, “Magneto-optical properties of core–shell magneto-plasmonic AuCoxFe3-xO4 nanowires,” Langmuir 28, 9127–9130 (2012).
[Crossref] [PubMed]

Laser Phot. Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: Current status,” Laser Phot. Rev. 4, 562–567 (2010).
[Crossref]

Nano Lett. (5)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, and A. Dmitriev, “Magnetic control of the chiroptical plasmonic surfaces,” Nano Lett. 18, 302–307 (2017).
[Crossref] [PubMed]

G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and D. Meneses-Rodríguez, “Magnetic Field Modification of Optical Magnetic Dipoles,” Nano Lett. 15, 2045–2049 (2015).
[Crossref] [PubMed]

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Akerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11, 5333–5338 (2011).
[Crossref] [PubMed]

L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles,” Nano Lett. 11, 1237–1240 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4, 2128 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7, 579–582 (2013).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[Crossref]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[Crossref]

New J. Phys. (2)

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. L. Guyader, a. Kirilyuk, T. Rasing, I. I. Smolyaninov, and a. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[Crossref]

F. De León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. (1)

D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G. Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°,”; Phys. Rev. X7, 021048 (2017).
[Crossref]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 1–15 (2008).
[Crossref]

Phys. Rev. B (2)

E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

J. Dionne, L. Sweatlock, and H. Atwater, and a. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 1–9 (2006).
[Crossref]

Phys. Rev. Lett. (3)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-Way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[Crossref] [PubMed]

V. Safarov, V. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[Crossref] [PubMed]

N. Maccaferri, A. Berger, S. Bonetti, V. Bonanni, M. Kataja, Q. H. Qin, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Nogués, J. Å kerman, and P. Vavassori, “Tuning the magneto-optical response of nanosize ferromagnetic Ni disks using the phase of localized plasmons,” Phys. Rev. Lett. 111, 167401 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical kerr effect,” Phys. Rev. X 3, 041019 (2013).

Plasmonics (1)

J. Fiala and I. Richter, “Mechanisms responsible for extraordinary optical transmission through one-dimensional periodic arrays of infinite sub-wavelength slits: the origin of previous EOT position prediction misinterpretations,” Plasmonics 13, 835–844 (2018).
[Crossref]

Proc. Mat. Sci. (1)

L. Halagačka, K. Postava, and J. Pištora, “Analysis and modeling of depolarization effects in Mueller matrix spectroscopic ellipsometry data,” Proc. Mat. Sci. 12, 112–117 (2016).
[Crossref]

Proc. SPIE (1)

L. Halagacka, M. Vanwolleghem, F. Vaurette, J. Ben-Youssef, P. Gogol, N. Yam, K. Postava, B. Dagens, and J. Pištora, “Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures,” Proc. SPIE 8988, 89880E (2014).

Rev. Mod. Phys. (1)

F. J. de Abajo García, “Colloquium : Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]

Small (2)

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Other (2)

Štefan Višňovský, Optics in magnetic multilayers and nanostructures (CRC, 2006).

A. K. Zvezdin and A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Inst. Phys. Publishing, 1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Definition of parameters in the model describing the magnetoplasmonic structure in planar diffraction configuration, (b) fabricated set of diffraction gratings with SEM images of developed plasmonic gratings showing good quality of the grating lamelas and observed widths of nanoslits r.
Fig. 2
Fig. 2 Analysis of coupling between FP and SPP modes based on variation of the grating nanoslit width r (without MO effect). Subplot (a) shows red-shift of coupled SPP/FP mode at cross-cuts for nanoslit width r = 40, 60, 80, and 100 nm. Subplot (b) shows positions of the SPP modes without geometrical dispersion and dispersive FP mode (calculated from Eq. (1, 2)). Subplot (c) shows dispersion map of SPPs and FP modes calculated using extended coupled-mode formalism.
Fig. 3
Fig. 3 Spectra of relative reflectance ℛ = Rp/Rs measured for the angle of incidence φ = 20°, grating nanoslit width r = 63 nm, and the grating thickness h = 93:7 nm. In subplot (a) the full spectra is presented with marked position of the 1st and 2nd garnet SPP peaks. The inserted detail of light-cone includes dispersion curves of the predicted SPP (solid blue) crossing the 20°-light line (solid black). The area for air SPP is marked as red line. Subplot (b) detail red/shift of the +2nd Au/garnet SPP peak measured for increasing width of the nanoslit r.
Fig. 4
Fig. 4 Experimentally observed MO response (a) (δℛ) measured at incident angle of 20° on 15 different patches of samples with various opening r is compared with numerical model calculated for various nanoslit width r. (b) Black dashed line at photon energy 1.67 eV highlighting the change of the MO peak sign with the grating nanoslit width r.
Fig. 5
Fig. 5 Magneto-optical data measured on gratings with thickness 118 nm and 142 nm (geometry was determined using numerical fitting procedure) are compared with model data. A significant shift of the TMOKE peak due to grating’s thickness change is observed, while the nanoslit width variation is negligible. The black solid line shows spectral position on which switching of sign of the MO effect was directly experimentally observed.
Fig. 6
Fig. 6 Specular reflectivity (middle red line), specular transmission (bottom green line) and associated TMOKE spectrum (top red line) of p-polarized light incident on the grating structure in Fig. 1 with Λ = 500 nm, h1 = 150 nm and r = 20 nm.
Fig. 7
Fig. 7 Field color map of the magnitude squared of the magnetic field component Hx at 0.973 eV (A), at 1.097 eV (B), at 1.403 eV (C), at 1.683 eV (D), at 2.053 eV (E), and at 2.077 eV (F). Field distribution is plotted for grating with the period Λ =500 nm, the thickness h1 = 150 nm, the air-slit width r = 20 nm and the incidence of p-polarization at φ0 = 10°.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SPP : ± k SPP ( E ) ± m 1 2 π Λ = E c ε i ( E ) sin ( φ inc ) , m 1 and i { air , Bi : GIG } , [ k SP ( E ) = E c ε Au ( E ) ε i ( E ) ε Au ( E ) ε i ( E ) ]
FP : E c 2 n eff , FP ( E ) h + ϕ r air ( E ) + ϕ r Bi : GIG ( E ) = 2 m 2 π , m 2 0 .
tanh ( r E 2 c n eff , FP 2 1 ) = n eff , FP 2 ε Au ( E ) ε Au ( E ) n eff , FP 2 1 .
ε Au ( ε Bi : GIG n eff , SPP 2 ) + ε Bi : GIG ε Au n eff , SPP 2 ε Bi : GIG n eff , SPP 2 g 2 ε Bi : GIG = i g n eff , SPP ε Au n eff , SPP 2 where : n eff , SPP = k y k 0
n eff , SPP = ± ε Au ε Bi : GIG ε Au + ε Bi : GIG + i g ε Au 2 ( ε Au 2 ε Bi : GIG 2 ) ε Au + ε Bi : GIG .
= R p R s = | r p | 2 | r s | 2 ,
δ = ( + M ) ( M ) ,

Metrics