Abstract

In the present work, we demonstrate the fabrication and optical properties of Bragg grating cavities that are directly integrated into ridge waveguides along with the Purcell enhanced emission from integrated quantum dots. Measured Q-factors up to 4600 are observed in combination with resonances of the fundamental mode within a ± 0.11 nm range along the full fabricated chip. The measured Purcell enhancement up to a factor of 3.5 ± 0.5 shows the potential utility for state-of-the-art on-chip quantum optical experiments as realized in off-chip implementations. Our measurements are fully supported via FDTD simulations giving a theoretical Purcell enhancement up to a factor of 20 with a highly directional βdir-factor of 70 %. The straightforward upscaling and robust design of the investigated Bragg grating cavity in combination with a substantial Purcell enhancement represents a major step towards large scale on-chip quantum photonic circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The advances achieved in solid-state based technologies and integrated nanophotonics bring compact quantum technology based devices within reach in the near future [1–3]. Particularly, single photons which are very robust carriers of quantum information are a key element for a wide range of applications ranging from secure communication to sensing, metrology and computational tasks [4–8].

Semiconductor quantum dots (QDs) have been proven as excellent non-classical light sources as they provide single-photons with outstanding optical properties [9]. The relatively easy integration within III-V semiconductor chips, especially in combination with more complex systems (e.g. waveguides, photonic crystals) is particularly appealing and fully compatible with several proposals for integrated quantum devices that are based on the efficient generation, guiding, manipulation and detection of single photons on an individual chip [8,10,11].

The integration of QDs in gallium arsenide (GaAs) based waveguide structures e.g. ridge waveguides, photonic crystal (PhC) waveguides, nanobeam waveguides seems one of the most promising approaches for on-chip quantum optics experiments [10,12–14]. It was shown that not only the efficient generation e.g. resonant fluorescence [15–17] of single photons is possible but also the on-chip manipulation is feasible [10,18–21]. Furthermore, the on-chip detection of single photons via superconducting nanowire single photon detectors (SNSPDs) integrated in waveguides structures was already demonstrated [22–24].

Free standing waveguides (PhC- and nanobeam waveguides) have a large refractive index contrast resulting in large photon coupling efficiencies (>95 %) into a single guided mode [14,25]. Also a simultaneous Purcell enhancement (>5) of the QD emission was demonstrated in PhC waveguides [26–28]. However, complex underetching steps are needed for this types of waveguides. The resulting structures are fragile and typically in the tens of micrometer range. Common experimental mechanical instabilities or vibrations can either lead to a destruction of the waveguides or reducing the optical properties of the emitted photons [10,29]. Ideas to overcome this problems are heterogeneous approaches combining III V materials with silicon-on-insulator technology or silicon nitride (Si3N4) [30]. Further ideas−are the use of transition regions from a freestanding waveguide to a ridge waveguide or the covering with a cladding material [29,31]. However, the results are either complex multi-step fabrication routines or the introduction of further losses in the presence of transition regions.

The mentioned problems can be avoided with the direct integration of QDs into ridge waveguides as they provide a high mechanical stability with a centimeter range footprint in combination with low propagation losses [10,12,32]. The disadvantage is the small refractive index contrast for GaAs / AlGaAs based waveguides leading to low directional photon coupling efficiencies between 9 % to 15 % [12,33].

Here, we present a cavity design based on a Bragg grating that can be directly integrated into a ridge waveguide making underetching steps, transition regions or complex covering steps unnecessary. Finite-difference time-domain (FDTD) simulations [34] show a significant increase of the coupling efficiency to the fundamental waveguide mode with an additional Purcell enhancement. We fabricated several Bragg grating cavities and performed low-temperature micro-photoluminescence and time-correlated single photon counting (TCSPC) experiments on integrated InAs QDs. A subsequent comparison of the measured data with FDTD simulations is carried out and show a good agreement between experiments and simulations.

2. Fabrication and simulations

The sample was grown via metal-organic vapor-phase epitaxy (MOVPE) using an exactly oriented (100)-GaAs substrate. The layer structure consists of a 2 µm thick Al70Ga30As cladding layer followed by a 310 nm GaAs core layer. The GaAs waveguide is designed to guide only the fundamental TE- and TM-mode (w = 470 nm, h = 310 nm) and can be seen in Fig. 1(a). A layer of single self-assembled InAs QDs located at the vertical electrical field maximum of the fundamental TE-mode was included during growth. The period of the grating was chosen to satisfy the Bragg condition Λ = λQD / (2 · neff) with λQD the wavelength of the QD emission and neff the effective refractive index of the fundamental TE-mode. The optimum grating period Λ was found via FDTD simulations and is in the range of 140 nm to 145 nm for the wavelength region of interest. The dimension of the cavity and the electrical field profile can be seen in Fig. 1(b–c). The cavity was chosen to be 2Λ corresponding to a one lambda cavity resulting in a maximum field intensity in the center of the cavity region with an exponential decay towards the outside.

 

Fig. 1 (a) Schematic illustration of the waveguide design. (b) Schematic illustration of the integrated Bragg grating cavity and specific parameters. (c) Top view of the simulated electrical field intensity of the cavity mode.

Download Full Size | PPT Slide | PDF

A scanning electron microscope (SEM) image of the final device can be seen in Fig. 2(a). The grating and the waveguide structure were fabricated with standard electron beam lithography and transferred into the substrate via inductively coupled plasma reactive ion etching (ICP-RIE). We used a two-stage fabrication process for the realization of the structures. Initially, we patterned and etched the Bragg gratings relatively to gold markers into the planar sample surface. The waveguides were subsequently patterned and etched after an repetitive alignment to the gold markers on top of the previously structured grating. The lateral dimensions of the grating were chosen to be 430 nm which is slightly smaller compared to the waveguide dimensions (w = 470 nm). FDTD simulations show that this has no influence on the device performance and leads to a strongly reduced sidewall roughness comparable to a standard waveguide without grating and thus minimizing scattering losses. The transition region between the ridge waveguide and the grating region can be seen in Fig. 2(b). A further benefit of this design is the insusceptibility for alignment errors which are typically in the range of ±25 nm for electron beam lithography.

 

Fig. 2 (a) Perspective view of the cavity region. The inset shows a top view of the cavity with the measured period Λ and the cavity dimensions. (b) Perspective view of the transition region of the waveguide and the integrated Bragg grating. (c) Schematic illustration of the measurement setup with the investigated locations 1–3.

Download Full Size | PPT Slide | PDF

Simulations show that an asymmetric cavity design with 400 grating periods on the left and 150 on the right side of the central cavity region with an etching depth of t = 70 nm gave the best combined results (Q-factor, βdir, FP). Here, right side refers to the side directly facing the cleaved facet of the sample while left side corresponds to the far side of the facet (see Fig. 2(c)). With this design, a simulated Q-factor of 4.8 × 103 with a corresponding Purcell factor of 20 could be achieved. As the used asymmetric cavity design breaks the propagation symmetry, a preferred emission into only one of the counter-propagating waveguide modes is expected. Therefore, the directional coupling factor βdir which considers only the spontaneous emission rate into either the left propagating waveguide mode ΓL or the right propagating waveguide mode ΓR needs to be considered and is given by

βbir=ΓRΓL+ΓR+γrad
with γrad as the coupling to non-guided radiative modes [35,36]. For a quantum dot coupled to the Bragg grating cavity we find a preferred emission into only one of the counter propagating waveguide modes ΓR with βdir = 70 % which is more than 5 higher compared to a quantum dot outside the cavity (βdir = 13.5 %). Furthermore, a reduced×coupling to non-guided radiative modes is observed in which γrad drops from 73 % for a quantum dot spatially located outside the cavity region to 29 % after the coupling to the cavity mode. The remaining QD emission is coupled to the second counter propagating waveguide mode ΓL. In combination with the strong enhancement of the spontaneous emission rate, a substantial improvement of the optical properties e.g. photon coherence, indistinguishability is expected [9,37].

After fabrication, the sample was cleaved perpendicular to the waveguides, placed in a liquid helium flow cryostat and cooled to 4 K. An illustration of the measurement setup can be seen in Fig. 2(c) which allows for the optical excitation on different waveguide positions and the simultaneous observation of the QD emission from the cleaved waveguide facet. A Ti:Sapphire laser emitting at 800 nm was used for wetting layer excitation either in continuous wave (cw) or pulsed operation mode depending on the performed measurements.

3. Results

We fabricated and investigated several Bragg grating cavities utilizing three different designs with 250/250 periods, 300/300 periods and one asymmetric design with 400/150 periods in which the 150 periods directly face the cleaved facet of the sample. In these measurements, we used the QD ensemble at high excitation powers as an internal light source and measured the transmission at the waveguide facet for different excitation locations (see Fig. 2(c) and Fig. 3(a)). The positions are marked as loc 1, loc 2, loc 3 and correspond to the excitation of QDs in a reference WG, in the grating region and directly in the cavity, respectively. For the reference WG (loc 1) the emission of the QD ensemble ranging from around 890 nm to 910 nm can be detected and lies within the typical wavelength range for the used InAs QDs. If the excitation spot is subsequently moved to a waveguide with a Bragg grating (loc 2), the QD emission can still be detected but a clear region with no transmitted QD light is visible. This region corresponds to the stopband of the Bragg grating with a spectral width of around 9 nm. A direct excitation on the cavity (loc 3) leads to the observation of a characteristic peak in the stopband center corresponding to the fundamental resonance of the cavity mode. The Q-factor can then directly extracted from the transmission spectra via Q = ν / Δν and it is shown in Fig. 3(b) for the previously mentioned cavity geometries.

 

Fig. 3 (a) Transmission spectra for different excitation locations on the chip. (b) Measured Q-factor for different numbers of grating periods. (c) Simulated Q-factor dependency for different etching depth t.

Download Full Size | PPT Slide | PDF

The measured Q-factors are in the range between 2500 and 4600 which is slightly lower compared to the values obtained from FDTD simulations. The small difference between the simulation and the measured values can be attributed to scattering effects due to surface roughness coming from the etching process, material absorption or surface recombination at the GaAs-air interface. A further increase of the Q-factor is expected by depositing a thin layer of Al2O3 via atomic layer deposition (ALD) which decrease the losses due to surface absorption as observed e.g. for disk resonators [38]. This can also have a beneficial effect for the reduction of spectral diffusion and linewidth of the QD [39].

The simulated Q-factor of the cavity is dependent on the etching depth t of the grating and shows a bi-Gaussian distribution with optimal values between 60 nm and 90 nm (see Fig. 3(c)). This can be explained with the low refractive index contrast between the waveguide core layer (GaAs) and the bottom cladding layer (AlGaAs) resulting in a preferred radiation into the substrate for a too strong light confinement. As the etching depth of the fabricated gratings were slightly larger as designed (tdesign = 70 nm; tfabr = 100 nm) a further increase of the Q-factor can be expected after an adjustment of the etching depth.

Furthermore, we extracted the spectral position of the cavity resonance from the transmission measurements which can be seen in Fig. 4(a). Here, we found a wavelength correlation which we attributed to the alignment process. If the Bragg grating waveguides were aligned in the center of the gold markers we found an average resonance wavelength of 901.31 nm ± 0.11 nm over the full fabricated chip whereas for cavities that were aligned on the left side or on the right side of the markers we found values of 900.49 nm ± 0.17 nm and 901.93 nm ± 0.38 nm respectively (see Fig. 4(a)). We concluded, that an adjustment of the electron beam lithography in the center of the markers leads to a more accurate alignment and reduced fabrication deviations compared to an alignment outside of the markers. This behavior need to be considered for future application but the vanishing wavelength deviation of only ± 0.11 nm over the complete fabricated chip for waveguides in between the markers indicates the robustness of this cavity design against fabrication imperfections. Therefore, the measured low wavelength tolerance makes the here used cavity particularly suitable for deterministic alignment procedures on preselected QDs were a matching of the QD emission with the cavity resonance is crucial [33,40,41].

 

Fig. 4 (a) Position dependent resonance wavelength for different Bragg cavities (bottom). Illustration of the alignment process relative to gold markers (top). (b) Transmission spectra of a single QD emission line in perfect resonance with the cavity mode.

Download Full Size | PPT Slide | PDF

If the excitation power is reduced, single emission lines from QDs can be investigated. In Fig. 4(b) a QD emission line spectrally located in the stopband and perfectly matching the cavity resonance is shown. While it is well transmitted through the grating, emission lines of other QDs lying spectrally outside of the resonance are strongly suppressed. This behavior shows the full functionality of the device as a wavelength selective Bragg grating.

A degradation of the linewidth can be a problem according to literature due to the coupling to surface states or charge traps in the presence of etched surfaces [42, 43]. As the measured linewidth of 52 µeV for above-bandgap excitation from the QD in the cavity region in Fig. 4(b) is typical for the here used InAs QDs in bulk we concluded that the etching process has no influence on the linewidth.

As a next step we performed time-resolved µPL measurements on single QDs to verify the enhancement of the spontaneous emission rate via cavity quantum electrodynamic effects (cQED). For this, we investigated QDs that spectrally matched the cavity resonance and were spatially located in the cavity region (loc 3). Here, the Ti:Sapphire laser was used in pulsed operation mode and the quantum dot light was detected with a single photon counting module (SPCM) with a timing jitter of ∼ 40 ps. All TCSPC measurements were performed at low excitation powers well below the saturation level of the QDs.

As a first step, we investigated nearly 20 QD either in reference WGs or far off the cavity beneath the Bragg grating (loc 1, loc 2) to determine an average decay time of the QDs. The measured decay times can be seen in Fig. 5(a). For QDs in the reference WGs (loc 1) we measured values (after deconvolution with the instrumental response function (IRF)) between 700 ps and 1200 ps. This is in good agreement with those obtained from literature and also corresponds to the typical decay times for InAs QDs in GaAs bulk material [44]. Based upon the measured data, we concluded that the fabricated waveguides have no detrimental effect on the QDs. We calculated an average decay time in the reference WGs of τloc 1 = 958 ps ± 128 ps. We performed the same procedure for QDs in the grating region of Bragg grating waveguides far away from the cavity region to ensure that the cavity has no influence on the QDs. Here we obtained an average lifetime of τloc 2 = 852 ps ± 130 ps which indicates that the etched grating has also no or merely a little influence on the spontaneous emission rate. In contrast, for QDs located in the cavity (loc 3), we found a strong modification of the spontaneous emission rate with measured lifetimes as low as 258 ps ± 2 ps (see Table 1). Fig. 5(b) shows the time-resolved µPL trace of such a QD in the cavity in comparison to the QD with the lowermost measured lifetime from the reference WGs. Considering the average lifetime of all measured QDs outside of the cavity as τavg = 902 ps ± 137 ps, we get a Purcell enhancement (FP = τavg / τ) of 3.5 ± 0.5.

 

Fig. 5 (a) Measured decay time of more than 20 QDs located at different waveguide positions. (b) Comparison of two measured TCSPC experiments of a QD in a cavity and a reference QD.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Measured decay times and calculated Purcell enhancement of three quantum dots spatially located in the cavity region. The average decay time of all investigated QDs were taken into account for the calculation of the Purcell factor.

Taking the measured Q-factors of around 3600 into account with the simulated mode volume of Vm ≈ 15 (λ/n)3 we calculated a maximum achievable Purcell enhancement of FP = 18. The difference between simulation and experiment can be related to a spectral and spatial mismatch of the QD or a misorientation of the dipole [45]. Summarized, we found three QDs showing a non-negligible Purcell enhancement between 2 and 3.5 (see Table 1) with an average Purcell enhancement of 2.72 ± 0.38. For deterministically placed cavities around preselected QDs we would expected a even further Purcell enhancement due to a better spatial overlap with the cavity mode.

4. Conclusion

In conclusion, we have demonstrated the realization of high Q-factor resonators based on Bragg gratings that can be directly and easily integrated into a standard ridge waveguide. The fabrication do not rely on complex underetching steps and can be realized on large scales. Measurements show the robustness of this cavity design against fabrication variations making them fully compatible with state-of-the-art deterministic fabrication processes. We verified with TCSPC experiments the reduction of the lifetime of integrated QDs up to a factor of 3.5 ± 0.5 demonstrating clear Purcell enhancement. The easy scalability in combination with the substantial enhancement of the spontaneous emission rate shows a major step towards large scale on-chip quantum photonic circuits.

Funding

Deutsche Forschungsgemeinschaft (DFG) with the project Mi 500/29-1.

Acknowledgments

The authors thank Prof. J. Weis from the Max Planck Institute for Solid State Research in Stuttgart for the ability to use the cleanroom facilities. The research of the IQST is financially supported by the Ministry of Science, Research and Arts Baden-Württemberg.

References

1. I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015). [CrossRef]   [PubMed]  

2. T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008). [CrossRef]  

3. J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]  

4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]  

5. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]   [PubMed]  

6. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017). [CrossRef]  

7. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006). [CrossRef]   [PubMed]  

8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]   [PubMed]  

9. P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer International Publishing, 2017). [CrossRef]  

10. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016). [CrossRef]  

11. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009). [CrossRef]  

12. U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015). [CrossRef]  

13. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011). [CrossRef]  

14. N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014). [CrossRef]  

15. M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014). [CrossRef]   [PubMed]  

16. M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016). [CrossRef]   [PubMed]  

17. S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016). [CrossRef]  

18. D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018). [CrossRef]  

19. C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015). [CrossRef]  

20. A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015). [CrossRef]   [PubMed]  

21. A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017). [CrossRef]   [PubMed]  

22. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013). [CrossRef]  

23. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011). [CrossRef]  

24. M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

25. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014). [CrossRef]   [PubMed]  

26. H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010). [CrossRef]  

27. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15, 5550–5558 (2007). [CrossRef]   [PubMed]  

28. F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

29. C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

30. M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017). [CrossRef]   [PubMed]  

31. S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013). [CrossRef]  

32. E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987). [CrossRef]  

33. P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018). [CrossRef]   [PubMed]  

34. https://www.lumerical.com/.

35. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007). [CrossRef]  

36. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017). [CrossRef]   [PubMed]  

37. A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004). [CrossRef]  

38. B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gérard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106,” Optica 4, 218–221 (2017). [CrossRef]  

39. J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018). [CrossRef]  

40. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015). [CrossRef]   [PubMed]  

41. M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017). [CrossRef]  

42. C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004). [CrossRef]  

43. E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989). [CrossRef]  

44. D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010). [CrossRef]   [PubMed]  

45. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015).
    [Crossref] [PubMed]
  2. T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
    [Crossref]
  3. J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  5. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref] [PubMed]
  6. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
    [Crossref]
  7. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
    [Crossref] [PubMed]
  8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  9. P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer International Publishing, 2017).
    [Crossref]
  10. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
    [Crossref]
  11. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
    [Crossref]
  12. U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
    [Crossref]
  13. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
    [Crossref]
  14. N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
    [Crossref]
  15. M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
    [Crossref] [PubMed]
  16. M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
    [Crossref] [PubMed]
  17. S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
    [Crossref]
  18. D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
    [Crossref]
  19. C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
    [Crossref]
  20. A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
    [Crossref] [PubMed]
  21. A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
    [Crossref] [PubMed]
  22. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
    [Crossref]
  23. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
    [Crossref]
  24. M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).
  25. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref] [PubMed]
  26. H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
    [Crossref]
  27. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15, 5550–5558 (2007).
    [Crossref] [PubMed]
  28. F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).
  29. C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).
  30. M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
    [Crossref] [PubMed]
  31. S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
    [Crossref]
  32. E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
    [Crossref]
  33. P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
    [Crossref] [PubMed]
  34. https://www.lumerical.com/ .
  35. V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
    [Crossref]
  36. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
    [Crossref] [PubMed]
  37. A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
    [Crossref]
  38. B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gérard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106,” Optica 4, 218–221 (2017).
    [Crossref]
  39. J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
    [Crossref]
  40. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
    [Crossref] [PubMed]
  41. M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
    [Crossref]
  42. C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
    [Crossref]
  43. E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
    [Crossref]
  44. D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
    [Crossref] [PubMed]
  45. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
    [Crossref]

2018 (4)

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

2017 (6)

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gérard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106,” Optica 4, 218–221 (2017).
[Crossref]

2016 (3)

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

2015 (5)

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

2014 (3)

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

2013 (2)

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

2011 (2)

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

2010 (2)

H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

2009 (2)

J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

2008 (1)

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

2007 (3)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15, 5550–5558 (2007).
[Crossref] [PubMed]

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

2006 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

2004 (2)

A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

1989 (1)

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

1987 (1)

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Amo, A.

Anant, V.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Arcari, M.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Atatüre, M.

A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Badolato, A.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Bennett, A. J.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

Bentham, C.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

Berkovitz, V.

Bhat, R.

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Bichler, M.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Bounouar, S.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Brash, A. J.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

Brody, Y.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

Burger, S.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Cadiz, F.

Calarco, T.

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Cardoso, J. V. De Miranda

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Chen, Z. S.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Clarke, E.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Clausen, E. M.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Coles, R. J.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

Combrié, S.

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Craighead, H. G.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Dalacu, D.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Davanco, M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Davanço, M.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Dixon, J. E.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Dreeßen, C. L.

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Eichfelder, M.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Ellis, D. J. P.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

Elshaari, A. W.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Englund, D.

Faraon, A.

Farrer, I.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Fattah poor, S.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Favero, I.

Finley, J. J.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Fiore, A.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Florez, L.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Fognini, A.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Foster, A. P.

Fox, A. M.

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Gérard, B.

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Giessen, H.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Gissibl, T.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

Gomez, C.

Grangier, P.

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

Griffiths, J. P.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Gross, R.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Guha, B.

Hafenbrak, R.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Hallett, D.

Hansen, S. L.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

Hansen, S. Lindskov

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Harbison, J. P.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Hargart, F.

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

Hasch, P.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Heindel, T.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Heldmaier, M.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Hepp, S.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Herzog, T.

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

Hoang, T. B.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Höfling, S.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Höhne, T.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Hornung, F.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Hu, E.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

Hugues, M.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Hurst, D. L.

Ilin, K.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Imamoglu, A.

A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Itskevich, I. E.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Javadi, A.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Jetter, M.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Jones, G. A. C.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Jöns, K. D.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Kalliakos, S.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Kamp, M.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Kapon, E.

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Kettler, J.

Kiraz, A.

A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Kirsanské, G.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Konthasinghe, K.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lawall, J.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Lee, E. H.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Lemaître, A.

Leo, G.

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Li, L. H.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Lichtmannecker, S.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Linfield, E. H.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Liu, F.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

Liu, J.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Liu, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
[Crossref]

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Luxmoore, I. J.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Ma, B.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Makhonin, M. N.

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Marsault, F.

Martins, L. M. P. P.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Michler, P.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Midolo, L.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mirin, R.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Morgenroth, L.

Müller, K.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nam, S. W.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Nam, S.W.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Ni, H. Q.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Niu, Z. C.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

O’Hara, J.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

Oullet-Plamondon, C.

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Pagliano, F. M.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Park, S.-I.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Paul, M.

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

Petroff, P. M.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Phillips, C. L.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

Pichler, H.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Politi, A.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Poole, P. J.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Portalupi, S. L.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Pregnolato, T.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

Prtljaga, N.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Rao, V. S. C. Manga

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

Rauschenbeutel, A.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Reichert, T.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Reimer, M. E.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

Reithmaier, G.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

Reitzenstein, S.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Rengstl, U.

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Richter, D.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Ritchie, D. A.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Rodt, S.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Rossbach, R.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Royall, B.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Ryu, G.-H.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sapienza, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
[Crossref]

Sartison, M.

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

Schall, J.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Schiavone, L. M.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Schmidt, E.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Schnauber, P.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Schneeweiss, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Schouwenberg, J. F. P.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Schulz, W.-M.

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Schwagmann, A.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Schwartz, M.

M. Schwartz, U. Rengstl, T. Herzog, M. Paul, J. Kettler, S. L. Portalupi, M. Jetter, and P. Michler, “Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit,” Opt. Express 24, 3089–3094 (2016).
[Crossref] [PubMed]

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Shields, A. J.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

Siegel, M.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

Skiba-Szymanska, J.

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

Skolnick, M. S.

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

Söllner, I.

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Song, J. D.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Song, J.-D.

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Sørensen, A. S.

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Srinivasan, K.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

Stobbe, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

Thompson, M. G.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
[Crossref]

Tighineanu, P.

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Ulin, V.

Urayama, J.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Van der Gaag, B.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

van Otten, F. W. M.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Verma, V.

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Volz, J.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Vu?ckovic, J.

J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Vuckovic, J.

Wallraff, A.

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

Walmsley, I. A.

I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref] [PubMed]

Wang, C. F.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Wilson, L. R.

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

D. Hallett, A. P. Foster, D. L. Hurst, B. Royall, P. Kok, E. Clarke, I. E. Itskevich, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “Electrical control of nonlinear quantum optics in a nano-photonic waveguide,” Optica 5, 644–650 (2018).
[Crossref]

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

Wilson-Rae, I.

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

Worlock, J. M.

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

Xia, T.

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

Yamamoto, Y.

Zadeh, I. E.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Zhang, B.

Zhang, C.-Z.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

Zhou, X.

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

Zoller, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

Zwiller, V.

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (11)

U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S. L. Portalupi, M. Jetter, and P. Michler, “On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in gaas rib waveguides,” Appl. Phys. Lett. 107, 021101 (2015).
[Crossref]

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99, 261108 (2011).
[Crossref]

N. Prtljaga, R. J. Coles, J. O’Hara, B. Royall, E. Clarke, A. M. Fox, and M. S. Skolnick, “Monolithic integration of a quantum emitter with a compact on-chip beam-splitter,” Appl. Phys. Lett. 104, 231107 (2014).
[Crossref]

S. Kalliakos, Y. Brody, A. J. Bennett, D. J. P. Ellis, J. Skiba-Szymanska, I. Farrer, J. P. Griffiths, D. A. Ritchie, and A. J. Shields, “Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot,” Appl. Phys. Lett. 109, 151112 (2016).
[Crossref]

C. Bentham, I. E. Itskevich, R. J. Coles, B. Royall, E. Clarke, J. O’Hara, N. Prtljaga, A. M. Fox, M. S. Skolnick, and L. R. Wilson, “On-chip electrically controlled routing of photons from a single quantum dot,” Appl. Phys. Lett. 106, 221101 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett. 96, 231106 (2010).
[Crossref]

S. Fattah poor, T. B. Hoang, L. Midolo, C. P. Dietrich, L. H. Li, E. H. Linfield, J. F. P. Schouwenberg, T. Xia, F. M. Pagliano, F. W. M. van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102, 131105 (2013).
[Crossref]

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

C. F. Wang, A. Badolato, I. Wilson-Rae, P. M. Petroff, E. Hu, J. Urayama, and A. Imamoglu, “Optical properties of single InAs quantum dots in close proximity to surfaces,” Appl. Phys. Lett. 85, 3423–3425 (2004).
[Crossref]

E. M. Clausen, H. G. Craighead, J. M. Worlock, J. P. Harbison, L. M. Schiavone, L. Florez, and B. Van der Gaag, “Determination of nonradiative surface layer thickness in quantum dots etched from single quantum well GaAs/AlGaAs,” Appl. Phys. Lett. 55, 1427–1429 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Laser & Photonics Rev. (1)

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser & Photonics Rev. 10, 870–894 (2016).
[Crossref]

Nano Lett. (2)

M. N. Makhonin, J. E. Dixon, R. J. Coles, B. Royall, I. J. Luxmoore, E. Clarke, M. Hugues, M. S. Skolnick, and A. M. Fox, “Waveguide coupled resonance fluorescence from on-chip quantum emitter,” Nano Lett. 14, 6997–7002 (2014).
[Crossref] [PubMed]

P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.-I. Park, G.-H. Ryu, T. Heindel, S. Burger, J.-D. Song, S. Rodt, and S. Reitzenstein, “Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography,” Nano Lett. 18, 2336–2342 (2018).
[Crossref] [PubMed]

Nanotechnology (1)

D. Richter, R. Hafenbrak, K. D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Rossbach, M. Jetter, and P. Michler, “Low density MOVPE grown ingaas QDs exhibiting ultra-narrow single exciton linewidths,” Nanotechnology 21, 125606 (2010).
[Crossref] [PubMed]

Nat. Commun. (4)

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref] [PubMed]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref] [PubMed]

A. Javadi, I. Söllner, M. Arcari, S. L. Hansen, L. Midolo, S. Mahmoodian, G. Kirsanské, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Single-photon non-linear optics with a quantum dot in a waveguide,” Nat. Commun. 6, 8655 (2015).
[Crossref] [PubMed]

A. W. Elshaari, I. E. Zadeh, A. Fognini, M. E. Reimer, D. Dalacu, P. J. Poole, V. Zwiller, and K. D. Jöns, “On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits,” Nat. Commun. 8, 379 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Liu, A. J. Brash, J. O’Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, “High purcell factor generation of indistinguishable on-chip single photons,” Nat. Nanotechnol. 13, 835 (2018).

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. VuȈcković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Nat. Phys. (1)

T. Calarco, P. Grangier, A. Wallraff, and P. Zoller, “Quantum leaps in small steps,” Nat. Phys. 4, 2–3 (2008).
[Crossref]

Nature (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Optica (2)

Phys. Rev. A (1)

A. Kiraz, M. Atatüre, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004).
[Crossref]

Phys. Rev. Appl. (1)

J. Liu, K. Konthasinghe, M. Davanço, J. Lawall, V. Anant, V. Verma, R. Mirin, S. W. Nam, J. D. Song, B. Ma, Z. S. Chen, H. Q. Ni, Z. C. Niu, and K. Srinivasan, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Phys. Rev. Appl. 9, 064019 (2018).
[Crossref]

Phys. Rev. B (1)

V. S. C. Manga Rao and S. Hughes, “Single quantum-dot purcell factor and _-factor in a photonic crystal waveguide,” Phys. Rev. B 75, 205437 (2007).
[Crossref]

Phys. Rev. Lett. (4)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. Reports (2)

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Reports 3, 1901 (2013).
[Crossref]

M. Sartison, S. L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, and P. Michler, “Combining in-situ lithography with 3d printed solid immersion lenses for single quantum dot spectroscopy,” Sci. Reports 7, 39916 (2017).
[Crossref]

Science (1)

I. A. Walmsley, “Quantum optics: Science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref] [PubMed]

Other (4)

P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer International Publishing, 2017).
[Crossref]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Ilin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon hanbury-brown and twiss experiment on a monolithic semiconductor-superconductor platform,” arXiv:1806.04099 (2018).

C. L. Dreeßen, C. Oullet-Plamondon, P. Tighineanu, X. Zhou, L. Midolo, A. S. Sørensen, and P. Lodahl, “Suppressing phonon decoherence of high performance single-photon sources in nanophotonic waveguides,” arXiv:1806.05925 (2018).

https://www.lumerical.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of the waveguide design. (b) Schematic illustration of the integrated Bragg grating cavity and specific parameters. (c) Top view of the simulated electrical field intensity of the cavity mode.
Fig. 2
Fig. 2 (a) Perspective view of the cavity region. The inset shows a top view of the cavity with the measured period Λ and the cavity dimensions. (b) Perspective view of the transition region of the waveguide and the integrated Bragg grating. (c) Schematic illustration of the measurement setup with the investigated locations 1–3.
Fig. 3
Fig. 3 (a) Transmission spectra for different excitation locations on the chip. (b) Measured Q-factor for different numbers of grating periods. (c) Simulated Q-factor dependency for different etching depth t.
Fig. 4
Fig. 4 (a) Position dependent resonance wavelength for different Bragg cavities (bottom). Illustration of the alignment process relative to gold markers (top). (b) Transmission spectra of a single QD emission line in perfect resonance with the cavity mode.
Fig. 5
Fig. 5 (a) Measured decay time of more than 20 QDs located at different waveguide positions. (b) Comparison of two measured TCSPC experiments of a QD in a cavity and a reference QD.

Tables (1)

Tables Icon

Table 1 Measured decay times and calculated Purcell enhancement of three quantum dots spatially located in the cavity region. The average decay time of all investigated QDs were taken into account for the calculation of the Purcell factor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β b i r = Γ R Γ L + Γ R + γ r a d

Metrics