Abstract

We demonstrate a compact high-performance adiabatic 3-dB coupler for the silicon-on-insulator platform. The refractive index of the gap region between two coupling waveguides is effectively increased using subwavelength grating, which leads to high-performance operation and a compact design footprint, with a mode-evolution length of only 25 µm and an entire device length of 65 µm. The designed adiabatic 3-dB coupler has been fabricated using electron beam lithography and the feature size used in our design is CMOS compatible. The fabricated device is characterized in the wavelength range from 1500 nm to 1600 nm, with a measured power splitting ratio better than 3 ± 0.27 dB and an average insertion loss of 0.20 dB.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical 3-dB couplers are essential devices in photonic integrated circuits for coupling light between two waveguides. Directional couplers [1, 2], multimode interference (MMI) couplers [3, 4], and adiabatic couplers [5–8] are three basic types of optical 3-dB couplers. The underlying operating principle of directional couplers and MMI couplers involves the interference between multiple modes, which results in non-negligible power imbalance and insertion loss (IL) due to the modal phase errors. In addition, the operating bandwidth for conventional directional couplers and conventional MMI couplers is limited as the device length is determined by the beat length of the two lowest-order modes, which is a wavelength-dependent quantity due to the modal dispersion. Unlike directional coupler or MMI coupler, adiabatic coupler is a type of optical coupler based on the adiabatic mode evolution. It is intrinsically lossless and broadband. Conventional adiabatic 3-dB coupler has been demonstrated for joint operation in the C-and O-bands [9], and polarization-independent conventional adiabatic 3-dB couplers have also been reported [10–12]. However, a long mode-evolution length is required for a conventional adiabatic 3-dB coupler in order to preserve the excited mode and ensure no other modes are excited during the mode evolution. Hence, it is desirable to develop a compact adiabatic 3-dB coupler while keeping its high performance at the same time.

Subwavelength grating (SWG) is a periodic structure where the diffraction effect is suppressed by using a grating pitch small enough compared to the operating wavelength [13]. SWG can be treated as a homogeneous material with an equivalent refractive index, whose value can be in principle adjusted to any value between the refractive indices of its two composing materials, by tuning the duty cycle of the grating. Therefore, SWG provides a flexible method to engineer the refractive index, and it has been widely employed on the silicon-on-insulator (SOI) platform, examples include grating couplers [14–17], directional couplers [18–20], MMI couplers [21–26], mode-division (de)multiplexer [27], edge coupler [28], dispersion controller [29, 30], slot waveguide [31], polarization beam splitters [32–34] and rotators [35–38]. In particular, SWG has been used to broaden the operating bandwidth of directional couplers and MMI couplers acting as optical 3-dB couplers [18–20, 22, 24]. An adiabatic 3-dB coupler with the SWG waveguides [39] was proposed to lower the refractive indices of the waveguides in the mode-evolution region, leading to an enhanced coupling strength and thus, shorter mode-evolution length compared to a conventional adiabatic 3-dB coupler based on the strip waveguides. However, as further illustrated in [40], the cutoff wavelength for the proper operation of the device is only 1630 nm due to the low equivalent refractive indices of the SWG waveguides. In [40], an adiabatic 3-dB coupler with the SWG-assisted strip waveguides was proposed to extend the cutoff wavelength to 1760 nm, but this value is still far below that of a conventional adiabatic 3-dB coupler. In addition, both designs require additional waveguide converters at the two ends of the mode-evolution region, which contribute to the total mode-evolution length.

In this work, we propose and experimentally demonstrate an SWG-slot adiabatic 3-dB coupler, fabricated on an SOI wafer with a 220-nm-thick silicon layer covered by oxide cladding. The device is designed for the fundamental transverse electrical (TE) mode and aims to operate in the wavelength range from 1500 nm to 1600 nm that covers the entire C-band. In our device, the SWG is applied to the gap region between two coupling waveguides instead of the coupling waveguides themselves. The refractive index of the gap region is effectively increased due to the presence of the SWG, resulting in a stronger coupling between two waveguides. Meanwhile, the refractive indices of the two coupling waveguides are unaltered, leading to a cutoff wavelength as large as 2445 nm. In addition, no additional waveguide converters are required at the two ends of the mode-evolution region, leading to a more compact design footprint. Our SWG-slot adiabatic 3-dB coupler achieves a measured power splitting ratio better than 3 ± 0.27 dB from the wavelength of 1500 nm to 1600 nm, with a mode-evolution length as short as 25 µm and an entire device length of 65 µm. The minimum feature size of our design is 100 nm and only a single etching step is required for the fabrication of the device.

2. Design and simulations

The schematic of our SWG-slot adiabatic 3-dB coupler is shown in Fig. 1, along with the conventional adiabatic 3-dB coupler without the SWG slot. Both adiabatic 3-dB couplers can be divided into four regions. In Region I, two parallel strip waveguides, with widths of Wg and a center-to-center spacing of WS, are linearly tapered to have widths of W1 and W2, respectively. In Region II, two waveguides are brought together to have a gap of G using two S-bend waveguides. Region III is the mode-evolution region, where two waveguides with widths of W1 and W2 are linearly tapered to have widths of Wg, while maintaining a constant gap of G. In Region IV, two S-bend waveguides are used to decouple the two waveguides to bring their center-to-center spacing back to WS. The lengths for region I, II, III and IV are LT, LS1, LE and LS2, respectively. For our SWG-slot adiabatic 3-dB coupler, an SWG with a pitch, Λ, and a duty cycle, D, is sandwiched between two waveguides. The SWG linear tapers are introduced in Region I and the right-half portion of Region IV to make a smooth transition between the strip waveguides and the waveguides with the SWG structure.

 

Fig. 1 Schematic of the SWG-slot adiabatic 3-dB coupler (upper), along with the conventional adiabatic 3-dB coupler (lower) without the SWG slot.

Download Full Size | PPT Slide | PDF

Adiabatic 3-dB couplers are mode-evolution based devices, the operating principle and design of which have been well explained in our previous work [12]. For the input and the output ports, we use Wg = 450 nm to match their widths to those of the routing waveguides for the C-band operation, and we choose WS=2 µm so that the spacing between two ports is large enough to avoid crosstalk. A sufficiently large waveguide asymmetry is required to ensure single supermode excitation of the two waveguides system and avoid the excitation of higher order modes, when two waveguides are brought together in Region II. This waveguide asymmetry requirement is met by choosing W1 = 550 nm and W2 = 350 nm. We choose LT =10 µm to minimize the ILs of the strip waveguide tapers as well as the SWG tapers in Region I, and we choose LS1 =20 µm so that the two S-bend waveguides are long enough to minimize their ILs in Region II. In Region III, the gap between two waveguides, G, is chosen to be 100 nm, so that the minimum feature size of our design will be compatible with the advanced complementary metal-oxide-semiconductor (CMOS) fabrication process [41]. In Region IV, we choose LS2 = 10 µm for the negligible ILs of the two decoupling S-bend waveguides as well as the SWG tapers. For our adiabatic 3-dB coupler, the light launched into the Input 1 will be coupled to the lowest-order even mode of the two waveguides system. The lowest-order even mode will be preserved and no other modes will be excited throughout Region III for a sufficiently long LE. At the end of Region III, the optical power will be split equally between the two waveguides as the two waveguides are identical, which leads to a 3-dB power splitting ratio at the two outputs. The relative phase shift between the two outputs is zero due to the symmetry of the lowest-order even mode. Similarly, the light launched into the Input 2 will be coupled to the lowest-order odd mode of the two waveguides system. The lowest-order odd mode will be preserved throughout Region III. At the end of Region III, the optical power will be split equally between the two waveguides, which again leads to a 3-dB power splitting ratio at the two outputs but with a 180° relative phase shift due to the anti-symmetry of the lowest-order odd mode.

The duty cycle, D, for our SWG structure is chosen to be 50% to maximize the minimum feature size for a given pitch Λ, and Λ has to be short enough so that the Bragg wavelength is below the minimum operating wavelength we desire. This is insured by setting Λ < λmin/(2 · nBloch) [22], where λmin is the desired minimum operating wavelength, and nBloch is the effective index of the fundamental Floquet-Bloch mode at λmin. For our device, the fundamental Floquet-Bloch mode corresponds to the lowest-order even mode of the two waveguides system with the SWG slot. The effective index of the lowest-order even mode is calculated by a two-dimensional eigenmode solver. For the first-order approximation, the SWG slot between two coupling waveguides is modeled as a homogeneous material with an equivalent refractive index, neq, given by neq2=DnSi2+(1D)nSiO22 [42], where nSi and nSiO2 are refractive indices for silicon and oxide, respectively. With D = 50%, nSi = 3.478, and nSiO2=1.444 [43], neq is found to be 2.663. The effective index of the lowest-order even mode of the two waveguides system with the SWG slot, neven, as well as the effective index of the lowest-order odd mode of the same waveguides system, nodd, as a function of position in the mode-evolution region (Region III) are shown in Fig. 2. We choose λmin to be 1500 nm as our desired minimum operating wavelength. neven drops from 2.6610 to 2.6328 while nodd rises from 2.3815 to 2.4365, as light propagates through the mode-evolution region. Therefore, the upper bound for Λ is given as λmin/(2 · nBloch) = 1500 nm/(2 · 2.6610) = 281.8 nm, and we choose Λ = 200 nm to be sufficiently below this value while keeping the minimum feature size of our design as large as 100 nm.

 

Fig. 2 Simulated neven and nodd as a function of position in the mode-evolution region at the wavelength of 1500 nm.

Download Full Size | PPT Slide | PDF

To further justify our choice of Λ, we compute the Bragg wavelength to verify whether it is below the minimum operating wavelength we desire. For the accurate determination of the Bragg wavelength, the Finite-Difference-Time-Domain (FDTD)-based band structure calculation [19] is performed. Fig. 3(a) plots the calculated wavelength of the lowest-order even mode of the two waveguides system with the SWG slot, λeven, at the left end of the mode-evolution region, as we sweep the normalized wavevector, k, in unit of 2π/Λ, from 0.3 to 0.5. We are only considering the left end of the mode-evolution region as neven reaches its maximum at this point (see Fig. 2), which will give the longest Bragg wavelength. The Bragg wavelength corresponds to the calculated wavelength at k = 0.5 [13], which is found to be 1189 nm. Therefore, for our choice of Λ of 200 nm, the Bragg wavelength is sufficiently below the desired minimum operating wavelength of 1500 nm. Using the same method, we also obtain the Bragg wavelength for other values of Λ, and the result is shown in Fig. 3(b). The Bragg wavelength increases with Λ as expected. A Bragg wavelength as short as 955 nm is obtained for Λ = 150 nm, which is also suitable for device. However, as the Bragg wavelength for Λ = 200 nm is already sufficiently below the desired minimum operating wavelength of 1500 nm, a 150 nm Λ is unnecessary for our application and it will require a smaller minimum feature size. The Bragg wavelength is beyond 1400 nm for Λ ≥ 250 nm, which is unsuitable for our device as the Bragg wavelength is too close or even longer than the desired minimum operating wavelength. As a final note for the choice of Λ, the equivalent refractive index of the SWG slot only depends on the duty cycle of the SWG structure, for the first-order approximation. Therefore, the choice of Λ has little impact on the device performance as long as its corresponding Bragg wavelength is sufficiently below the desired minimum operating wavelength.

 

Fig. 3 (a) Simulated λeven as a function of normalized wavevector at the left end of the mode-evolution region. (b) Simulated Bragg wavelength as a function of Λ.

Download Full Size | PPT Slide | PDF

For the proper operation of our SWG-slot adiabatic 3-dB coupler, both the lowest-order even mode and the lowest-order odd mode of the two waveguides system with the SWG slot have to be supported as the guided modes over the mode-evolution region. To support the lowest-order even mode as a guided mode, the operating wavelength needs to be beyond the Bragg wavelength of 1189 nm found above. Whereas to support the lowest-order odd mode as a guided mode, the operating wavelength needs to be below the cutoff wavelength of the lowest-order odd mode, at which nodd=nSiO2. To find the cutoff wavelength, we compute nodd as a function of wavelength at the left end of the mode-evolution region, using the FDTD-based band structure calculation. We are only considering the left end of the mode-evolution region as nodd reaches its minimum at this point (see Fig. 2), which will give the shortest cutoff wavelength. The calculated nodd as a function of wavelength is shown in Fig. 4, along with the cutoff effective index defined by nSiO2. The value of nSiO2 reported in [43] is used. nodd and nSiO2 intersect at the wavelength of 2445 nm, which gives the cutoff wavelength of the lowest-order odd mode. The cutoff wavelength is sufficiently above the desired maximum operating wavelength of 1600 nm, and therefore, the cutoff effect of the lowest-order odd mode should not be a concern for our design. Our cutoff wavelength is significantly beyond the value of 1630 nm for the adiabatic 3-dB coupler with the SWG waveguides reported in [39], and 1760 nm for the adiabatic 3-dB coupler with the SWG-assisted strip waveguides reported in [40]. The improvement of the cutoff wavelength is due to our different utilization of the SWG structure in an adiabatic 3-dB coupler. In [39] and [40], the SWG was applied to the two coupling waveguides of an adiabatic 3-dB coupler, resulting in low equivalent refractive indices of the coupling waveguides and thus, shorter cutoff wavelength for the lowest-order odd mode of the two waveguides system. Whereas for our device, the SWG is applied to the gap region between two coupling waveguides instead of the coupling waveguides themselves, leaving the refractive indices of the coupling waveguides unchanged. Finally, it is worth mentioning that our calculation of the cutoff wavelength does not consider the substrate leakage loss at the long wavelength regime due to the finite thickness of the buffer oxide layer. Therefore, the actual cutoff wavelength for the fabricated device will be shorter than the theoretical wavelength of 2445 nm.

 

Fig. 4 Simulated nodd as a function of wavelength at the left end of the mode-evolution region, along with the cutoff effective index defined by nSiO2 and indicated by the red dashed line.

Download Full Size | PPT Slide | PDF

At this point, all the design parameters have been determined except the mode-evolution length, LE. To find the optimized value of LE, the three-dimensional (3D) FDTD simulations are performed over the mode-evolution region. The lowest-order even mode and the lowest-order odd mode of the two waveguides system with the SWG slot are injected from the left-hand side of the mode-evolution region, and the respective modal transmission is calculated at the right-hand side of this region. To facilitate the simulation, the SWG slot between two coupling waveguides is modeled as a homogeneous material with an equivalent refractive index of neq given above. For our SWG-slot adiabatic 3-dB coupler, the minimum (worst) and the average modal transmission, over a 100 nm spectral range centered at 1550 nm, are plotted in Fig. 5(a) as a function of LE. The transmission of both the lowest-order even mode and the lowest-order odd mode start to saturate at a mode-evolution length of 20 µm where they are both beyond 99.5% across the simulated wavelength range, and we choose LE = 25 µm for the optimum performance. For our choice of LE, the minimum transmission of the lowest-order even mode and the lowest-order odd mode are 99.86% and 99.96%, respectively, with the respective average value of 99.79% and 99.91%. For comparison, the minimum and the average modal transmission over a 100 nm spectral range centered at 1550 nm, as a function of LE from 25 µm up to 500 µm, for the conventional adiabatic 3-dB coupler are shown in Fig. 5(b). At LE =25 µm, the average transmission of the lowest-order even mode and the lowest-order odd mode are only 90.98% and 90.78%, respectively, much less than the SWG counterpart. To achieve comparable performance as the SWG-slot adiabatic 3-dB coupler, where the minimum transmission of both the lowest-order even mode and the lowest-order odd mode are larger than 99.5%, LE has to be as large as 450 µm for the conventional adiabatic 3-dB coupler. The comparison of the modal transmission indicates that our SWG-slot adiabatic 3-dB coupler has an order of magnitude improvement in terms of the device footprint.

 

Fig. 5 Simulated minimum and average modal transmission over a 100 nm spectral range centered at 1550 nm as a function of LE, for (a) SWG-slot adiabatic 3-dB coupler and (b) conventional adiabatic 3-dB coupler. The probability plot is used to visualize the small change of transmission at large values of LE.

Download Full Size | PPT Slide | PDF

Table 1 summarizes all the design parameters determined for our SWG-slot adiabatic 3-dB coupler. The overall performance of the designed SWG-slot adiabatic 3-dB coupler is evaluated by performing the 3D FDTD simulation over the entire device. In our simulation, the full SWG structure is considered. The simulated electric field distributions for light launched into the Input 1 and the Input 2 of the device at the wavelength of 1550 nm are shown in the upper and the lower parts of Fig. 6, respectively. The light launched into the Input 1 is coupled to the lowest-order even mode of the two waveguides system with the SWG slot, and it is split equally between the two outputs with zero relative phase shift. Whereas the light launched into the Input 2 is coupled to the lowest-order odd mode of the two waveguides system with the SWG slot, and it is also split equally between the two outputs but with a 180° relative phase shift. The simulated power splitting ratio and IL as a function of wavelength from 1500 nm to 1600 nm for our device are shown in Fig. 7(a) and Fig. 7(b), respectively. The simulated power splitting ratios for the Input 1 and the Input 2 are very close to each other. From 1500 nm to 1600 nm, our SWG-slot adiabatic 3-dB coupler has a simulated power splitting ratio better than 3 ± 0.33 dB and an IL below 0.08 dB for both inputs. Therefore, our device achieves high-performance operation over a 100 nm wavelength range that covers the entire C-band.

Tables Icon

Table 1. List of design parameters for the SWG-slot adiabatic 3-dB coupler.

 

Fig. 6 Simulated electric field distributions at the wavelength of 1550 nm, when light is launched into the Input 1 (upper plot) and the Input 2 (lower plot): (a) input view; (b) top view; (c) output view.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Simulated (a) power splitting ratio and (b) IL as a function of wavelength from 1500 nm to 1600 nm for the designed SWG-slot adiabatic 3-dB coupler.

Download Full Size | PPT Slide | PDF

As discussed above, if the substrate leakage loss is not considered, both the lowest-order even mode and the lowest-order odd mode of the two waveguides system with the SWG slot will be supported as the guided modes over the mode-evolution region, as long as the operating wavelength lies within the range of 1189 nm to 2445 nm. Therefore, it would be reasonable to expect our designed SWG-slot adiabatic 3-dB coupler could also be operated over an extended wavelength range, although it is primarily designed and optimized for the C-band operation. The broadband 3D FDTD simulations are performed over the entire device to verify our expectation. In our simulation, the full SWG structure is considered. The simulated power splitting ratio, IL and relative phase shift between the two outputs of our device as a function of wavelength from 1260 nm to 2000 nm are shown in Fig. 8(a), Fig. 8(b) and Fig. 8(c), respectively. We are setting the upper limit of the simulated wavelength range to be 2000 nm in order to avoid the substrate leakage loss at the long wavelength regime. Similar to Fig. 7(a), the simulated power splitting ratios for the Input 1 and the Input 2 are very close to each other. From 1260 nm to 2000 nm, the simulated power splitting ratio is better than 3 ± 0.73 dB for both inputs, while the IL is maintained below 0.13 dB. Nearly 0° and 180° relative phase shifts between the two outputs are observed for the Input 1 and the Input 2, respectively, throughout the simulated wavelength range. Therefore, our SWG-slot adiabatic 3-dB coupler has an ultra-broad operating bandwidth of 740 nm that covers from the O-band to the U-band and extends towards the start of the short-wave infrared regime.

 

Fig. 8 Simulated (a) power splitting ratio, (b) IL and (c) relative phase shift between the two outputs as a function of wavelength from 1260 nm to 2000 nm for the designed SWG-slot adiabatic 3-dB coupler.

Download Full Size | PPT Slide | PDF

3. Fabrication and experimental results

The designed SWG-slot adiabatic 3-dB coupler was fabricated on an SOI wafer with a 220-nm-thick top silicon layer, a 2-µm-thick buffer oxide layer and a 2.2-µm-thick oxide cladding, using single-etch electron beam lithography at Applied Nanotools Inc. The scanning electron microscope (SEM) images of the fabricated device are shown in Fig. 9. A Mach-Zehnder interferometer (MZI) based test structure is used to measure the power splitting ratio of the fabricated SWG-slot adiabatic 3-dB coupler [12, 19]. This experimental characterization method assumes the same power splitting ratio for the Input 1 and the Input 2 of the device, which has been confirmed by our simulation results shown in Fig. 7(a) and Fig. 8(a). Broadband SWG grating couplers [15] are used to couple light into and out of the test structure. Identical SWG-slot adiabatic 3-dB couplers are placed at the input and the output of the MZI. The output SWG-slot adiabatic 3-dB coupler is a mirror image of the input SWG-slot adiabatic 3-dB coupler. A 250 µm delay line is included in one arm of the MZI, resulting in a wavelength dependent phase shift and thus, oscillations in the transmission spectrum. A fiber-array based test setup consisting of a Yenista TUNICS T100S-HP tunable laser and a CT400 passive optical component tester is used to measure the transmission spectrum. The light was launched into the Input 1 of the input SWG-slot adiabatic 3-dB coupler, and the MZI transmission spectrum was collected from its straight-through MZI output port. Fig. 10(a) shows the measured straight-through MZI transmission spectrum for the fabricated SWG-slot adiabatic 3-dB coupler, from the wavelength of 1500 nm to 1600 nm. The ILs from the grating couplers have been calibrated out. A minimum extinction ratio of 24.2 dB and a maximum excess loss of 1.48 dB are observed for the MZI transmission spectrum over the measured wavelength range. Using the formula given in [12, 19], the power splitting ratio of the fabricated device is calculated from the wavelength dependent extinction ratio of the measured straight-through MZI transmission spectrum, and the result is shown in Fig. 10(b). From 1500 nm to 1600 nm, the fabricated SWG-slot adiabatic 3-dB coupler achieves a measured power splitting ratio better than 3 ± 0.27 dB, in good agreement with the simulation result. The IL of the fabricated SWG-slot adiabatic 3-dB coupler is estimated as the half of the MZI excess loss. The IL of the fabricated device is less than 0.74 dB over the measured wavelength range, with an average value of 0.20 dB. The mismatch between the measured and the simulated ILs could be attributed to the non-uniformity of the grating couplers used in the test structure. Table 2 compares the performance of our device with previous experimental demonstration of adiabatic 3-dB couplers fabricated on the SOI platform.

 

Fig. 9 (a) SEM image of the fabricated SWG-slot adiabatic 3-dB coupler. (b) Zoom-in of the SWG slot in the mode-evolution region (Region III). (c) Zoom-in of Region I and II. (d) Zoom-in of Region IV.

Download Full Size | PPT Slide | PDF

 

Fig. 10 (a) Measured straight-through MZI transmission spectrum and (b) calculated power splitting ratio for the fabricated SWG-slot adiabatic 3-dB coupler from 1500 nm to 1600 nm.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Comparison of the performance of our device with previous experimental demonstration of adiabatic 3-dB couplers fabricated on the SOI platform.

4. Conclusion

We experimentally demonstrate an SWG-slot adiabatic 3-dB coupler for the SOI platform. The SWG is applied to the gap region between two coupling waveguides to effectively increase its refractive index, achieving high-performance operation and a compact device footprint, with an entire device length of 65 µm. Our SWG-slot adiabatic 3-dB coupler has a mode-evolution length of only 25 µm, an order of magnitude reduction compared to a conventional adiabatic 3-dB coupler that achieves comparable performance. A MZI based test structure for the designed SWG-slot adiabatic 3-dB coupler was fabricated and experimentally characterized for the wavelength range from 1500 nm to 1600 nm, with a measured power splitting ratio better than 3 ± 0.27 dB and an average IL of 0.20 dB.

References

1. G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005). [CrossRef]  

2. R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017). [CrossRef]  

3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995). [CrossRef]  

4. P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

5. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

6. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013). [CrossRef]  

7. J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling,” Opt. Lett. 38(13), 2221–2223 (2013). [CrossRef]   [PubMed]  

8. H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

9. H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

10. J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates,” Opt. Express 21(22), 26729–26734 (2013). [CrossRef]   [PubMed]  

11. L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

12. Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018). [CrossRef]  

13. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015). [CrossRef]  

14. D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015). [CrossRef]   [PubMed]  

15. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015). [CrossRef]   [PubMed]  

16. A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016). [CrossRef]   [PubMed]  

17. Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017). [CrossRef]   [PubMed]  

18. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012). [CrossRef]   [PubMed]  

19. Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016). [CrossRef]  

20. L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016). [CrossRef]   [PubMed]  

21. A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011). [CrossRef]  

22. A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013). [CrossRef]   [PubMed]  

23. A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013). [CrossRef]  

24. R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016). [CrossRef]  

25. L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

26. E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

27. D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018). [CrossRef]  

28. P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015). [CrossRef]   [PubMed]  

29. Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017). [CrossRef]  

30. D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. L. Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near-and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017). [CrossRef]   [PubMed]  

31. Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25(15), 18250–18264 (2017). [CrossRef]   [PubMed]  

32. Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016). [CrossRef]   [PubMed]  

33. C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017). [CrossRef]   [PubMed]  

34. L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018). [CrossRef]  

35. Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014). [CrossRef]   [PubMed]  

36. Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016). [CrossRef]  

37. Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

38. S. Wu and J. Xiao, “Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings,” Appl. Opt. 56(17), 4892–4899 (2017). [CrossRef]   [PubMed]  

39. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016). [CrossRef]   [PubMed]  

40. H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018). [CrossRef]   [PubMed]  

41. S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

42. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

43. E. D. Palik, Handbook of optical constants of solids(Academic, 1997).

References

  • View by:
  • |
  • |
  • |

  1. G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
    [Crossref]
  2. R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017).
    [Crossref]
  3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
    [Crossref]
  4. P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.
  5. L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.
  6. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
    [Crossref]
  7. J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling,” Opt. Lett. 38(13), 2221–2223 (2013).
    [Crossref] [PubMed]
  8. H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.
  9. H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.
  10. J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates,” Opt. Express 21(22), 26729–26734 (2013).
    [Crossref] [PubMed]
  11. L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.
  12. Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
    [Crossref]
  13. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  14. D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
    [Crossref] [PubMed]
  15. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
    [Crossref] [PubMed]
  16. A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
    [Crossref] [PubMed]
  17. Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
    [Crossref] [PubMed]
  18. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
    [Crossref] [PubMed]
  19. Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
    [Crossref]
  20. L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
    [Crossref] [PubMed]
  21. A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
    [Crossref]
  22. A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
    [Crossref] [PubMed]
  23. A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
    [Crossref]
  24. R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
    [Crossref]
  25. L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.
  26. E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.
  27. D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
    [Crossref]
  28. P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
    [Crossref] [PubMed]
  29. Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
    [Crossref]
  30. D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. L. Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near-and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
    [Crossref] [PubMed]
  31. Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25(15), 18250–18264 (2017).
    [Crossref] [PubMed]
  32. Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
    [Crossref] [PubMed]
  33. C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
    [Crossref] [PubMed]
  34. L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
    [Crossref]
  35. Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
    [Crossref] [PubMed]
  36. Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
    [Crossref]
  37. Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.
  38. S. Wu and J. Xiao, “Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings,” Appl. Opt. 56(17), 4892–4899 (2017).
    [Crossref] [PubMed]
  39. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
    [Crossref] [PubMed]
  40. H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
    [Crossref] [PubMed]
  41. S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
  42. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  43. E. D. Palik, Handbook of optical constants of solids(Academic, 1997).

2018 (4)

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
[Crossref] [PubMed]

2017 (7)

2016 (7)

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

2015 (4)

2014 (2)

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

2013 (5)

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling,” Opt. Lett. 38(13), 2221–2223 (2013).
[Crossref] [PubMed]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates,” Opt. Express 21(22), 26729–26734 (2013).
[Crossref] [PubMed]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

2012 (1)

2011 (1)

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

2005 (1)

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Abadíacalvo, N.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Aboketaf, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

Absil, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Alonso-Ramos, C.

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. L. Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near-and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

Alonso-Ramos, C. A.

Benedikovic, D.

Ben-Hamida, N.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Berciano, M.

Bernier, E.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Bojko, R.

Campenhout, J. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Cao, G. B.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

Cao, L.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

Cassan, E.

Caverley, M.

Celo, D.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Chandran, S.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017).
[Crossref]

Cheben, P.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Christowski, L.

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

Chrostowski, L.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

D’Mello, Y.

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Dado, M.

Dai, D.

Das, B. K.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017).
[Crossref]

Delvaux, C.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Deng, Q.

Dumais, P.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

El-Fiky, E.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Elshaari, A.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

Fu, H.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Gao, F.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

Geng, D.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

González-Andrade, D.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

Goodwill, D. J.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Gupta, R. K.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017).
[Crossref]

Halir, R.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

He, Y.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Herrero-Bermello, A.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

Hui, M.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Jacques, M.

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

Jaeger, N. A. F.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

Jafari, Z.

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Janz, S.

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

Jiang, J.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Jiang, X.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Kumar, A.

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Lamontagne, B.

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

Lepage, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Li, C.

Li, M.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Li, R.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Li, Z.

Lin, S.

Liu, B.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Liu, L.

Locorotondo, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Lu, Z.

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

Luque-González, J. M.

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Ma, M.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

Maese-Novo, A.

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Marris-Morini, D.

Milenin, A.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Molina-Fernández, Í

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Molina-Fernández, I.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Molina-Fernández, Í.

Morsy-Osman, M.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Murdoch, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Ong, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Ortega-Moñux, A.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Painchaud, Y.

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids(Academic, 1997).

Parvizi, M.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Patel, D.

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Pathak, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Pérez-Galacho, D.

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

Picard, M.

Plant, D. V.

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Preble, S.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

Qiu, C.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Romero-García, S.

Roux, X. L.

Ruan, Z.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Saber, M. G.

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Samani, A.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Sánchez-Postigo, A.

Sarmiento-Merenguel, J. D.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Schmid, J. H.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Shen, L.

Shi, W.

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

Skoric, J.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Soref, R.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Sterckx, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Su, Y.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Tamazin, H.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

Thourhout, D. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Tu, X.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Vachon, M.

Velasco, A. V.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

Vivien, L.

Wang, J.

Wang, S.

Wang, X.

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Wang, Y.

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

Wangüemert-Pérez, J. G.

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Wei, Y.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Winroth, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Wu, S.

Xiao, J.

Xiao, X.

Xie, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

Xing, J.

Xing, Z.

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

Xiong, K.

Xiong, Y.

Xu, D.

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

Xu, D. X.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Xu, D.-X.

Xu, H.

Xu, L.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

Xu, Y.

Ye, W. N.

Yu, J.

Yu, Y.

Yun, H.

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
[Crossref] [PubMed]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

Zarifkar, A.

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Zavargo-Peche, L.

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

Zhang, F.

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

Zhang, Y.

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

Zhao, F.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

Zheng, S.

Zhou, Z.

Appl. Opt. (1)

IEEE Photonics J. (4)

Y. Wang, L. Xu, H. Yun, M. Ma, A. Kumar, E. El-Fiky, R. Li, N. Abadíacalvo, L. Chrostowski, N. A. F. Jaeger, and D. V. Plant, “Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform,” IEEE Photonics J. 10(3), 4900410 (2018).
[Crossref]

Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics J. 8(3), 7101408 (2016).
[Crossref]

D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, and P. Cheben, “Ultra-broadband mode converter and multiplexer based on sub-wavelength structures,” IEEE Photonics J. 10(2), 2201010 (2018).
[Crossref]

Y. Wang, M. Ma, H. Yun, Z. Lu, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform,” IEEE Photonics J. 8(6), 7805709 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Xu, Y. Wang, A. Kumar, D. Patel, E. El-Fiky, Z. Xing, R. Li, and D. V. Plant, “Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI,” IEEE Photonics Technol. Lett. 30(4), 403–406 (2018).
[Crossref]

A. Ortega-Moñux, L. Zavargo-Peche, A. Maese-Novo, I. Molina-Fernández, R. Halir, J. G. Wangüemert-Pérez, P. Cheben, and J. H. Schmid, “High-performance multimode interference coupler in silicon waveguides with subwavelength structures,” IEEE Photonics Technol. Lett. 23(19), 1406–1408 (2011).
[Crossref]

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett. 17(8), 1671–1673 (2005).
[Crossref]

J. Light. Technol. (2)

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35(22), 4916–4923 (2017).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Laser Photonics Rev. (3)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, Í Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

A. Ortega-Moñux, C. Alonso-Ramos, A. Maese-Novo, R. Halir, L. Zavargo-Peche, D. Pérez-Galacho, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, J. H. Schmid, J. Lapointe, D. Xu, and S. Janz, “An ultra-compact multimode interference coupler with a subwavelength grating slot,” Laser Photonics Rev. 7(2), 12–15 (2013).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Opt. Commun. (1)

Z. Jafari and A. Zarifkar, “Dispersion flattened single etch-step waveguide based on subwavelength grating,” Opt. Commun. 393, 219–223 (2017).
[Crossref]

Opt. Express (8)

D. Benedikovic, M. Berciano, C. Alonso-Ramos, X. L. Roux, E. Cassan, D. Marris-Morini, and L. Vivien, “Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near-and mid-IR wavelengths,” Opt. Express 25(16), 19468–19478 (2017).
[Crossref] [PubMed]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25(15), 18250–18264 (2017).
[Crossref] [PubMed]

A. Maese-Novo, R. Halir, S. Romero-García, D. Pérez-Galacho, L. Zavargo-Peche, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21(6), 7033–7040 (2013).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

Y. Wang, L. Xu, A. Kumar, Y. D’Mello, D. Patel, Z. Xing, R. Li, M. G. Saber, E. El-Fiky, and D. V. Plant, “Compact single-etched sub-wavelength grating couplers for O-band application,” Opt. Express 25(24), 30582–30590 (2017).
[Crossref] [PubMed]

R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express 20(12), 13470–13477 (2012).
[Crossref] [PubMed]

J. Xing, Z. Li, Y. Yu, and J. Yu, “Design of polarization-independent adiabatic splitters fabricated on silicon-oninsulator substrates,” Opt. Express 21(22), 26729–26734 (2013).
[Crossref] [PubMed]

Opt. Lett. (9)

J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling,” Opt. Lett. 38(13), 2221–2223 (2013).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41(7), 1648–1651 (2016).
[Crossref] [PubMed]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref] [PubMed]

A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243–4246 (2017).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. F. Jaeger, “Broadband 2 x 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

H. Yun, L. Chrostowski, and N. A. F. Jaeger, “Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelengthgrating-assisted silicon-on-insulator strip waveguides,” Opt. Lett. 43(8), 1935–1938 (2018).
[Crossref] [PubMed]

Proc. SPIE (2)

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proc. SPIE 8915, 89150V (2013).
[Crossref]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (9)

E. D. Palik, Handbook of optical constants of solids(Academic, 1997).

Y. He, Y. Zhang, X. Wang, B. Liu, X. Jiang, C. Qiu, Y. Su, and R. Soref, “Silicon polarization splitter and rotator using a subwavelength grating based directional coupler,” in Optical Fiber Communication Conference, (OFC, 2017), Th1G.6.

L. Xu, Y. Wang, D. Patel, M. Morsy-Osman, R. Li, M. Hui, M. Parvizi, N. Ben-Hamida, and D. V. Plant, “Ultrabroadband and ultra-compact optical 90° hybrid based on 2x4 MMI Coupler with subwavelength gratings on silicon-on-insulator,” in Optical Fiber Communication Conference, (OFC, 2018), M3I.7.

E. El-Fiky, Y. D’Mello, Y. Wang, J. Skoric, M. G. Saber, A. Kumar, A. Samani, L. Xu, R. Li, D. Patel, and D. V. Plant, “Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4A.7.

H. Yun, Z. Lu, Y. Wang, W. Shi, L. Christowski, and N. A. F. Jaeger, “2×2 broadband adiabatic 3-dB couplers on SOI strip waveguides for TE and TM modes,” in Conference on Lasers and Electro-Optics, (CLEO, 2015), STh1F.8.

H. Tamazin, E. El-Fiky, Y. Wang, Y. D’Mello, D. Patel, A. Kumar, and D. V. Plant, “Ultra-broadband compact adiabatic coupler in silicon-on-insulator for joint operation in the C-and O-bands,” in Conference on Lasers and Electro-Optics, (CLEO, 2018), STh4B.4.

L. Xu, Y. Wang, D. Patel, E. El-Fiky, Z. Xing, R. Li, M. G. Saber, M. Jacques, and D. V. Plant, “Polarization independent adiabatic 3-dB coupler for silicon-on-insulator,” in Conference on Lasers and Electro-Optics, (CLEO, 2017), SF1I.5.

P. Dumais, Y. Wei, M. Li, F. Zhao, X. Tu, J. Jiang, D. Celo, D. J. Goodwill, H. Fu, D. Geng, and E. Bernier, “2×2 multimode interference coupler with low loss using 248 nm photolithography,” in Optical Fiber Communication Conference, (OFC, 2016), W2A.19.

L. Cao, A. Elshaari, A. Aboketaf, and S. Preble, “Adiabatic couplers in SOI waveguides,” in Conference on Lasers and Electro-Optics, (CLEO, 2010), CThAA2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the SWG-slot adiabatic 3-dB coupler (upper), along with the conventional adiabatic 3-dB coupler (lower) without the SWG slot.
Fig. 2
Fig. 2 Simulated neven and nodd as a function of position in the mode-evolution region at the wavelength of 1500 nm.
Fig. 3
Fig. 3 (a) Simulated λeven as a function of normalized wavevector at the left end of the mode-evolution region. (b) Simulated Bragg wavelength as a function of Λ.
Fig. 4
Fig. 4 Simulated nodd as a function of wavelength at the left end of the mode-evolution region, along with the cutoff effective index defined by n SiO 2 and indicated by the red dashed line.
Fig. 5
Fig. 5 Simulated minimum and average modal transmission over a 100 nm spectral range centered at 1550 nm as a function of LE, for (a) SWG-slot adiabatic 3-dB coupler and (b) conventional adiabatic 3-dB coupler. The probability plot is used to visualize the small change of transmission at large values of LE.
Fig. 6
Fig. 6 Simulated electric field distributions at the wavelength of 1550 nm, when light is launched into the Input 1 (upper plot) and the Input 2 (lower plot): (a) input view; (b) top view; (c) output view.
Fig. 7
Fig. 7 Simulated (a) power splitting ratio and (b) IL as a function of wavelength from 1500 nm to 1600 nm for the designed SWG-slot adiabatic 3-dB coupler.
Fig. 8
Fig. 8 Simulated (a) power splitting ratio, (b) IL and (c) relative phase shift between the two outputs as a function of wavelength from 1260 nm to 2000 nm for the designed SWG-slot adiabatic 3-dB coupler.
Fig. 9
Fig. 9 (a) SEM image of the fabricated SWG-slot adiabatic 3-dB coupler. (b) Zoom-in of the SWG slot in the mode-evolution region (Region III). (c) Zoom-in of Region I and II. (d) Zoom-in of Region IV.
Fig. 10
Fig. 10 (a) Measured straight-through MZI transmission spectrum and (b) calculated power splitting ratio for the fabricated SWG-slot adiabatic 3-dB coupler from 1500 nm to 1600 nm.

Tables (2)

Tables Icon

Table 1 List of design parameters for the SWG-slot adiabatic 3-dB coupler.

Tables Icon

Table 2 Comparison of the performance of our device with previous experimental demonstration of adiabatic 3-dB couplers fabricated on the SOI platform.

Metrics