Abstract

Metasurfaces can implement a wide variety of wave-manipulation functions with sub-wavelength layers. They are typically created from resonant elements, thus their refraction properties depend strongly on frequency. The resulting chromatic aberration is undesirable for most applications, motivating recent efforts in the development of achromatic metasurfaces. However, it remains unclear whether there are any physical limits on the achievable operating bandwidth of achromatic metasurfaces. Here we address this question, considering a common microwave metasurface geometry based on three metallic layers, separated by dielectric substrates. Since each of these metallic layers is modeled as an impedance, we apply Foster’s reactance theorem to determine the bandwidth over which they are physically realizable using passive, causal and lossless structures. We derive limits for the bandwidth and total size of the metasurface, showing that there is a trade-off between these two parameters. A higher angle of refraction, corresponding to a larger numerical aperture for a lens, further limits the realizable bandwidth. We consider both Huygens’ and Omega-bianisotropic metasurface types, and show that the limit is more severe for bianisotropic metasurfaces, making them less suitable for broadband achromatic designs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metasurfaces are metamaterials of sub-wavelength thickness, which have been extensively studied for controlling electromagnetic radiation [1–3]. In particular, metasurface lenses have the potential to replace conventional bulk lenses in applications where a high level of integration is required [4]. When operating in transmission, the electric and magnetic responses are often balanced, leading to an impedance matched Huygens’ metasurface [5–7]. In addition to suppressing specular reflection, impedance matching prevents spurious diffraction orders from being transmitted or reflected. Therefore a high efficiency of refraction (a high fraction of incident power refracted in the designed direction), minimizes distortion of the transmitted beam. It has also been shown that magnetoelectric coupling (Omega bianisotropy) must be added into the design to maintain high efficiency at large angles of refraction [8–10].

Although Huygens’ and bianisotropic metasurfaces offer improved efficiency compared to those with a purely electric response, their response typically has a strong frequency dependence. This can be understood by considering a metasurface exhibiting uniform anomalous refraction, which has a spatially periodic structure. In such cases anomalous refraction is equivalent to diffraction in a blazed grating [11], with correspondingly strong frequency dependence of the diffraction angle. In [12], it was shown how careful meta-atom design can maximize the efficiency of diffraction into a particular order over a wide bandwidth. However, a frequency dependent diffraction angle is undesirable for many applications. For example, in a lens, it leads to strong variation of the focal distance with frequency, which is a form of chromatic aberration [13,14].

To overcome these limitations, broadband achromatic metasurfaces were proposed at optical frequencies, initially using plasmonic material dispersion to compensate geometric dispersion [15], then subsequently using a combination of waveguide and grating dispersion in all-dielectric structures [16]. Achromatic optical metasurfaces were subsequently demonstrated experimentally utilizing multiple grating structures of dielectric pillars [17–19] and gap-plasmon resonators operating in reflection [20]. In the microwave frequency range, multi-layer delay line type metasurfaces have demonstrated broadband achromatic operation [21]. For delay-line devices, the operating bandwidth scales with the number of layers utilized, so this approach does not enable broadband operation with a very thin structure. While these works have shown the potential for broadband achromatic metasurface operation, it remains unclear whether the bandwidth performance is limited by design ingenuity and fabrication quality, or if there is some limit imposed by physics.

Here we analyze the physical limits on metasurface bandwidth for achromatic operation, considering a geometry based on three patterned metallic layers, separated by dielectric substrates [8,9,22,23]. This is one of the most practical designs for the microwave frequency range, and it has the advantage that the required response of each layer is specified analytically. This design approach can implement either Huygen’s or Omega-bianisotropic metasurfaces, the distinction being whether or not the structure has mirror symmetry in the direction normal to the metasurface.

In modelling three layer printed circuit metasurfaces, the dielectric layers are treated as transmission lines, and the metallic layers as single port shunt impedances [6, 9]. However, a single port impedance cannot exhibit arbitrary variation with frequency. If it is to be passive, lossless and causal, the impedance must comply with Foster’s reactance theorem [24,25]. This is closely related to the requirement that a dielectric material should exhibit normal dispersion, since anomalous dispersion is intrinsically linked to material dissipation. While lossless, non-Foster compliant meta-atoms have been demonstrated to overcome bandwidth limitations [26,27], the complex active circuits required for their implementation are impractical for most applications.

Here we examine the constraints that Foster’s reactance theorem puts on metasurface operating bandwidth, refraction angle and aperture size, to obtain limits for a passive achromatic metasurface realization. We consider first the case of uniform anomalous refraction, then consider the implications for metasurface lenses. We will show that the maximum size of the considered achromatic metasurfaces is inversely proportional to their operating bandwidth.

2. Achromatic refracting metasurfaces

2.1. Equivalent circuit model

As shown in Fig. 1(a), we consider a two-dimensional problem with refraction in the xz plane. The incident wave arrives at angle θin and is refracted to angle θout by a metasurface located at z = 0, and we consider cases where θinθout. This anomalous refraction is the fundamental mechanism which underlies more complex metasurface devices such as lenses, which we will consider in Section 3. Assuming the metasurface is surrounded by a homogeneous medium of permittivity and permeability μ, the transmission phase Φt is a linear function of both position x on the metasurface and frequency ω. This can be formulated as

Φt(x,ω)=ωxnbg(sinθoutsinθin)+Φ0(ω),
which is equivalent to the generalized Snell’s law [1] in a background medium of refractive index nbg=μ. The term Φ0(ω) does not affect the angle of refraction, but needs to be chosen to ensure the local response function is physically realizable at all points on the metasurface [13,20]. Wrapping the phase values into the fundamental range [−π, π] results in Φt being a periodic function in x with period 2π/[ωnbg(sin θout − sin θin)]. We denote the total size of the metasurface as Δx, as illustrated in Fig. 1(a).

To maintain a fixed refraction angle over a broad bandwidth, the transmission phase Φt(x, ω) must be engineered to obey Eq. (1) over the frequency range of interest, whilst maintaining full transmission. In Fig. 1(a) we show schematically three plane waves of different frequencies, which should all be refracted in the same direction. The corresponding phase response as a function of position is plotted in Fig. 1(b), for each of the three frequencies. It can be seen that the period of Φt is different for each frequency components, meaning that an achromatic metasurface cannot be created with a periodic structure. At each position on the metasurface, Eq. (1) shows that Φt is a linear function of frequency, with a slope that depends on position x. Thus, each element of the resulting metasurface should implement a specified constant delay over the operating bandwidth.

 figure: Fig. 1

Fig. 1 (a) Metasurface with several different frequencies of incoming plane wave in refracting operation. (b) The Required phase response as a function of position, is shown for three different frequencies, where λ0 is the wavelength of the center frequency. (c) Equivalent circuit model of the three-layered structure.

Download Full Size | PPT Slide | PDF

We utilize a two-port impedance matrix model to obtain relations between the tangential fields at the two sides of the metasurface. In the bianisotropic case, we must account for the different incoming and outgoing wave impedances due to the differences in the incident and transmitted angles [9]. In a Huygens’ metasurface, the difference between incoming and outgoing wave impedances is not taken into account, with a consequence of lower efficiency and the presence of reflections, but with simpler symmetric unit-cell structure. For transverse electric (TE) waves, the local wave impedances are Zin=(μ/)secθin and Zout=(μ/)secθout . For transverse magnetic (TM) waves, the local wave impedances are Zin=(μ/)cosθin and Zout=(μ/)cosθout. The bianisotropic metasurface is designed to match both of these impedances. In the Huygens’ case, perfect matching is impossible, but matching both the input and output ports to Zout (i.e. setting Zin = Zout in all design formulas) has been shown to be the best compromise [7].

For both Huygens’ and bianisotropic metasurfaces, the corresponding spatially-dependent two-port impedance parameters can be written as [9]

Z(x,ω)=[jZincot(Φt+Φ0)jZinZoutsin(Φt+Φ0)jZinZoutsin(Φt+Φ0)jZoutcot(Φt+Φ0)]
In the printed circuit metasurface realization, the impedance matrix in Eq. (2) is implemented using three layers of meta-atoms, separated by two dielectric substrates of thickness t. As shown in Fig. 1(c), each layer of meta-atoms is represented by an equivalent shunt impedance Zn. The dielectric substrate has permittivity of s and permeability of μs and is modeled as a transmission line with wave impedance Zs=μs/s and longitudinal wavenumber βs=ωμss. The shunt impedances Z1, Z2 and Z3 are required to have the following form [9] in order to implement the phase response given by Eq. (1)
Z2(x,ω)=Zs2Z12(cos(2βst)1)2det[Z]j2Z0Z12sin(2βst)Z1,3(x,ω)=Zsdet[Z]sin(βst)jdet[Z]cos(βst)+ZsZsin(βst),whereZ={Z11+Z12forZ1Z22+Z12forZ3

The blue curves in Fig. 2 show the impedance for both Huygens’ and bianisotropic cases. The horizontal axis variable Φt can be considered as a normalization of the frequency, since by Eq. (1) they are linearly proportional. We consider a normally incident TE wave refracted at an angle of 50°, a lossless substrate with thickness 0.017λ0 and permittivity s = 6.2, where λ0 is the wavelength at the center frequency. These figures are calculated at a position x = 11.26λ0 while varying Φt, corresponding to a frequency range of 20% of the center frequency. Since we consider a passive, lossless metasurface, the imaginary part of the impedances are zero, so only the reactance Xn = Im{Zn} is shown. It can be seen that the reactance has sharp resonant peaks at certain frequencies, showing that strongly resonant meta-atoms are required to achieve achromatic operation.

2.2. Realizability of impedances

In order to create a broadband achromatic metasurface, it is necessary to find an arrangement of metallic layers which closely approximates the impedance functions shown in Eq. (3) and Fig. 2. Creating a design to implement these impedance functions is clearly a challenging problem, which we do not address here. However, before any attempt is made to implement these impedance functions, we must first establish whether they are physically realizable. In particular, if the functions are not causal and passive, then they can only be implemented with complex active elements, which are impractical for many applications.

We can determine whether these impedances are to be passive, lossless and causal by checking whether they conform to Foster’s reactance theorem [24]. This theorem is the circuit analog of the normal dispersion regime for refractive index, and it requires the reactance to increase monotonically with frequency. This leads to the requirement Xnω>0 for all values of x and ω, with the appropriate limits taken in the vicinity of the poles. These derivatives are plotted in red in Fig. 2, and it is clearly seen that in some range they become negative (the yellow shaded regions). This indicates that achromatic refracting metasurfaces cannot have arbitrarily large operating bandwidth.

A metasurface is physically realizable over some frequency range where all three of its layers implement physically realizable impedances, i.e. where X1,2,3 all conform to Foster’s reactance theorem. Noting that Fig. 2 is calculated for one specific position on the metasurface, it would be tedious to evaluate these derivatives at every single location on the metasurface to determine the frequency range over which the impedance is Foster-conforming. However, we can simplify the problem considerably if we assume that the dielectric substrates are electrically thin, i.e. βst ≪ 1. This approximation is consistent with experimentally realized structures, and its accuracy will be verified by comparison with exact calculations. To derive an expression valid for arbitrary position x and arbitrary values of incident and refracted angle, we note that the transmission phase Φt is linearly proportional to ω. Without loss of generality, if we assume that x > 0 and (sin θout − sin θin) > 0, we arrive at the normalized condition for Foster-conforming impedances of each surface

dXndΦt>0(n=1,2,3).
The values of Φt where X′nt) = 0 mark the boundary between Foster and non-Foster impedance. Noting that Eq. (2) is a periodic function of Φt, the zeros marking the boundary between Foster and non-Foster impedance must also be periodic. For the inner layer Z2 there are two zeros per period, located at
Φt,a(in)=2πm+π2Φ0,Φt,b(in)=2πm+3π2Φ0,
while for the outer layers Z1,3 there may be no zeros, or two zeros per period located at
Φt,a,b(out)=2πm+π±arccos(Z¯)Φ0(onlyif1<Z¯<1).
In these expressions m is an arbitrary integer, corresponding to the period of the function Φt. In Eq. (6) the normalized incoming and outgoing wave impedances are defined as
Z¯={ZinZinZoutforZ1ZoutZinZoutforZ3
For Huygens’ metasurfaces, Z1 and Z3 are identical and we set Zout = Zin, leading to = 1. Since the condition −1 < < 1 is not satisfied, Eq. (6) has no solutions, the impedance is Foster-compliant for all Φt, and the outer layers can be realized with passive meta-atoms. However, Eq. (5) has two solutions per period, the impedance of the middle layer Z2 alternates between positive and negative gradient, and there are always regions of non-Foster behavior.

In the bianisotropic case, Z1 and Z3 differ since ZoutZin. One of the two impedance sheets will have > 1 so that Eq. (6) will have no solutions, hence this layer could be implemented with passive meta-atoms. For the other layer, −1 < < 1 is satisfied, equation Eq. (6) has real solutions, and there will always be a region of non-Foster impedance, since the derivative changes periodically from positive to negative. As in the Huygens’ case, the middle layer always has regions of non-Foster behavior.

 figure: Fig. 2

Fig. 2 The imaginary component of impedance (reactance) for each layer (blue curve) as a function of Φt (which is proportional to frequency ω) for (a) Huygens and (b) bianisotropic metasurfaces. According to Foster’s theorem, the frequency derivative of the reactance (red curve) must be positive to enable a passive realization. The shading indicates the regions of non-Foster reactance and the crosses mark the transition between Foster and non-Foster regions calculated from Eqs. (5) and (6).

Download Full Size | PPT Slide | PDF

In Fig. 2, we use crosses to plot the boundary between the Foster and non-Foster regions, calculated according to Eqs. (5) and (6). The impedance curves shown in blue are based on the exact expression, including the influence of the finite substrate thickness. We see that these points match the calculations with the exact expressions for reactance, validating the assumption that the influence of the electrically thin dielectric substrate can be neglected. We have further validated this agreement for other realistic values of substrate permittivity.

For both Huygen’s and bianisotropic cases, the impedance of the center layer Z2 is not Foster-compliant in some frequency range. For the Huygen’s case both outer layers Z1 and Z3 are Foster-compliant, but for the bianisotropic case only one of them is, which one depends on whether the polarization is TE or TM and whether the refraction angle is larger or smaller than the incident angle. As can be seen in Fig. 2, for the bianisotropic case, the non-Foster regions of the inner and outer layers occur in different frequency ranges. Since the physically realizable frequency range must have Foster-compliant impedances for all layers, it is clear that the achromatic operating bandwidth for a bianisotropic metasurface is lower than that for a Huygens’ metasurface having the same parameters.

2.3. Bandwidth and size limits of refracting metasurfaces

Given that the impedance of each layer can have regions of both Foster and non-Foster behavior, we now consider the limits that this imposes on the total size and operating bandwidth of passive achromatic metasurfaces. A passive metasurface must be designed to operate within the unshaded regions for all of the relevant curves in Fig. 2.

 figure: Fig. 3

Fig. 3 Relationship between maximum metasurface size and fractional operating bandwidth for a purely passive realization in (a) Huygens and (b) bianisotropic refracting metasurfaces.

Download Full Size | PPT Slide | PDF

Consider first the case of a Huygen’s metasurface, which is limited only by the Foster-compliant region of the inner layer Z2. From Eq. (5) we observe that the boundaries between Foster and non-Foster impedance occur periodically. Hence, the distance between these points, which gives the width of the Foster-compliant impedance range, is the same for all unit cells, and is given by

ΔΦt=Φt,b(in)Φt,a(in)=π.
We note that this result is independent of the additional phase shift Φ0.

Consider that the metasurface operates between frequencies fmin and fmax, where Δf = fmaxfmin, and it has a total width Δx = xmaxxmin. In normalized coordinates the corresponding range is given as ΔΦt = Φt,max − Φt,min. We also allow for the case where (sin θout − sin θin) < 0, which results in a simple sign change. From the linearity of Eq. (1) in x and ω = 2πf, the limit on the bandwidth and total size of a Huygens’ metasurface is

ΔfΔx12nbg|sinθoutsinθin|(Huygens)
For bianisotropic metasurfaces, we need to consider the overlap between regions where all three layers are Foster-compliant [i.e. the region in Fig. 2(b) where none of the curves is shaded yellow], making the final Foster-compliant region smaller. Noting that the non-Foster regions of the inner and outer layers do not overlap, the width of the Foster-compliant region is given by
ΔΦt=Φt,b(out)Φt,b(in)=π2arccos(Z¯).
This leads to the final limit for bianisotropic metasurfaces of
ΔfΔxπ2arccos(Z¯min)4πnbg|sinθoutsinθin|.(bianisotropic)

Here min is obtained by substituting the TE or TM input and output impedances into Eq. (7). For both polarizations the limiting value is identical, and is determined by whichever of the incoming or outgoing angles is lower

Z¯min=min(cosθincosθout,cosθoutcosθin).

Fig. 3 shows limits on achromatic metasurfaces obtained from Eqs. (9) and (11) for several values of θout, with θin = 0°. We see that the allowable metasurface bandwidth and size are inversely proportional, requiring designers to make a trade-off between the two, which becomes more severe for large angles of refraction. We also see that the bianisotropic metasurfaces have a much worse trade-off compared to Huygens’ metasurfaces, due to the strongly varying impedance required to match both the incident and transmitted waves. The trade-off between metasurface size and bandwidth can be understood from the fact that a larger metasurface requires a larger delay at its edge, as discussed in [17,18]. This must be realized by sub-wavelength passive structures, which are limited in the maximum achievable group delay. On the other hand, if a metasurface is allowed to have arbitrary thickness, then there is no limit on the group delay which can be achieved. However, sub-wavelength thickness underlies the key advantages of metasurfaces, namely their compactness and ease of fabrication with planar fabrication techniques.

 figure: Fig. 4

Fig. 4 (a) Metasurface with several different frequencies of incoming plane wave in focusing operation. (b) The Required phase response as a function of position, is shown for three different frequencies, where λ0 is the wavelength of the center frequency.

Download Full Size | PPT Slide | PDF

It can also be observed that the limits given by Eqs. (9) and (11) contain no quantities which are specific to the considered structure made from three metallic layers. Given that the physics of Huygens’ metasurfaces is essentially the same regardless of the structure used, it is quite likely that similar limits would apply for any type of refracting Huygens’ or bianisotropic metasurface with sub-wavelength thickness.

3. Limits on achromatic metasurface lenses

The anomalous refraction which we analyzed in Section 2 is the building block for more complex metasurface devices such as lenses. Given the physical limits on the size and bandwidth for uniform refraction, it is clear that there should be a corresponding limit on the performance of a lens. The key difference is that the angle of refraction θ(x) is dependent on position, thus the transmission phase profile differs from that in Eq. (1). As shown in Fig. 4(a), we consider normally incident plane waves, with the transmitted wave focused at a distance F from the metasurface. The transmission phase has a hyperbolic dependence [13] and can be written as,

Φt(x,ω)=ωnbgΔl(x)+Φ0(ω),
where Δl(x) is the difference in the optical path-length from each position on the metasurface to the focal point
Δl(x)=(x2+F2F)
We normalize this optical path length by the position x to show how it is also related to the local refraction angle θ(x).
Δl(norm)(x)=Δl(x)x=1cos[θ(x)]sin[θ(x)].

 figure: Fig. 5

Fig. 5 Relationship between the radius and fractional bandwidth for a metasurface lens with (a) Huygens and (b) bianisotropic realizations. Results are shown for different values of normalized focal length.

Download Full Size | PPT Slide | PDF

As with uniform refraction, maintaining a constant focal length F over the operating bandwidth requires implementing a specified constant phase delay at each location. This hyperbolic phase profile can be analyzed by the spatially-dependent two-port impedance parameters in Eq. (2), enabling the constraints on bandwidth to be obtained. From Eq. (14) it is clear that a larger delay is required for larger apertures (i.e. large values of x) and for shorter focal lengths [13].

The largest delay, and hence the tightest constraint on the achromatic bandwidth, comes from the largest difference in normalized optical path length Δlmax(norm) at position x = R, corresponding to Δlmax indicated in Fig. 4(a). Substituting this value into Eq. (8) gives the constraints imposed by the inner layer Z2, which is the overall limit for a Huygens’ metasurface lens

ΔfR12nbgΔlmax(norm)(Huygens)

For bianisotropic metasurfaces, there is a dependence of the outgoing local wave impedance Zout on position, in which the difference is maximum at the edge of the aperture, x = R. At this location, the outgoing wave impedance for TE waves is Zout=(μ/)cosθmax and for TM waves is Zout=(μ/)secθmax. The maximum refraction angle θmax=arctan(RF) is shown in Fig. 4(a). Since we assume a normally incident beam, for both TE and TM waves the incoming wave impedance is Zin=(μ/).

As with anomalous refraction, the overall limits on a bianisotropic lens come from the overlap of Foster-compliant regions of all impedances, given by Eq. (10), leading to

ΔfRπ2arccos(Z¯min)4πnbgΔlmax(norm).(bianisotropic)
Here min is obtained from Eq. (12) evaluated for θin = 0 and θout = θmax to give the normalized wave impedances at x = R.

The bandwidth and size limitations for metasurface lenses are plotted in Fig. 5. Similar to uniform anomalous refraction, there is a clear trade-off between lens radius and operating bandwidth, which is more severe for bianisotropic metasurfaces. This analytical result is in line with the results shown in [17,18] where in an achromatic metasurface lens the maximum delay increases with the lens aperture. We show curves for different values of normalized focal length FR, and from Eq. (14) it is clear that a shorter focal length also results in a tighter limit, since it increases the maximum optical path length difference Δlmax(norm). The focal length is related to the maximum refraction angle by RF=tanθmax, therefore this result is consistent with the limits on uniform refraction which are more stringent for larger refraction angles. We can express the normalized focal length in terms of the numerical aperture, which has the values 0.5, 0.766 and 0.939 respectively for the three curves shown in Fig. 5.

We note that achromatic meta-lenses reported in the literature use relatively low values of numerical aperture, 0.106 to 0.15 in [19], and 0.02 and 0.2 in [18]. The mechanism of these metasurfaces is somewhat different, being based on the Pancharatnam-Berry phase imparted on the wave during circular polarization conversion. In [19] the achromatic operating bandwidth did not significantly change with numerical aperture, however increased numerical aperture was accompanied by reduced efficiency.

4. Conclusion

We analyzed the bandwidth constraints on achromatic metasurfaces with fixed refraction angle and high transmission efficiency, realized with a three layer printed circuit design of sub-wavelength thickness. We showed that there is a physical limit on the combination of size, bandwidth and refraction angle of the metasurfaces, that cannot be overcome regardless of the meta-atom design or fabrication quality. This limit arises because the meta-atoms are represented by one-port equivalent impedances, which must comply with Foster’s reactance theorem to be passive and causal.

It was shown that increasing operating bandwidth comes at the cost of decreased size, and that bianisotropic metasurfaces have much worse trade-off compared to Huygens’ metasurfaces, despite their better refraction efficiency. The same analysis was applied to an achromatic metasurface lens, showing a similar trade-off between aperture size and operating bandwidth, which becomes more severe for shorter focal lengths (i.e. high numerical aperture).

Although our results were derived for three layer printed circuit designs, the physical principle of all sub-wavelength Huygens’ and bianisotropic metasurfaces is quite similar. Therefore we predict that other metasurface technologies should be subject to similar performance constraints. We also note that the limits were derived based on the assumption of full efficiency operation. Thus it may be possible to design a metasurface which overcomes these limits, but it would significantly distort the transmitted beam.

Funding

Australian Research Council Linkage Project LP160100253; Indonesia Endowment Fund for Education (LPDP) PRJ-1081/LPDP.3/2017.

References

1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]   [PubMed]  

2. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012). [CrossRef]  

3. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015). [CrossRef]  

4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013). [CrossRef]   [PubMed]  

5. C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013). [CrossRef]  

6. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013). [CrossRef]   [PubMed]  

7. A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016). [CrossRef]  

8. A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016). [CrossRef]  

9. J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016). [CrossRef]  

10. V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018). [CrossRef]  

11. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012). [CrossRef]   [PubMed]  

12. J. Cheng, S. Inampudi, F. Fan, X. Wang, S. Chang, and H. Mosallaei, “Dielectric metasurfaces in transmission and reflection modes approaching and beyond bandwidth of conventional blazed grating,” Opt. express 26, 12547–12557 (2018). [CrossRef]   [PubMed]  

13. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015). [CrossRef]   [PubMed]  

14. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015). [CrossRef]   [PubMed]  

15. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016). [CrossRef]  

16. S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. express 25, 7121–7130 (2017). [CrossRef]   [PubMed]  

17. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017). [CrossRef]  

18. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018). [CrossRef]   [PubMed]  

19. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018). [CrossRef]   [PubMed]  

20. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017). [CrossRef]   [PubMed]  

21. M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013). [CrossRef]  

22. C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013). [CrossRef]  

23. G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018). [CrossRef]  

24. R. M. Foster, “A reactance theorem,” Bell Labs Tech. J. 3, 259–267 (1924). [CrossRef]  

25. W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000). [CrossRef]  

26. P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013). [CrossRef]  

27. J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  2. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
    [Crossref]
  3. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
    [Crossref]
  4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  5. C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
    [Crossref]
  6. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
    [Crossref] [PubMed]
  7. A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016).
    [Crossref]
  8. A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016).
    [Crossref]
  9. J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
    [Crossref]
  10. V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
    [Crossref]
  11. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
    [Crossref] [PubMed]
  12. J. Cheng, S. Inampudi, F. Fan, X. Wang, S. Chang, and H. Mosallaei, “Dielectric metasurfaces in transmission and reflection modes approaching and beyond bandwidth of conventional blazed grating,” Opt. express 26, 12547–12557 (2018).
    [Crossref] [PubMed]
  13. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref] [PubMed]
  14. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
    [Crossref] [PubMed]
  15. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
    [Crossref]
  16. S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. express 25, 7121–7130 (2017).
    [Crossref] [PubMed]
  17. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
    [Crossref]
  18. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
    [Crossref] [PubMed]
  19. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
    [Crossref] [PubMed]
  20. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
    [Crossref] [PubMed]
  21. M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
    [Crossref]
  22. C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013).
    [Crossref]
  23. G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
    [Crossref]
  24. R. M. Foster, “A reactance theorem,” Bell Labs Tech. J. 3, 259–267 (1924).
    [Crossref]
  25. W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
    [Crossref]
  26. P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
    [Crossref]
  27. J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017).
    [Crossref]

2018 (4)

V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
[Crossref]

J. Cheng, S. Inampudi, F. Fan, X. Wang, S. Chang, and H. Mosallaei, “Dielectric metasurfaces in transmission and reflection modes approaching and beyond bandwidth of conventional blazed grating,” Opt. express 26, 12547–12557 (2018).
[Crossref] [PubMed]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

2017 (4)

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. express 25, 7121–7130 (2017).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017).
[Crossref]

2016 (4)

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016).
[Crossref]

J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
[Crossref]

2015 (3)

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

2013 (6)

M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref] [PubMed]

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[Crossref]

2012 (2)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
[Crossref] [PubMed]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2000 (1)

W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
[Crossref]

1924 (1)

R. M. Foster, “A reactance theorem,” Bell Labs Tech. J. 3, 259–267 (1924).
[Crossref]

Achouri, K.

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Al-Joumayly, M. A.

M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
[Crossref]

Alù, A.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref] [PubMed]

Arbabi, A.

Arbabi, E.

Argyropoulos, C.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[Crossref]

Asadchy, V.

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Asadchy, V. S.

V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
[Crossref]

Behdad, N.

M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

Bykov, A. Y.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Caloz, C.

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chang, S.

Chen, B. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Chen, C.

Chen, J.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Chen, M.-K.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Chen, P.-Y.

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Chen, Y. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Cheng, J.

Chu, C. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Díaz-Rubio, A.

V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
[Crossref]

Eleftheriades, G. V.

J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016).
[Crossref]

Epstein, A.

J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016).
[Crossref]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref] [PubMed]

Fan, F.

Faraon, A.

Foster, R. M.

R. M. Foster, “A reactance theorem,” Bell Labs Tech. J. 3, 259–267 (1924).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Geyi, W.

W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

Grbic, A.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

Horie, Y.

Huang, T.-T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Inampudi, S.

Jarmuszewski, P.

W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
[Crossref]

Kamali, S. M.

Kanhaiya, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

Kats, M. A.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Lai, J.

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Larouche, S.

Lavigne, G.

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Li, M.

M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Li, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Li, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Lin, R.-M.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Luo, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Ma, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Minovich, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Miroshnichenko, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Monticone, F.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref] [PubMed]

Mosallaei, H.

Mou, J.

J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017).
[Crossref]

Murzina, T. V.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Neshev, D. N.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013).
[Crossref]

Pu, M.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Qi, Y.

W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
[Crossref]

Rousso, D.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Shen, Z.

J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
[Crossref] [PubMed]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Sun, J.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tretyakov, S.

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Tretyakov, S. A.

V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Wang, J.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

S. Wang, J. Lai, T. Wu, C. Chen, and J. Sun, “Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface,” Opt. express 25, 7121–7130 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Wong, J. P.

J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Wu, T.

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhao, Z.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Bell Labs Tech. J. (1)

R. M. Foster, “A reactance theorem,” Bell Labs Tech. J. 3, 259–267 (1924).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10–35 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

J. P. Wong, A. Epstein, and G. V. Eleftheriades, “Reflectionless wide-angle refracting metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 15, 1293–1296 (2016).
[Crossref]

IEEE Transactions on Antennas Propag. (3)

W. Geyi, P. Jarmuszewski, and Y. Qi, “The Foster reactance theorem for antennas and radiation-Q,” IEEE Transactions on Antennas Propag. 48, 401–408 (2000).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas Propag. 64, 3880–3895 (2016).
[Crossref]

M. Li, M. A. Al-Joumayly, and N. Behdad, “Broadband true-time-delay microwave lenses based on miniaturized element frequency selective surfaces,” IEEE Transactions on Antennas Propag. 61, 1166–1179 (2013).
[Crossref]

IEEE Transactions on Microw. Theory Tech. (1)

C. Pfeiffer and A. Grbic, “Millimeter-wave transmitarrays for wavefront and polarization control,” IEEE Transactions on Microw. Theory Tech. 61, 4407–4417 (2013).
[Crossref]

JOSA B (1)

A. Epstein and G. V. Eleftheriades, “Huygens metasurfaces via the equivalence principle: Design and applications,” JOSA B 33, A31–A50 (2016).
[Crossref]

Laser & Photonics Rev. (1)

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Rev. 9, 195–213 (2015).
[Crossref]

Nano letters (1)

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano letters 15, 5358–5362 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics 7, 1069–1094 (2018).
[Crossref]

Nat. Commun. (1)

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227 (2018).
[Crossref] [PubMed]

Opt. express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (3)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110, 203903 (2013).
[Crossref] [PubMed]

P.-Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-foster metasurfaces,” Phys. Rev. Lett. 111, 233001 (2013).
[Crossref]

Sci. Reports (2)

J. Mou and Z. Shen, “Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching,” Sci. Reports 7, 6922 (2017).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. reports 6, 19885 (2016).
[Crossref]

Science (3)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Other (1)

G. Lavigne, K. Achouri, V. Asadchy, S. Tretyakov, and C. Caloz, “Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction,” IEEE Trans on Antennas Propag. (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Metasurface with several different frequencies of incoming plane wave in refracting operation. (b) The Required phase response as a function of position, is shown for three different frequencies, where λ0 is the wavelength of the center frequency. (c) Equivalent circuit model of the three-layered structure.
Fig. 2
Fig. 2 The imaginary component of impedance (reactance) for each layer (blue curve) as a function of Φt (which is proportional to frequency ω) for (a) Huygens and (b) bianisotropic metasurfaces. According to Foster’s theorem, the frequency derivative of the reactance (red curve) must be positive to enable a passive realization. The shading indicates the regions of non-Foster reactance and the crosses mark the transition between Foster and non-Foster regions calculated from Eqs. (5) and (6).
Fig. 3
Fig. 3 Relationship between maximum metasurface size and fractional operating bandwidth for a purely passive realization in (a) Huygens and (b) bianisotropic refracting metasurfaces.
Fig. 4
Fig. 4 (a) Metasurface with several different frequencies of incoming plane wave in focusing operation. (b) The Required phase response as a function of position, is shown for three different frequencies, where λ0 is the wavelength of the center frequency.
Fig. 5
Fig. 5 Relationship between the radius and fractional bandwidth for a metasurface lens with (a) Huygens and (b) bianisotropic realizations. Results are shown for different values of normalized focal length.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Φ t ( x , ω ) = ω x n bg ( sin θ out sin θ in ) + Φ 0 ( ω ) ,
Z ( x , ω ) = [ j Z in cot ( Φ t + Φ 0 ) j Z in Z out sin ( Φ t + Φ 0 ) j Z in Z out sin ( Φ t + Φ 0 ) j Z out cot ( Φ t + Φ 0 ) ]
Z 2 ( x , ω ) = Z s 2 Z 12 ( cos ( 2 β s t ) 1 ) 2 det [ Z ] j 2 Z 0 Z 12 sin ( 2 β s t ) Z 1 , 3 ( x , ω ) = Z s det [ Z ] sin ( β s t ) j det [ Z ] cos ( β s t ) + Z s Z sin ( β s t ) , where Z = { Z 11 + Z 12 for Z 1 Z 22 + Z 12 for Z 3
d X n d Φ t > 0 ( n = 1 , 2 , 3 ) .
Φ t , a ( in ) = 2 π m + π 2 Φ 0 , Φ t , b ( in ) = 2 π m + 3 π 2 Φ 0 ,
Φ t , a , b ( out ) = 2 π m + π ± arccos ( Z ¯ ) Φ 0 ( only if 1 < Z ¯ < 1 ) .
Z ¯ = { Z in Z in Z out for Z 1 Z out Z in Z out for Z 3
Δ Φ t = Φ t , b ( in ) Φ t , a ( in ) = π .
Δ f Δ x 1 2 n bg | sin θ out sin θ in | ( Huygens )
Δ Φ t = Φ t , b ( out ) Φ t , b ( in ) = π 2 arccos ( Z ¯ ) .
Δ f Δ x π 2 arccos ( Z ¯ min ) 4 π n bg | sin θ out sin θ in | . ( bianisotropic )
Z ¯ min = min ( cos θ in cos θ out , cos θ out cos θ in ) .
Φ t ( x , ω ) = ω n bg Δ l ( x ) + Φ 0 ( ω ) ,
Δ l ( x ) = ( x 2 + F 2 F )
Δ l ( norm ) ( x ) = Δ l ( x ) x = 1 cos [ θ ( x ) ] sin [ θ ( x ) ] .
Δ f R 1 2 n bg Δ l max ( norm ) ( Huygens )
Δ f R π 2 arccos ( Z ¯ min ) 4 π n bg Δ l max ( norm ) . ( bianisotropic )

Metrics