Abstract

Efficiently controlling the direction of optical radiation at nanoscale dimensions is essential for various nanophotonics applications. All-dielectric nanoparticles can be used to engineer the direction of scattered light via overlapping of electric and magnetic resonance modes. Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering and enhanced forward scattering. Introducing higher-order electric and magnetic resonance modes satisfies the generalized first Kerker condition for breaking through the dipole approximation. Zero backward scattering occurs near the electric and magnetic resonant regions, this directional scattering is therefore efficient. Adjusting the nanoparticles’ geometric parameters can shift the spectral position of the broadband zero backward scattering to the visible and near-infrared regions. The wavelength width of the zero backward scattering could be enlarged as high as 142 and 63 nm in the visible and near-infrared region. Due to these unique optical features the proposed core-shell nanoparticles are promising candidates for the design of high-performance nanoantennas, low-loss metamaterials, and photovoltaic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Efficient control of optical radiation at nanoscale dimensions is crucial for future light-on-chip integration. One of the interesting topics is the use of small particles to engineer specific directions of scattered light [1–3], as applied to solar energy [4], light emitting devices [5,6] and nanoantennas [7–9]. Localized surface plasmonic resonances in individual metal nanostructures have been extensively studied as they can reduce free-space light to sub-wavelength levels [10,11]. However, to achieve the aforementioned goal of controlling the directions of incident light, a specific combination of several metal nanostructures must be applied [12–14]. Furthermore, all metallic nanostructures have high metal loss, which limits their size scalability in practical applications, there by making them undesirable in signal generation and transmission [15].

One approach to avoid this limitation and still maintain similar resonant characteristics is to use high refractive index dielectric materials [16–19]. An individual high refractive index dielectric nanosphere can simultaneously exhibit electric dipole resonance (ED) and magnetic dipole resonance (MD) [20–23]. The optically induced magnetic response in a single sphere originates from a circular displacement current driven by the incident electric field, which generates a magnetic moment perpendicular to the incident electric field [24–29]. The ED interferes with the MD of the nanoparticles, which can inhibit backward scattering in a single nanosphere [23, 30–32]. Recently, the scattering properties of a single Ge nanosphere in the visible region have been reported [23]. As compared with the resonance wavelength range and peak magnitude of ED and MD of a single Si nanosphere, those of a single Ge nanosphere are more similar; thus, a single Ge nanosphere can achieve high scattering efficiency while also achieving the zero backward scattering [23]. Furthermore, Ge has a higher refractive index and extinction coefficient in the visible range as compared with Si, and the order of magnitude of its third-order nonlinear optical coefficient is also greater than that of Si. These factors make Ge more efficient when used in photothermal [33] and nonlinear optical materials [34]. However, the unidirectionality of a single nanosphere can only be achieved at a single wavelength. Several studies have proposed heterogeneous nanostructures composing metal and Si to optimize the scattering properties [35–41], such as dimers and core-shell nanoparticles. Technological advances have led to new possibilities for fabricating core-shell nanoparticles with several layers [42]. The core-shell nanaoparticles are capable to enlarge the wavelength range of the zero backward scattering and increase the scattering efficiency while achieving zero backward scattering [35–38,41]. Thus, the scattering properties of the core-shell nanostructures based on high refractive index dielectric Ge together with highly optimized features have not yet been studied.

Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve the broadband zero backward scattering and enhanced forward scattering. The core-shell SiO2-Ge-SiO2 nanoparticles satisfy the generalized Kerker condition beyond the dipole approximation. The zero value of the backward scattering efficiency can be achieved owing to the interferences involving of dipole and higher-order electromagnetic resonance modes. The zero backward scattering is efficient because the resonance wavelength ranges of ED and MD are located near the zero backward scattering. We also demonstrate that zero backward scattering with a broad wavelength range is achieved through optimization of the structural parameters. Moreover, we study the relationship between the spectral position of the broadband zero backward scattering and the thickness of each layer. Our results show promising potential for the development of nanoantennas, biosensors, and photovoltaic devices.

2. Geometry and theoretical model

Figure 1 illustrates the studied core-shell SiO2-Ge-SiO2 nanoparticle and the related coordinate systems where R1 is the radius of the SiO2 core; R2 is the inner part of the nanoparticle comprising the SiO2 core and Ge layer; R3 is the radius of the entire nanoparticle, t1=R2R1 is the thickness of the Ge layer and t2=R3R2 is the thickness of the outer SiO2 layer. The direction of the incident light and polarization is along the z-axis and x-axis, respectively. The angle between the incident and scattered light is the scattering angle θ whereas the angle between the projection of the scattered light on the x–y plane and the x-axis is the azimuth angle ϕ. Gray represents Ge, and red represents SiO2. Light scattering of spherical particles in free space can be explained using the Mie theory; the scattering cross section is defined as the ratio of the energy of light scattered by a particle per unit of time to the intensity of the incident light:

Csca=2πk2n=1(2n+1)(|an|2+|bn|2),
where k = 2π/λ is the wave number; electric and magnetic resonance modes can be expressed by an and bn with n = 1,2,3 representing a dipole, a quadrupole and an octupole respectively. The ratio of the scattering section to the projected area of the particles in the incident light’s direction is defined as the scattering efficiency, which is dimensionless and written as follows:
Qsca=Csca/S,
where S is the cross-section of the particle facing the incident light. The S of the core-shell nanoparticle with outer radius R3 studied herein can be written as S=πR32. The backward scattering efficiency of the nanoparticles corresponds to the scattering angle θ = 180° and be written as:
Qb=1k2R32|n=1(1)n(2n+1)(anbn)|2.

Equation (3) indicates that, when nanoparticles are effected only by a dipole (n = 1) mode, the backward scattering efficiency can be written as follows:

Qb=9k2R32|a1b1|2.
Small particles have been predicted to be capable of exhibiting both electric and magnetic resonance scatterings with coherent effects between them; hence, the scattered radiation can be controlled by the interferences between electric and magnetic components. For specific values of electric permittivity and magnetic permeability of the magnetic sphere, the response of the small particles to plane-wave illumination may comprise electric and magnetic resonance modes of each order with equal amplitudes [3]. The first Kerker condition, which can be written as al = bl,l ≥ 1 is that when they oscillate in-phase, zero backward scattering can be achieved and the far-field scattering pattern of particles is concentrated in the direction of the incident wave. This condition implies that the core-shell nanoparticles must satisfy the conditions of equal Mie scattering efficiency of electric and magnetic resonance modes of each order to achieve the zero backward scattering. In Eq. (4) when the condition of a1 = b1 is satisfied, Qb = 0 can be achieved, by ignoring the higher-order electric and magnetic resonance modes (under dipole approximation), zero backward scattering of the nanoparticles can be attained. When n = 2, Eq. (3) becomes:
Qb=1k2R32|5(a2b2)3(a1b1)|2.
From Eq. (5), when the conditions of a1 = b1 and a2 = b2 are simultaneously satisfied, Qb = 0 can be achieved. This condition not only requires that the magnitudes of the contributions of ED and MD to the total scattering be equal, but also the electric quadrupole (EQ) and magnetic quadrupole (MQ) be equal independently. However, from a mathematical perspective, achieving Qb = 0 requires only a zero value of the Mie scattering coefficients of dipole and quadrupole related terms 5(a2b2) − 3(a1b1), which requires the real and imaginary parts of 3(a1b1) and 5(a2b2) to be equal. In this case, the interference between dipoles can be extended to other higher-order multipoles and the multipolar interference principles can be applied to control the scattering. The zero backward scattering results from the interferences involving mainly ED, MD, EQ, and MQ modes [38]. This is the introduction of the quadrupole’s role in satisfying the generalized Kerker effects that breaks the dipole approximation.

 

Fig. 1 Geometry of the core-shell SiO2-Ge-SiO2 nanoparticle.

Download Full Size | PPT Slide | PDF

3. Results and discussions

We first demonstrate the scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. The refractive index of Ge is derived from Palik [43] and the refractive index of SiO2 is set to 1.55. Figure 2(a) shows the backward and forward scattering efficiency spectra of the core-shell SiO2-Ge-SiO2 nanoparticles. Zero backward scattering is clearly attained at the wavelength of λ = 720 nm, as indicated by the vertical purple dashed line. The red solid line represents the forward scattering efficiency, showing that when zero backward is achieved, highly enhanced forward scattering can also be gained. Notably, the Qf/Qb ratio cannot be used to characterize the scattering in our case because the ratio will be infinite as a consequence of the zero value of Qb. To analyze the basic mechanisms behind the zero backward scattering achieved by the core-shell nanoparticles at λ = 720 nm, the contributions of the Mie multipole decomposition related term (n = 1,2,3) to the total scattering efficiency are given in Fig. 2(b). As shown by the vertical purple dashed line, the contributions of the dipole modes in addition to the quadrupole modes to the total scattering efficiency can not be ignored at λ = 720 nm. However, the primary effect is due to ED and MD, wherein, as indicated by the curves corresponding to ED (red solid line) and MD (blue solid line), the resonance range and peak magnitude of these two components are quite similar at the wavelength of λ = 720 nm. It should be noted that the contributions of the quadrupole modes are much weaker than the dipole modes, indicating that the zero backward scattering is mostly the result of the interference of ED and MD; the interference of EQ and MQ plays a secondary role. Furthermore, because the wavelength position of the zero backward scattering is located at the wavelength region of ED and MD, the total scattering efficiency reaches a high value at the wavelength of λ = 720 nm, as indicated by the black solid line in Fig. 2(b), thereby implying that this directional scattering is efficient. However, although the resonance wavelength ranges of the ED and MD overlap, the peak magnitude of ED is larger than that of MD and they do not intersect at λ = 720 nm; thus, the traditional first Kerker condition is not satisfied because of a1b1. In the following section, we demonstrate that the zero backward scattering results from the generalized Kerker effects, which considers the quadrupole modes.

 

Fig. 2 Calculated scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) Forward and backward scattering efficiencies spectra. (b) The contribution of the Mie multipole decomposition term to the total scattering efficiency; a1 (ED) and b1 (MD) for the dipole term; a2 (EQ) and b2 (MQ) for the quadrupole term; and a3 and b3 for the octupole term. (c) Far-field scattering patterns of the nanoparticles at 720 nm. (d) Two-dimensional (2D) angular distributions of the nanoparticles at 720 nm.

Download Full Size | PPT Slide | PDF

To show the zero backward scattering at λ = 720 nm vividly, the far-field scattering patterns and the corresponding two-dimensional (2D) angular distributions of the core-shell SiO2-Ge-SiO2 nanoparticles at λ = 720 nm are shown in Figs. 2(c) and 2(d). In Fig. 2(d), the blue curve (p) represents the scenario where the scattering plane is located at ϕ = 0 and the red curve (s) represents ϕ = π/2; these scenarios correspond to the p-polarized and s-polarized components of incident light, respectively. Most of the scattered light is clearly concentrated in the forward hemisphere whereas the backward hemisphere has little scattered light, and the scattering is zero in the strict backward direction. This behavior further demonstrates that perfect zero backward scattering of the core-shell SiO2-Ge-SiO2 nanoparticles can be achieved at λ = 720 nm.

As mentioned previously, in Fig. 2(b), the curves representing the contributions of ED and MD to the total scattering efficiency do not intersect at λ = 720 nm, which means that the traditional first Kerker condition is not satisfied when zero backward scattering is achieved. For a clearer explanation, we need to verify the mathematical relationship of the Mie scattering coefficients for not only the dipole terms but also the dipole and quadrupole related terms. Figure 3(a) shows the real and imaginary parts of the dipole terms of the Mie scattering coefficients; the black and red solid lines represent the real part of a1 and b1, respectively, whereas the blue and magenta solid lines represent the imaginary part of a1 and b1, respectively. To deduce the wavelength position where the first Kerker condition of a1 = b1 is satisfied, we must find the intersects of curves for both the real part and imaginary parts of a1 and b1 at the same wavelength. The green line perpendicular to the x-axis at λ = 720 nm identifies the real part’s intersection, however, the curve of the imaginary part does not intersect, meaning that a1b1 and the first Kerker condition is not satisfied. Therefore, the dipole approximation is not fulfilled and quadrupole modes should be considered. In Eq. (5), to achieve Qb = 0, 5(a2 − b2) − 3(a1 − b1) should be zero, for which we have drawn the real and imaginary parts of the 3(a1 − b1) and 5(a2 − b2) related terms in Fig. 3(b). Similarly, the black and red solid lines represent the real part of the 3(a1 − b1) and 5(a2 − b2) related terms, whereas the blue and magenta solid lines represent the imaginary parts of the 3(a1 − b1) and 5(a2 − b2) related terms, respectively. The green line perpendicular to the x-axis in Fig. 3(b) simultaneously identifies the intersections of curves of the real and imaginary parts of the 3(a1 − b1) and 5(a2 − b2) terms at λ = 720 nm where zero backward scattering was achieved, which means that 3Re(a1 − b1) = 5Re(a2 − b2) and 3Im(a1 − b1) = 5Im(a2 − b2). We concluded that the zero backward scattering achieved at λ = 720 nm of the core-shell SiO2-Ge-SiO2 nanoparticles does not result from the interference of only ED and MD. Instead, the core-shell SiO2-Ge-SiO2 nanoparticles satisfy the generalized Kerker condition, where quadrupole electromagnetic modes are considered to interfere with dipole modes to achieve zero backward scattering.

 

Fig. 3 Real and imaginary parts of the multipole Mie scattering coefficients of core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) The dipole terms a1 and b1. (b) The dipole-related term 3(a1b1) and the quadrupole-related term 5 (a2b2).

Download Full Size | PPT Slide | PDF

According to the Mie theory, the scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles depend on the refractive index of each layer and the geometry of the structure. Therefore, the geometric parameters R1, t1 and t2 can be adjusted to shift the wavelength position of the zero backward scattering. In the following, we show that relatively broadband zero backward scattering can be obtained by optimizing the thickness of the Ge layer. Notably, perfect zero backward scattering can only be achieved where the condition of 5(a2 − b2) − 3(a1 − b1) = 0 is satisfied at certain wavelengths. In practical applications, backward scattering efficiency at very low values (Qb < 0.02) can be approximated to the zero backward scattering, as is the case for the remaining manuscript. Figure 4(a) shows the backward scattering efficiency of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 fixed at 76 nm and t2 fixed at 103 nm as the function of the wavelength and the thickness of the Ge layer t1. For convenience, we drew the zero backward scattering region as black. Figure 4(a) shows that, when t1 > 23 nm, broadband zero backward scattering appears in the wavelength range greater 870 nm and the spectral position of broadband zero backward scattering will be red-shifted with increasing t1. This red-shift occurs because the resonance range and the peaks of ED and MD shift to longer wavelengths as t1 increases. Regardless of how the spectral position of the zero backward scattering shifts, the width on the horizontal (wavelength) dimension of the broadband zero backward scattering reaches at least 23 nm. When t1 < 23 nm, broadband zero backward scattering occurs in both the visible and near-infrared regions. The broadband zero backward scattering that appears in the visible region is the result of the interferences of the higher order electromagnetic modes. In particular, when t1 = 8 nm the broadband zero backward scattering covers the wavelength ranges from 458 to 600 nm and from 700 to 755 nm, as shown by the horizontal white dashed line in Fig. 5(a). The zero backward scattering not only exhibits a broadband in the horizontal dimension (wavelength), but also in the vertical dimension (thickness of Ge layer). The zero backward scattering covers the range from 7 to 20 nm of the thickness of Ge layer with the incident light fixed at 451 nm, as shown by the vertical white dashed line in Fig. 4(a). Figure 4(b) shows the forward scattering efficiency of the core-shell SiO2-Ge-SiO2 nanoparticles with the same size as those shown in Fig. 4(a). The strong red color shows that, when zero backward scattering is achieved, highly enhanced forward scattering can be obtained, especially in the near-infrared region, corresponding to the black region in Fig. 4(a). It should be noted that when t1 > 30 nm the broadband suppression of the forward scattering is also possible to achieve in the visible region in Fig. 4(b). However, the backward scattering is also weak in the same wavelength when t1 > 30 nm according to Fig. 4(a), which means that the overall scattering efficiency is very low.

 

Fig. 4 The relationship between the unidirectional scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles and the Ge layer thickness t1 with R1 fixed at 76 nm and t2 fixed at 103 nm. (a) Contour plot of the backward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (b) Contour plot of the forward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (c) Forward and backward scattering efficiency spectra of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm, as indicated by the horizontal white dashed line in (a). (d) Forward and backward scattering efficiency of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm and t2 =103 nm versus t1 when the wavelength was fixed at 451 nm, as indicated by the vertical white dashed line in (a).

Download Full Size | PPT Slide | PDF

To represent the broadband zero backward scattering corresponding to the white dashed line in Fig. 4(a) more clearly, the scattering efficiency spectra of the core-shell nanoparticles with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm is given in Fig. 4(c), where N1, N2, N3 and N4 indicate the broadband wavelength range. As the red solid line indicates, enhanced forward scattering is achieved when the zero backward scattering is achieved, especially in the near-infrared region. Figure 4(d) shows the plot of the scattering efficiency vs the t1 of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm, t2 = 103 nm and the wavelength fixes at 451nm; also M1 and M2 identify the broadband geometry range. The far-field scattering patterns and corresponding 2D angular distributions at marked points N1, N2, N3 and N4 are given in Fig. 5. The scattering in the backward direction is almost completely suppressed at these four points, indicating a 142-nm and a 55-nm bandwidth of the zero backward scattering in the visible region and near-infrared regions for the core-shell SiO2-Ge-SiO2 nanoparticles. In summary, shifting the zero backward scattering to the visible and near-infrared regions through the thickness of Ge layer of the core-shell SiO2-Ge-SiO2 nanoparticles is effective.

 

Fig. 5 Far-field scattering patterns and corresponding 2D angular distributions of core-shell SiO2-Ge-SiO2 nanoparticles at different wavelengths with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm. (a) λ = 458 nm; (b) λ = 600 nm; (c) λ = 700 nm; and (d) λ = 755 nm.

Download Full Size | PPT Slide | PDF

The relationships between the unidirectional scattering properties and the two parameters R1 and t2 of the core-shell SiO2-Ge-SiO2 nanoparticles were elucidated. Figure 6(a) shows the contour plot of backward scattering efficiency as a function of wavelength and R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. Figure 6(a) shows that, when R1 is greater than 45 nm, the broadband zero backward scattering begins to appear in the near-infrared region. As R1 increases, the zero backward scattering gradually shifts to longer wavelengths and exhibits a maximum width of 61 nm in wavelength dimension when R1 reaches 103 nm. Figure 6(b) shows a contour plot of the forward scattering efficiency as a function of wavelength and R1 with the same size as in Fig. 6(a). These results demonstrate that the highly enhanced forward scattering can be attained when achieving the zero backward scattering, which can be observed from the strong red region in Fig. 6(b), that corresponds to the black region in Fig. 6(a). In the visible region, a broadband zero backward scattering that moves toward longer wavelengths as R1 increases is observed. When R1 = 80 nm, a maximum broadband 53-nm wide is observed in the visible region. Notably, the electric and magnetic resonance modes of the core-shell SiO2-Ge-SiO2 nanoparticles are provided by the Ge layer. In the core-shell nanostructures with high refractive index materials shell, the ED is a result of a surface plasmon mode, whereas the MD is the result of a cavity type mode; thus, the influence of the inner SiO2 and outer SiO2 layer on the zero backward scattering is the result of smoothly shifting the operating resonance wavelength of electric and magnetic resonance modes; the increasing bandwidth feature of the zero backward scattering is due to the larger overlap of electric and magnetic resonance modes. The same phenomenon occurs when t2 changes. Figure 6(c) presents a contour plot of the backward scattering efficiency as a function of wavelength and t2, with R1 fixed at 76 nm and t1 fixed at 16 nm. Two broadband backward scattering whose wavelength position moves to longer wavelengths as t2 increases appear in the visible and near-infrared region. By changing the parameter t2, we increased the maximum wavelength width of the backward scattering as high as 54 nm in the visible region and as high as 63 nm in the near-infrared region. Similar to Fig. 6(b), strong red region exists in Fig. 6(d) corresponding to the black region of backward scattering in Fig. 6(c); thus, broadband zero backward scattering and enhanced forward scattering can be achieved simultaneously.

 

Fig. 6 (a) The contour of backward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (b) The contour of forward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (c) The contour of backward scattering efficiency contour as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm. (d) The contour of forward scattering efficiency as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we proposed the all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering in addition to enhanced forward scattering. Zero backward scattering is efficient, especially in the near-infrared region, because the spectral position of zero backward scattering is located in the resonance wavelength range of ED and MD, which are the primary effects on zero backward scattering. Without fulfilling the dipole approximation, the interferences between dipole and higher-order electromagnetic modes must be considered to gain broadband zero backward scattering. Zero backward scattering with a broadband feature can be achieved owing to the wide wavelength range when electric and magnetic resonance modes overlap. By changing the independent geometric parameters of the core-shell SiO2-Ge-SiO2 nanoparticles, the wavelength range of the zero backward scattering can be as large as 140 nm in the visible region and as large as 63 nm in the near-infrared region. The unique capability of the core-shell SiO2-Ge-SiO2 nanoparticles may lead to their application in nano-antennas, low-loss metamaterials and photovoltaic devices.

Funding

National Natural Science Foundation of China (NSFC) (Grant No. 61201102, 61774062, 11204092); Natural Science Foundation of Guangdong Province, China (Grant No. S201204000634, 2016A030313851).

Acknowledgments

The authors acknowledge Professor Sheng Lan for his guidance.

References and links

1. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

2. M. Kerker, The scattering of light and other electromagnetic radiation (Academic, 1969).

3. M. Kerker, D. S. wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983). [CrossRef]  

4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010). [CrossRef]  

5. S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014). [CrossRef]   [PubMed]  

6. M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011). [CrossRef]  

7. A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012). [CrossRef]   [PubMed]  

8. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013). [CrossRef]   [PubMed]  

9. M. Panmai, J. Xiang, Z. Sun, Y. Peng, H. Liu, H. Liu, Q. Dai, S. Tie, and S. Lan, “All-silicon-based nano-antennas for wavelength and polarization demultiplexing,” Opt. Express 26(10), 12344–12362 (2018). [CrossRef]   [PubMed]  

10. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006). [CrossRef]  

11. S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002). [CrossRef]  

12. J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013). [CrossRef]   [PubMed]  

13. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012). [CrossRef]  

14. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011). [CrossRef]   [PubMed]  

15. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015). [CrossRef]  

16. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010). [CrossRef]  

17. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009). [CrossRef]  

18. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011). [CrossRef]  

19. J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014). [CrossRef]   [PubMed]  

20. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011). [CrossRef]   [PubMed]  

21. D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015). [CrossRef]  

22. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011). [CrossRef]  

23. C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017). [CrossRef]  

24. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012). [CrossRef]   [PubMed]  

25. W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017). [CrossRef]  

26. D. Zhang, J. Xiang, H. Liu, F. Deng, H. Liu, M. Ouyang, H. Fan, and Q. Dai, “Magnetic fano resonance of heterodimer nanostructure by azimuthally polarized excitation,” Opt. Express 25(22), 26704–26713 (2017). [CrossRef]   [PubMed]  

27. J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011). [CrossRef]  

28. T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017). [CrossRef]   [PubMed]  

29. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016). [CrossRef]   [PubMed]  

30. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013). [CrossRef]   [PubMed]  

31. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013). [CrossRef]   [PubMed]  

32. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013). [CrossRef]   [PubMed]  

33. S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017). [CrossRef]  

34. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016). [CrossRef]   [PubMed]  

35. H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015). [CrossRef]   [PubMed]  

36. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017). [CrossRef]   [PubMed]  

37. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015). [CrossRef]   [PubMed]  

38. W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018). [CrossRef]   [PubMed]  

39. W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

40. W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017). [CrossRef]  

41. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012). [CrossRef]   [PubMed]  

42. G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016). [CrossRef]   [PubMed]  

43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  2. M. Kerker, The scattering of light and other electromagnetic radiation (Academic, 1969).
  3. M. Kerker, D. S. wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73(6), 765–767 (1983).
    [Crossref]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
    [Crossref]
  5. S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
    [Crossref] [PubMed]
  6. M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
    [Crossref]
  7. A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
    [Crossref] [PubMed]
  8. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
    [Crossref] [PubMed]
  9. M. Panmai, J. Xiang, Z. Sun, Y. Peng, H. Liu, H. Liu, Q. Dai, S. Tie, and S. Lan, “All-silicon-based nano-antennas for wavelength and polarization demultiplexing,” Opt. Express 26(10), 12344–12362 (2018).
    [Crossref] [PubMed]
  10. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
    [Crossref]
  11. S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
    [Crossref]
  12. J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
    [Crossref] [PubMed]
  13. I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
    [Crossref]
  14. J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
    [Crossref] [PubMed]
  15. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
    [Crossref]
  16. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
    [Crossref]
  17. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  18. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
    [Crossref]
  19. J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
    [Crossref] [PubMed]
  20. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  21. D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
    [Crossref]
  22. R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
    [Crossref]
  23. C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
    [Crossref]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
    [Crossref] [PubMed]
  25. W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
    [Crossref]
  26. D. Zhang, J. Xiang, H. Liu, F. Deng, H. Liu, M. Ouyang, H. Fan, and Q. Dai, “Magnetic fano resonance of heterodimer nanostructure by azimuthally polarized excitation,” Opt. Express 25(22), 26704–26713 (2017).
    [Crossref] [PubMed]
  27. J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
    [Crossref]
  28. T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
    [Crossref] [PubMed]
  29. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
    [Crossref] [PubMed]
  30. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref] [PubMed]
  31. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  32. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  33. S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
    [Crossref]
  34. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
    [Crossref] [PubMed]
  35. H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
    [Crossref] [PubMed]
  36. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
    [Crossref] [PubMed]
  37. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
    [Crossref] [PubMed]
  38. W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
    [Crossref] [PubMed]
  39. W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).
  40. W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
    [Crossref]
  41. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref] [PubMed]
  42. G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
    [Crossref] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

2018 (2)

2017 (8)

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

D. Zhang, J. Xiang, H. Liu, F. Deng, H. Liu, M. Ouyang, H. Fan, and Q. Dai, “Magnetic fano resonance of heterodimer nanostructure by azimuthally polarized excitation,” Opt. Express 25(22), 26704–26713 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

2016 (3)

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

2015 (4)

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

2014 (2)

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

2013 (5)

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (4)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

2011 (6)

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

2010 (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

1983 (1)

Abouraddy, A. F.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Ahmed, A.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

Aizpurua, J.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Barreda, A. I.

Bernal, F.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Best, M. D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Cai, D.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Camden, J. P.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Cao, Z.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Chantada, L.

Chen, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Chen, J.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Chen, K.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Chen, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Crozier, K. B.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

Dai, Q.

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Deng, F.

Deng, S.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Dogariu, A.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Dregely, D.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Esslinger, M.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Fan, H.

Feng, T.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Fink, Y.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Garcia-Camara, B.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

García-Etxarri, A.

Giessen, H.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Giles, C. L.

Gómez Rivas, J.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Gomez-Medina, R.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

González, F.

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Gordon, R.

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Hsieh, M.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Huang, Y.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Irie, M.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Ishii, S.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Ji, W.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Joannopoulos, J. D.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Kaufman, J. J.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Kawata, S.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Ke, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Kerker, M.

Kern, K.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Khunsin, W.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

Kim, Y.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Knoester, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Koenderink, A. F.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Kuo, M.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Lan, S.

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Li, Y.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Liang, Z.

Lin, H.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Lin, S.

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

Lin, Y.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Liu, H.

Liu, P.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Liu, S.

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, W.

W. Liu and Y. S. Kivshar, “Generalized Kerker effects in nanophotonics and meta-optics [Invited],” Opt. Express 26(10), 13085–13105 (2018).
[Crossref] [PubMed]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Liu, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Ma, C.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Maksymov, I. S.

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Malyshev, A. V.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Malyshev, V. A.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Ming, N.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Miroshnichenko, A. E.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Moreno, F.

J. M. Sanz, R. A. Osa, A. I. Barreda, J. M. Saiz, F. González, and F. Moreno, “Influence of pollutants in the magneto-dielectric response of silicon nanoparticles,” Opt. Lett. 39(11), 3142–3144 (2014).
[Crossref] [PubMed]

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Munárriz, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

Nagao, T.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Naraghia, R. R.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron Silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref] [PubMed]

Niu, X.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Ohtsu, M.

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

Okuyama, H.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

Osa, R. A.

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

Ouyang, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pan, J.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Panmai, M.

Peng, Y.

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Rogach, A. L.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Saenz, J. J.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Sáenz, J. J.

Saiz, J. M.

Sanz, J. M.

Scheffold, F.

Shabahang, S.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Shi, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Steinbusch, T. P.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Su, Y.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Suarez-Lacalle, I.

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

Sukhov, S. V.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Sun, Z.

Tao, G.

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Tie, S.

Verschuuren, M. A.

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

Wan, M.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Wang, D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

wang, D. S.

Wang, H.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Wang, W.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Wang, Y.

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

Wang, Z.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Wu, J.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Wu, W.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

Xiang, J.

Xiong, L.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Xu, N.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Xu, Y.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Yan, J.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Yan, Z.

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Yang, G.

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Yao, Y.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, P.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zhan, P.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

Zhang, D.

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Zhang, L.

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

Zhang, W.

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhao, X.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Zheng, L.

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhu, W.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

ACS Nano (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, “Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement,” ACS Nano 9(1), 436–448 (2015).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index Germanium nanoparticles,” Adv. Opt. Mater. 5(5), 1600902 (2017).
[Crossref]

C. Ma, J. Yan, Y. Huang, and G. Yang, “Directional scattering in a germanium nanosphere in the visible light region,” Adv. Opt. Mater. 5(24), 1700761 (2017).
[Crossref]

Aip Adv. (1)

J. Pan, Z. Chen, Z. Yan, Z. Cao, P. Zhan, N. Ming, and Z. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” Aip Adv. 1(4), 2075 (2011).
[Crossref]

J. of Nanophotonics (1)

R. Gomez-Medina, B. Garcia-Camara, I. Suarez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Saenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. of Nanophotonics 5(1), 053512 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

D. Cai, Y. Huang, W. Wang, W. Ji, J. Chen, Z. Chen, and S. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (7)

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical nanoantennas with tunable radiation patterns,” Nano Lett. 13(2), 444–450 (2013).
[Crossref] [PubMed]

J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi-Uda nanoantennas,” Nano Lett. 11(7), 2819–2824 (2011).
[Crossref] [PubMed]

M. Kuo, Y. Kim, M. Hsieh, and S. Lin, “Efficient and directed nano-LED emission by a complete elimination of transverse-electric guided modes,” Nano Lett. 11(2), 476–481 (2011).
[Crossref]

A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12(5), 2625–2630 (2012).
[Crossref] [PubMed]

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett. 13(5), 2194–2198 (2013).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single Germanium nanodisks excited at the anapole Mode,” Nano Lett. 16(7), 4635 (2016).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

I. S. Maksymov, I. Staude, A. E. Miroshnichenko, and Y. S. Kivshar, “Optical Yagi-Uda nanoantennas,” Nanophotonics 1(1), 65–81 (2012).
[Crossref]

Nat. Commun. (1)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205–213 (2010).
[Crossref]

Nature Nanotech. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotech. 10(1), 2–6 (2015).
[Crossref]

Nature Photon. (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon. 5(9), 523–530 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

S. R. K. Rodriguez, F. Bernal, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113(24), 247401 (2014).
[Crossref] [PubMed]

T. Feng, Y. Xu, W. Zhang, and A. E. Miroshnichenko, “Ideal magnetic dipole scattering,” Phys. Rev. Lett. 118(17), 173901 (2017).
[Crossref] [PubMed]

W. Liu, “Generalized magnetic mirrors,” Phys. Rev. Lett. 119(12), 123902 (2017).
[Crossref]

Plasmonics. (2)

W. Wang, X. Zhao, L. Zheng, L. Xiong, Y. Lin, and H. Lin, “Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells,” Plasmonics. 13(1), 1–6 (2017).

W. Wang, Y. Wang, Y. Shi, and Y. Liu, “Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells,” Plasmonics. 12(5), 1537–1543 (2017).
[Crossref]

PNAS (1)

G. Tao, J. J. Kaufman, S. Shabahang, R. R. Naraghia, S. V. Sukhov, J. D. Joannopoulos, Y. Fink, A. Dogariu, and A. F. Abouraddy, “Digital design of multimaterial photonic particles,” PNAS 113(25), 6839–6844 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257 (2010).
[Crossref]

Sci. Rep. (3)

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5, 12491 (2015).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(7), 492 (2012).
[Crossref] [PubMed]

Other (5)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

M. Kerker, The scattering of light and other electromagnetic radiation (Academic, 1969).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics (Springer-Verlag, 2002).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of the core-shell SiO2-Ge-SiO2 nanoparticle.
Fig. 2
Fig. 2 Calculated scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) Forward and backward scattering efficiencies spectra. (b) The contribution of the Mie multipole decomposition term to the total scattering efficiency; a1 (ED) and b1 (MD) for the dipole term; a2 (EQ) and b2 (MQ) for the quadrupole term; and a3 and b3 for the octupole term. (c) Far-field scattering patterns of the nanoparticles at 720 nm. (d) Two-dimensional (2D) angular distributions of the nanoparticles at 720 nm.
Fig. 3
Fig. 3 Real and imaginary parts of the multipole Mie scattering coefficients of core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 58 nm, t1 = 73 nm and t2 = 182 nm. (a) The dipole terms a1 and b1. (b) The dipole-related term 3(a1b1) and the quadrupole-related term 5 (a2b2).
Fig. 4
Fig. 4 The relationship between the unidirectional scattering properties of the core-shell SiO2-Ge-SiO2 nanoparticles and the Ge layer thickness t1 with R1 fixed at 76 nm and t2 fixed at 103 nm. (a) Contour plot of the backward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (b) Contour plot of the forward scattering efficiency as a function of wavelength and the Ge layer thickness t1. (c) Forward and backward scattering efficiency spectra of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm, as indicated by the horizontal white dashed line in (a). (d) Forward and backward scattering efficiency of the core-shell SiO2-Ge-SiO2 nanoparticles with R1 = 76 nm and t2 =103 nm versus t1 when the wavelength was fixed at 451 nm, as indicated by the vertical white dashed line in (a).
Fig. 5
Fig. 5 Far-field scattering patterns and corresponding 2D angular distributions of core-shell SiO2-Ge-SiO2 nanoparticles at different wavelengths with R1 = 76 nm, t1 = 8 nm and t2 = 103 nm. (a) λ = 458 nm; (b) λ = 600 nm; (c) λ = 700 nm; and (d) λ = 755 nm.
Fig. 6
Fig. 6 (a) The contour of backward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (b) The contour of forward scattering efficiency as a function of wavelength and the core SiO2 layer radius R1 with t1 fixed at 16 nm and t2 fixed at 103 nm. (c) The contour of backward scattering efficiency contour as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm. (d) The contour of forward scattering efficiency as a function of wavelength and the outer SiO2 layer thickness t2 with R1 fixed at 76 nm and t1 fixed at 16 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C sca = 2 π k 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) ,
Q sca = C sca / S ,
Q b = 1 k 2 R 3 2 | n = 1 ( 1 ) n ( 2 n + 1 ) ( a n b n ) | 2 .
Q b = 9 k 2 R 3 2 | a 1 b 1 | 2 .
Q b = 1 k 2 R 3 2 | 5 ( a 2 b 2 ) 3 ( a 1 b 1 ) | 2 .

Metrics