Abstract

We demonstrate intense emission in the water-window soft x-ray spectral region by controlling the spectral behavior through changing the balance between emissivity and self-absorption in an expanding plasma. The number of photons obtained from a dual laser irradiated target with a 150-ps pre-pulse was maximized at 3.8 × 1014 photons/sr in λ = 2.34 − 4.38 nm at a pulse separation time of 7 − 10 ns. Enhancement of the number of photons is attributed to efficient coupling with the main laser pulse while maintaining a tiny source size.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Water-window soft x-ray emission, which lies between the oxygen K-edge (OK-edge) at 2.34 nm and the carbon K-edge (CK-edge) at 4.38 nm, is of great interest, due to its importance for achieving a compact, efficient light source, for use with a microscope for high resolution in vivo microscopic biological structure imaging of samples such as cells and macromolecules [1]. A zone-plate is used in a soft x-ray microscope (SXM) to achieve high resolution [2,3] with a coherent beam of synchrotron radiation or line emission originating from high order harmonics [4,5], plasma soft x-ray lasers [6,7], and incoherent emission in laser-produced low-Z plasmas [8].

There is a drawback with the operation of laboratory-scale water-window soft x-ray microscopes based on laser-produced low-Z plasmas, such as the liquid nitrogen plasma used for continuous multi-shot operation, because the shot-by-shot output flux is low due to the narrowband nature of the line emission [3]. The total collected energy and the throughput are also low and many exposures are needed to record an image. To overcome the low efficiency imposed by line sources, we proposed and demonstrated a water-window soft x-ray source based on utilizing unresolved transition array (UTA) spectral structure [9]. One of candidate high-Z elements is bismuth (Bi) because its unresolved transition array (UTA) consists of many resonant lines that give rise to a feature greater than 0.5 nm in extent with a peak wavelength of 4 nm in the water-window soft x-ray spectral region [10,11]. Therefore, we expect high output flux with high efficiency from a Bi high-Z plasma source compared to low-Z plasmas. If we consider the coupling between the 4-nm Bi-UTA emission [9,12] and grazing-incidence multilayer-coated condenser optics with a reflection coefficient of 22% [13], then, the throughput for the soft x-ray microscope is expected to be 10% from the source to the biological sample, which corresponds to a significant improvement of the condenser optics over previous reports [14]. However, the number of photons is unknown from the Bi plasma source [9]. In addition, to achieve high photon flux output, it is important to control the spectral behavior by reducing self-absorption and increasing the spectral purity in the spectral region of interest. Our approach is to use dual laser pulses to realize the optimum spectral structure and most efficient energy coupling.

The use of dual laser pulses is an efficient way to control plasma dynamics. The scheme would allow the effective utilization of the main laser pulse energy to heat a pre-plasma, which would otherwise be wasted to ionize the target material. Choice of an appropriate delay between dual laser pulses could in effect control the electron density of the plasma and its scale length of the density gradient, where the main laser pulse would interact. As the main laser pulse would interact with a pre-plasma having a density lower than that of the target, the electron temperature would decrease compared to that in the case of a single laser pulse [15–18]. In addition, we also demonstrated the self-absorption (opacity), which is caused by the change of the optical thickness using the dual laser pulse irradiation scheme [19].

In this paper, we describe the generation of intense emission in the soft x-ray spectral region by controlling both the spectral structure and the number of photons by changing the pulse separation time under dual laser pulse irradiation. We also discuss the spectral behavior, related to the emissivity and opacity, observed in the Bi plasmas.

2. Experimental apparatus

Figure 1 shows a schematic diagram of the present experimental apparatus. The experiment was performed using Q-switched Nd:yttrium-aluminum-garnet (Nd:YAG) lasers. The wavelength of all Nd:YAG lasers was 1064 nm. To control the spectral behavior and the number of photons, a dual laser irradiation scheme consisting of a pre-pulse and a main laser pulse with provision for a variable pulse separation time between them, was employed. Different pre-pulse durations of 150 ps and 10 ns were used in order to compare the effects of plasma expansion, since the scale length of the electron density in the expanding plasma depends on the laser pulse duration. The effect of self-absorption in the 10-ns pre-pulse case is also expected to be larger than in the case of the 150-ps pre-pulse. The intensity of the 150-ps pre-pulse was 3.5 × 1010 W/cm2 at a pulse energy of 20 mJ and a focal spot diameter of 700 μm with a loosely focused beam in order to produce a large volume pre-ionized plasma (pre-plasma). At the pulse duration of 10 ns the intensity was 2.2 × 109 W/cm2 at a pulse energy of 50 mJ with same focal spot diameter of 700 μm. The intensity of the main pulse was 1.1 × 1014 W/cm2 at a pulse energy of 220 mJ with a pulse duration of 150 ps and a focal spot diameter of 40 μm. The pre-pulses irradiated the target at an incident angle of 60° with respect to the main laser axis and as already mentioned, were slightly defocused onto the Bi target. The resulting pre-pulse power density in both cases was sufficient to produce low ionized plasma but not enough to obtain any soft x-ray emission.

 figure: Fig. 1

Fig. 1 Schematic diagram of the experimental apparatus.

Download Full Size | PPT Slide | PDF

The plasmas were formed on the optical axis of a flat-field grazing-incidence spectrometer with a variable-line-spaced 2400 grooves/mm grating which was positioned at 30° with respect to the incident laser axis. Spectra were obtained by a thermoelectrically cooled back-illuminated x-ray charge coupled device (CCD) camera. The uncertainty of the present wavelength calibration is estimated to be 0.01 nm. The response of the grating and the x-ray CCD camera were calibrated using synchrotron radiation with a reflectometer installed at the BL-11D of the Photon Factory (PF) at KEK [20]. An x-ray pinhole camera with a 15-μm pinhole was used to identify the spatial distribution of the soft x-ray emission and was positioned at 90° with respect to the main laser axis. A 200-nm-thick Ti filter was inserted between a pinhole and an x-ray CCD camera.

3. Experimental results and discussion

Laser-produced plasmas of high-Z solid targets, such as Bi, irradiated by solid-state 1-μm lasers are optically thick. Therefore, it is critical to evaluate the plasma emissivity (radiation coefficient) and the opacity (absorption coefficient) so as to control the spectral structure, which is determined by the ionic charge states in the hot, dense plasmas. To observe the absorption effects, the optical thickness, which is related to the electron and ion densities and the length of the plasma through which the soft x-ray radiation passes, should be controlled. The optical thickness is determined by the initial density of the target [21,22], the thickness of the target [23], the pulse duration [24,25] and wavelength [26–29] of the laser pulse, and the irradiation scheme, i.e., whether single or dual laser pulse irradiation is used [17,19,30–32]. The dual laser pulse irradiation technique provides a controlled way to influence the behavior of the opacity of the expanding plasma, here provided by the pre-plasma. One control method is dual laser pulse irradiation [19,31-33]. The dual laser pulse irradiation technique provides a way to influence the behavior of the opacity of the expanding plasma, here provided by the pre-plasma. The length of the expanding plasma is expected to be controlled both by changing the pre-pulse duration and the pulse separation time, which in turn alters the absorption length and the opacity in the soft x-ray spectral region. For the spectral control we mapped the pulse separation time dependence of the spectra for the different pre-pulse durations of 10 ns in Fig. 2(a) and 150 ps in Fig. 2(b). Spectra between 1 and 7 nm at different pre-pulse durations show strong UTA emission around 4 nm, together with weaker broadband emission in the 2 − 4 nm wavelength range due to n = 4 − n = 5 (Δn = 1) transitions from multi-charged state ions with an outermost 4f subshell [9,12]. The UTA emission around 4 nm predominantly comes from 4d − 4f transitions in ions with an open 4d subshell or one electron outside a closed 4d subshell (Bi35+ − Bi45+) [9,12]. In general the emission from each stage moves to slightly longer wavelength with increasing ionization resulting in a UTA that emits in the 4 − 4.4 nm region. The number of photons at the two different pre-pulse durations was of the order of a few times 1013 photons/nm ⋅ sr for the 10-ns pre-pulse and 1014 photons/nm ⋅ sr for the 150-ps pre-pulse and in each case decreased by approximately a factor of two at longer inter-pulse delays. Note that the dip in the UTA spectrum near 4.3 nm is caused by K-absorption of carbon originating from hydrocarbon contamination on the surface of the grating [20].

 figure: Fig. 2

Fig. 2 Pulse separation time dependence of the soft x-ray emission from dual-laser-produced plasmas for pre-pulse durations of 10 ns (a) and 150 ps (b), respectively. Pulse separation time dependences of the number of photons in the water-window soft x-ray spectral region (2.34 − 4.38 nm) at pre-pulse durations of 10 ns (c) and 150 ps (d), and the relative spectral intensity enhancement [I(λ) − I0(λ)] / I0(λ) = ΔI(λ) / I0(λ) for pre-pulses of 10 ns duration (e) and 150 ps duration (f).

Download Full Size | PPT Slide | PDF

In the case of the 10-ns pre-pulse, the n = 4 − n = 5 (Δn = 1) UTA emission also decreased at longer inter-pulse delays with a similar temporal behavior as evident for the 4d − 4f UTA emission. The total number of photons in the water-window soft x-ray spectral region (2.34 − 4.38 nm) was constant at pulse separation times of 100 − 101 and 103 − 104 ns and decreased at a pulse separation time of 102 ns. The total number of photons reached a value of 1.5 × 1014 photons/sr, as shown in Fig. 2(c). The emission in the water-window soft x-ray spectral region does not increase for the 10-ns pre-pulse.

On the other hand, the 4d − 4fn = 0) UTA emission around 4 nm for the 150-ps pre-pulse increased slightly to reach a maximum value of about 1.8 × 1014 photons/nm ⋅ sr at a pulse separation time of 7 − 10 ns, as shown in Fig. 2(b), and subsequently decreased by about 30% at pulse separation times of 90 − 100 ns. Coinciding with the maximum UTA emission, the total number of photons throughout the water window spectral range increased to 3.8 × 1014 photons/sr, as shown in Fig. 2(d). At the time longer than 100 ns, the number of photons re-increased and reached at the value of 1.5 × 1014 photons/sr at the 10-ns pre-pulse at a pulse separation time of 1 μs and 3 × 1014 photons/sr at the 150-ps pre-pulse at a pulse separation time of 3 μs, when the effect of the pre-plasma completely vanished. This enhancement of the number of photons was attributed to efficient coupling between the plasma and the main laser pulse [15–18]. The spectral behavior was clearly controlled by the pulse separation time and the pre-pulse duration as can be seen from a comparison of between Figs. 2(a) and 2(b). Note that small enhancement from 3 to 3.8 × 1014 photons/sr of about 30% due to small self-absorption effect in Bi, as compared to large self-absorption effect in Sn for 13.5 nm and Gd for 6.7 nm.

For details of the spectral control, especially, to elucidate opacity effects on the emission of the different transition arrays, we determined the relative spectral intensity enhancement [I(λ) − I0(λ)] / I0(λ) = ΔI(λ) / I0(λ), where I(λ) and I0(λ) were the spectral intensities with and without the pre-pulses. This ratio of [I(λ) − I0(λ)] / I0(λ) is shown in Fig. 2(e) for the pre-pulse duration of 10 ns and Fig. 2(f) for the pre-pulse duration of 150 ps. In the case of the pre-pulse duration of 10 ns in Fig. 2(e), strong absorption in the wavelength regions corresponding to both the n = 4 − n = 5 and n = 4 − n = 4 UTAs is clearly present at pulse separation times of 20 − 100 ns. In considering the influence of n = 4 − n = 4 transitions on the spectra one needs to distinguish between 4d − 4f absorption which is expected to occur in the 4 − 4.5 nm region and essentially coincide with the position of the emission UTA and 4p − 4d absorption in ions with an open 4d subshell (Bi37+ − Bi45+) that do not contribute strongly to the emission but can give rise to very intense absorption. It explains the complex behavior observed in the 3 − 4 nm region, in particular at pulse separation times of 40 − 100 ns for the 150-ps pre-pulse. Similar results have been seen in photo-absorption by laser-produced plasmas formed on high-Z targets [34].

To understand the spectral behavior, we evaluated the emissivity (radiation coefficient) and the opacity (absorption coefficient) as shown in Figs. 3(a) and 3(b). These values were calculated using the steady-state collisional-radiative (CR) model assuming an electron density of 1 × 1019 cm−3 because the effective emissivity was a maximum in the range 1019 − 1020 cm−3. The kinetic process is not treated precisely enough in the original CR model. The energy levels and the rates of radiative decay and auto-ionization were also evaluated using the HULLAC code [35–37]. Note that, we evaluated the rate coefficients of autoionization and recombination processes in HULLAC calculation. After that, we inputted rate coefficients in the CR-model calculation as a post-processing in the present case. The absorption oscillator strength was obtained from the calculation using the HULLAC code in the configuration average (CA) mode, where only the dipole allowed transitions were taken into account. According to the emissivity calculation in Fig. 3(a), the emission around 4 nm was produced over a wide range of electron temperatures higher than 400 eV but emission in the 2 − 3 nm region, since it originates from lower in stages (Bi22+ − Bi35+) occurs at electron temperatures lower than 300 eV. To compare with the electron temperatures reached in our plasmas, the spatial distributions of electron temperature and electron density at the peak laser power density were determined by the radiation hydrodynamic simulation code STAR-2D [38]. The maximum electron temperature was calculated to be 500 eV at a laser power density of 1 × 1014 W/cm2 and a pulse separation time of 10 ns for the 150-ps pre-pulse. According to Fig. 3(a), the emissivity was maximized at an electron temperature region of 300 − 500 eV. As a result, we could have confidence in the validity of the radiation hydrodynamic simulation. It should be noted that the radial source size is strongly influenced by two-dimensional plasma expansion, because of the small focal spot diameter of 30 − 40 μm. The absorption coefficient, which determines the opacity effects, was calculated to be strong for 4-nm and 2 − 3-nm UTA emission at electron temperatures of 100 − 250 eV in Fig. 3(b). The absorption coefficient in Fig. 3(b) was larger at lower electron temperature because of the spectral shape matching. In general, the absorption coefficient depends on the spectral functions of the emission and absorption processes. As the spectral functions are matched at lower electron temperatures, the strong absorption would be resonantly induced in plasmas.

 figure: Fig. 3

Fig. 3 Calculated electron temperature dependence of the radiation emissivity coefficient ην (a) and absorption coefficient κ’(ν) (b) of Bi at an electron density of 1 × 1019 cm−3 obtained using the CR model, where ν is the frequency of the soft x-ray emission.

Download Full Size | PPT Slide | PDF

Absorption effects were greatest for a pulse separation time of around 80 ns, which coincides with a low electron temperature regime due to plasma expansion into the vacuum as shown in Figs. 2(a) and 2(b). In addition, for comparison in Figs. 2(e) and 2(f), the strong absorption in 1 − 2 nm and 3 − 4 nm at 10-ns and 150-ps pulse durations was observed at the pulse separation time in 20 − 100 ns. At the pulse separation time of 0 − 10 ns for the pulse duration of 150 ps, the emission in 1 − 7 nm was relatively increased. On the other hand, strong absorption in 1.5 − 2.5 nm and 3.8 − 4.2 nm at the pulse separation time of 0 − 10 ns for the pulse duration of 10 ns was caused by lower electron temperature region due to the expanding plasmas.

Since high brightness and a small source size are essential for microscopy, we next compare the source size obtained with and without the 150-ps pre-pulse, because the size of the water-window soft x-ray emission is expected to be increased under dual laser pulse irradiation conditions. The source size was measured to be 30 × 60 μm2 at an optimum pulse separation time of 7 ns in Fig. 4(b), which was almost the same as the 30 × 70 μm2 measured without the pre-pulse in Fig. 4(a), and which is three times greater than that of the numerically calculated source size of 10 μm. The size along the incident laser axis is determined by plasma expansion. We also observed a source size of 65 × 95 μm2 at a pulse separation time of 100 ns in Fig. 4(c), which corresponds to condition under which the lowest number of photons is observed as seen in Fig. 2(d). We believe that the decrease of the number of photons can be attributed to self-absorption in the long scale length expanding plasma. After decreasing the emission yield, the number of photons was increased again due to the pre-plasma disappearance before the main pulse irradiation. From the radiation hydrodynamic simulation, the source size is expected to be 30 μm after the main pulse irradiation, such as is the case for Sn plasmas used for 13.5-nm emission [39], and is expected to be of the same order for the experimental observation of the source size in Fig. 4(b). The resulting emission undergoes strong self-absorption in the expanding plasma. Therefore, the brightness of the source was kept at an optimum for pulse separation times of 7 − 10 ns.

 figure: Fig. 4

Fig. 4 Time-integrated pinhole images of soft x-ray emission without the pre-pulse (a) and with the 150-ps pre-pulse at pulse separation times of 7 ns (b) and 100 ns (c).

Download Full Size | PPT Slide | PDF

Note that the temporal duration of the emission was same order of the pulse duration of the main pulse by use of a spectrometer with an x-ray streak camera. Then, the pulse duration of the emission is expected to be the order of 200 ps with the main pulse duration of 150 ps [40].

4. Summary

In summary, we have demonstrated intense emission in the soft x-ray spectral region by controlling spectral behavior. The maximum number of photons was 3.8 × 1014 photons/sr in the water-window soft x-ray spectral region at a pulse separation time of 7 − 10 ns for a 150-ps pre-pulse with a source size of 30 × 60 μm2.

Funding

Japan Society for the Promotion of Science (JSPS) KAKENHI, Grant-in-Aid for Scientific Research (B) Grant No. JP15H03570, Grant-in-Aid for Young Scientists (B) Grant No. JP15K17728, Grant-in-Aid for JSPS Research Fellow Grant No. 17J08957; JSPS Bilateral Joint Research Project “Project for Bio-Imaging and Sensing at Utsunomiya University” Cooperative Research Program of “Network Joint Research Center for Materials and Devices” (under contract subject “20183037”). The UCD group was supported by the Science Foundation Ireland International Co-operation Strategic Award 13/ISCA/2846.

Acknowledgments

The authors are deeply indebted to Dr. Thanh-Hung Dinh [National Institutes for Quantum and Radiological Science and Technology (QST)], Mr. Yuhei Suzuki, Mr. Masato Kawasaki, Mr. Yoshiko Kondo, Mr. Yusuke Fujii, Mr. Yuichi Ono, Mr. Takuya Gisuji, and Mr. Toshiki Tamura (Utsunomiya University) for useful technical support and discussion. Measurements of the grating efficiency and the response of the x-ray CCD camera were performed with the approval of the Photon Factory Program Advisory Committee (proposal No. 2015G667).

References

1. J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982). [CrossRef]   [PubMed]  

2. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005). [CrossRef]   [PubMed]  

3. P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007). [CrossRef]   [PubMed]  

4. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003). [CrossRef]   [PubMed]  

5. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008). [CrossRef]   [PubMed]  

6. B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013). [CrossRef]   [PubMed]  

7. M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

8. P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005). [CrossRef]  

9. T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012). [CrossRef]  

10. B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013). [CrossRef]  

11. H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014). [CrossRef]  

12. T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016). [CrossRef]  

13. T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017). [CrossRef]  

14. K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999). [CrossRef]  

15. P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000). [CrossRef]  

16. A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002). [CrossRef]   [PubMed]  

17. T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005). [CrossRef]  

18. R. Fazeli, “Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets,” Phys. Lett. A 381(5), 467–471 (2017). [CrossRef]  

19. E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018). [CrossRef]  

20. T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016). [CrossRef]   [PubMed]  

21. T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006). [CrossRef]  

22. T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011). [CrossRef]  

23. S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005). [CrossRef]  

24. T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006). [CrossRef]  

25. T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012). [CrossRef]  

26. H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005). [CrossRef]  

27. T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010). [CrossRef]  

28. T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013). [CrossRef]   [PubMed]  

29. R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018). [CrossRef]  

30. T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006). [CrossRef]  

31. H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016). [CrossRef]  

32. R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016). [CrossRef]  

33. H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016). [CrossRef]  

34. G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001). [CrossRef]  

35. A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001). [CrossRef]  

36. A. Sasaki, “Construction of a collisional radiative model of complex multiple charged ions for mid- to high-Z elements,” High Energy Density Phys. 9(2), 325–335 (2013). [CrossRef]  

37. A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016). [CrossRef]  

38. A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008). [CrossRef]  

39. H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015). [CrossRef]  

40. T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015). [CrossRef]  

References

  • View by:

  1. J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982).
    [Crossref] [PubMed]
  2. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
    [Crossref] [PubMed]
  3. P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
    [Crossref] [PubMed]
  4. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
    [Crossref] [PubMed]
  5. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
    [Crossref] [PubMed]
  6. B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013).
    [Crossref] [PubMed]
  7. M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).
  8. P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
    [Crossref]
  9. T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
    [Crossref]
  10. B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
    [Crossref]
  11. H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
    [Crossref]
  12. T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
    [Crossref]
  13. T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
    [Crossref]
  14. K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999).
    [Crossref]
  15. P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
    [Crossref]
  16. A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
    [Crossref] [PubMed]
  17. T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
    [Crossref]
  18. R. Fazeli, “Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets,” Phys. Lett. A 381(5), 467–471 (2017).
    [Crossref]
  19. E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
    [Crossref]
  20. T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
    [Crossref] [PubMed]
  21. T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
    [Crossref]
  22. T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
    [Crossref]
  23. S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
    [Crossref]
  24. T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
    [Crossref]
  25. T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
    [Crossref]
  26. H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
    [Crossref]
  27. T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
    [Crossref]
  28. T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
    [Crossref] [PubMed]
  29. R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
    [Crossref]
  30. T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
    [Crossref]
  31. H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
    [Crossref]
  32. R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
    [Crossref]
  33. H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
    [Crossref]
  34. G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
    [Crossref]
  35. A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
    [Crossref]
  36. A. Sasaki, “Construction of a collisional radiative model of complex multiple charged ions for mid- to high-Z elements,” High Energy Density Phys. 9(2), 325–335 (2013).
    [Crossref]
  37. A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
    [Crossref]
  38. A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
    [Crossref]
  39. H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
    [Crossref]
  40. T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
    [Crossref]

2018 (2)

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

2017 (2)

R. Fazeli, “Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets,” Phys. Lett. A 381(5), 467–471 (2017).
[Crossref]

T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
[Crossref]

2016 (6)

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

2015 (2)

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

2014 (1)

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

2013 (4)

2012 (2)

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

2011 (1)

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

2010 (1)

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

2008 (2)

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
[Crossref]

2007 (1)

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

2006 (3)

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

2005 (5)

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
[Crossref]

2003 (2)

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

2002 (1)

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

2001 (2)

G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
[Crossref]

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
[Crossref]

2000 (1)

P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
[Crossref]

1999 (1)

K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999).
[Crossref]

1982 (1)

J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982).
[Crossref] [PubMed]

Akinaga, K.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

Amano, R.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

Anderson, E. H.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

Ando, T.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

Andreev, A.

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Andreev, A. A.

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

Aquila, A.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Arai, G.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Attwood, D. T.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Backus, S.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Baldwin, G. C.

J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982).
[Crossref] [PubMed]

Bar-Shalom, A.

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
[Crossref]

Barte, E. F.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

Baumgarten, C.

Chao, W.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

Chen, W.-B.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

Christov, I. P.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Cummins, T.

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

Dinh, T.-H.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

Dojyo, N.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Duffy, G.

G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
[Crossref]

Dunne, P.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
[Crossref]

P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
[Crossref]

Ejima, T.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

Endo, A.

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

Fazeli, R.

R. Fazeli, “Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets,” Phys. Lett. A 381(5), 467–471 (2017).
[Crossref]

Fujii, Y.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

Fujioka, S.

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Furukawa, H.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Gaudiosi, D.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Gibson, E. A.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Gisuji, T.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

Gu, Q.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Gullikson, E. M.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Hamada, M.

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

Hara, H.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

Harteneck, B. D.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

Hasegawa, N.

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Hatano, T.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Hertz, H. M.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
[Crossref]

Higashiguchi, T.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Holmberg, A.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Ishikawa, K. L.

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Ishino, M.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Iskakov, A. B.

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

Izawa, Y.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Jansson, P. A. C.

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
[Crossref]

Jiang, W.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

Johansson, G. A.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Kado, M.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Kanai, T.

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Kang, Y.-G.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Kapteyn, H. C.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Kato, D.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Kato, Y.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Kawachi, T.

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Kawasaki, K.

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

Kawasaki, M.

Kawata, S.

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Kikuchi, T.

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Kilbane, D.

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

Kishimoto, M.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Kitano, K.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Klapisch, M.

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
[Crossref]

Koike, F.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Kondo, Y.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

Kubodera, S.

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Li, B.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

Li, W.

Liddle, J. A.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

Limpouch, J.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

Lindblom, M.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Lokasani, R.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

Makimura, T.

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

Marconi, M. C.

Matsumoto, A.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

Menoni, C. S.

Midorikawa, K.

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Mima, K.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Miura, T.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

Miyanaga, N.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Miyazaki, T.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

Murakami, I.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Murakami, M.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Murnane, M. M.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Nabekawa, Y.

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Nagai, K.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Nagashima, K.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Nakamura, D.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

Nakano, H.

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

Nishihara, K.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
[Crossref]

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Nishikawa, T.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Nishikino, M.

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Nishimura, H.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Norimatsu, T.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

O’Gorman, C.

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

O’Reilly, D.

P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
[Crossref]

O’Reilly, F.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

O’Sullivan, G.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
[Crossref]

Ochi, Y.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Ohashi, H.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

Ohta, S.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Oikawa, H.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Okada, T.

Ono, Y.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Oreg, J.

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
[Crossref]

Otani, Y.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Otsuka, T.

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

Paul, A.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Rajyaguru, C.

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Reagan, B. A.

Rocca, J. J.

Sakano, K.

K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999).
[Crossref]

Sakaue, H. A.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Sakaue, K.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

Salsbury, C.

Sasaki, A.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

A. Sasaki, “Construction of a collisional radiative model of complex multiple charged ions for mid- to high-Z elements,” High Energy Density Phys. 9(2), 325–335 (2013).
[Crossref]

A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
[Crossref]

Sasaki, W.

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

Sasanuma, A.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

Shimada, Y.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Sokell, E.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

Solem, J. C.

J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982).
[Crossref] [PubMed]

Stollberg, H.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Sudo, S.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Sukegawa, K.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Sunahara, A.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
[Crossref]

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

Suzuki, C.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Suzuki, Y.

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

Takahashi, A.

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, T. Miura, A. Endo, P. Dunne, G. O’Sullivan, and T. Makimura, “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas,” Opt. Express 21(26), 31837–31845 (2013).
[Crossref] [PubMed]

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

Takahashi, E. J.

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Takman, P. A. C.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Tamura, N.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

Tamura, T.

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Tanaka, H.

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

Tanaka, M.

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Tobey, R.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Torii, S.

Tsuru, T.

T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
[Crossref]

Ueda, N.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

Urbanski, L.

van Kampen, P.

G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
[Crossref]

Vogt, U.

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
[Crossref]

Wagner, N.

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Wernsing, K. A.

Wu, T.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

Yamamoto, M.

K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999).
[Crossref]

Yamamoto, Y.

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Yasuda, Y.

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

Yatagai, T.

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

Yugami, N.

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

AIP Adv. (1)

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Appl. Phys. Express (2)

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

H. Hara, G. Arai, Y. Kondo, T.-H. Dinh, P. Dunne, G. O’Sullivan, T. Ejima, T. Hatano, W. Jiang, M. Nishikino, A. Sasaki, A. Sunahara, and T. Higashiguchi, “Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas,” Appl. Phys. Express 9(6), 066201 (2016).
[Crossref]

Appl. Phys. Lett. (15)

R. Lokasani, G. Arai, Y. Kondo, H. Hara, T.-H. Dinh, T. Ejima, T. Hatano, W. Jiang, T. Makimura, B. Li, P. Dunne, G. O’Sullivan, T. Higashiguchi, and J. Limpouch, “Soft X-ray emission from molybdenum plasmas generated by dual laser pulses,” Appl. Phys. Lett. 109(19), 194103 (2016).
[Crossref]

T. Higashiguchi, N. Dojyo, M. Hamada, W. Sasaki, and S. Kubodera, “Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles,” Appl. Phys. Lett. 88(20), 201503 (2006).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, and G. O’Sullivan, “Extreme ultraviolet source at 6.7 nm based on a low-density plasma,” Appl. Phys. Lett. 99(19), 191502 (2011).
[Crossref]

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K. Mima, Y. Shimada, A. Sunahara, and H. Furukawa, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87(24), 241503 (2005).
[Crossref]

T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Appl. Phys. Lett. 89(15), 151501 (2006).
[Crossref]

T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma,” Appl. Phys. Lett. 100(6), 061118 (2012).
[Crossref]

H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi, and T. Okada, “Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas,” Appl. Phys. Lett. 87(4), 041503 (2005).
[Crossref]

T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources,” Appl. Phys. Lett. 97(23), 231503 (2010).
[Crossref]

T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Feasibility study of broadband efficient “water window” source,” Appl. Phys. Lett. 100(1), 014103 (2012).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, ““Water window” sources: Selection based on the interplay of spectral properties and multilayer reflection bandwidth,” Appl. Phys. Lett. 102(4), 041117 (2013).
[Crossref]

H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, Y. Otani, T. Yatagai, B. Li, P. Dunne, G. O’Sullivan, W. Jiang, A. Endo, H. A. Sakaue, D. Kato, I. Murakami, N. Tamura, S. Sudo, F. Koike, and C. Suzuki, “Quasi-Moseley’s law for strong narrow bandwidth soft x-ray sources containing higher charge-state ions,” Appl. Phys. Lett. 104(23), 234107 (2014).
[Crossref]

P. Dunne, G. O’Sullivan, and D. O’Reilly, “Prepulse-enhanced narrow bandwidth soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Appl. Phys. Lett. 76(1), 34–36 (2000).
[Crossref]

T. Higashiguchi, C. Rajyaguru, S. Kubodera, W. Sasaki, N. Yugami, T. Kikuchi, S. Kawata, and A. Andreev, “Efficient soft x-ray emission source at 13.5 nm by use of a femtosecond-laser-produced Li-based microplasma,” Appl. Phys. Lett. 86(23), 231502 (2005).
[Crossref]

T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Appl. Phys. Lett. 88(16), 161502 (2006).
[Crossref]

T.-H. Dinh, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. O’Sullivan, S. Fujioka, N. Hasegawa, T. Kawachi, M. Nishikino, and T. Higashiguchi, “Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions,” Appl. Phys. Lett. 107(12), 121101 (2015).
[Crossref]

High Energy Density Phys. (1)

A. Sasaki, “Construction of a collisional radiative model of complex multiple charged ions for mid- to high-Z elements,” High Energy Density Phys. 9(2), 325–335 (2013).
[Crossref]

J. Appl. Phys. (2)

H. Hara, G. Arai, T.-H. Dinh, W. Jiang, T. Miura, A. Endo, T. Ejima, B. Li, P. Dunne, G. O’Sullivan, A. Sunahara, and T. Higashiguchi, “Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source,” J. Appl. Phys. 118(19), 193301 (2015).
[Crossref]

E. F. Barte, H. Hara, T. Tamura, T. Gisuji, W.-B. Chen, R. Lokasani, T. Hatano, T. Ejima, W. Jiang, C. Suzuki, B. Li, P. Dunne, G. O’Sullivan, A. Sasaki, T. Higashiguchi, and J. Limpouch, “Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions,” J. Appl. Phys. 123(18), 183301 (2018).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

T. Hatano, T. Ejima, and T. Tsuru, “Cr/Sc/Mo multilayer for condenser optics in water window microscopes,” J. Electron Spectrosc. Relat. Phenom. 220, 14–16 (2017).
[Crossref]

J. Microsc. (1)

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

J. Phys. At. Mol. Opt. Phys. (2)

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

G. Duffy, P. van Kampen, and P. Dunne, “4d → 5p transitions in the extreme ultraviolet photoabsorption spectra of Sn II and Sn III,” J. Phys. At. Mol. Opt. Phys. 34(15), 3171–3178 (2001).
[Crossref]

J. Phys. Conf. Ser. (1)

A. Sunahara, A. Sasaki, and K. Nishihara, “Two dimensional radiation hydrodynamic simulation for extreme ultra-violet emission from laser-produced tin plasmas,” J. Phys. Conf. Ser. 112(Pt. 4), 042048 (2008).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transf. 71(2–6), 169–188 (2001).
[Crossref]

Jpn. J. Appl. Phys.: Rapid Commun. (1)

R. Amano, T.-H. Dinh, A. Sasanuma, G. Arai, Y. Fujii, T. Hatano, T. Ejima, A. Sunahara, G. O’Sullivan, A. Takahashi, D. Nakamura, K. Sakaue, T. Miura, and T. Higashiguchi, “Influence of short pulse duration of carbon dioxide lasers on extreme ultraviolet emission from laser-produced plasmas,” Jpn. J. Appl. Phys.: Rapid Commun. 57(7), 070311 (2018).
[Crossref]

Nature (1)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Lett. A (1)

R. Fazeli, “Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets,” Phys. Lett. A 381(5), 467–471 (2017).
[Crossref]

Phys. Rev. A (1)

M. Nishikino, M. Tanaka, K. Nagashima, M. Kishimoto, M. Kado, T. Kawachi, K. Sukegawa, Y. Ochi, N. Hasegawa, and Y. Kato, “Demonstration of a soft-x-ray laser at 13.9 nm with full spatial coherence,” Phys. Rev. A 68(6), 061802 (R) (2003).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. A. Andreev, J. Limpouch, A. B. Iskakov, and H. Nakano, “Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(2), 026403 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent Water Window X Ray by Phase-Matched High-Order Harmonic Generation in Neutral Media,” Phys. Rev. Lett. 101(25), 253901 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Sakano and M. Yamamoto, “Development of soft x-ray multilayer mirrors for a wavelength of 3 nm,” Proc. SPIE 3767, 238–241 (1999).
[Crossref]

Rev. Sci. Instrum. (2)

P. A. C. Jansson, U. Vogt, and H. M. Hertz, “Liquid-nitrogen-jet laser-plasma source for compact soft x-ray microscopy,” Rev. Sci. Instrum. 76(4), 043503 (2005).
[Crossref]

T.-H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87(12), 123106 (2016).
[Crossref] [PubMed]

Science (2)

J. C. Solem and G. C. Baldwin, “Microholography of Living Organisms,” Science 218(4569), 229–235 (1982).
[Crossref] [PubMed]

E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302(5642), 95–98 (2003).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental apparatus.
Fig. 2
Fig. 2 Pulse separation time dependence of the soft x-ray emission from dual-laser-produced plasmas for pre-pulse durations of 10 ns (a) and 150 ps (b), respectively. Pulse separation time dependences of the number of photons in the water-window soft x-ray spectral region (2.34 − 4.38 nm) at pre-pulse durations of 10 ns (c) and 150 ps (d), and the relative spectral intensity enhancement [I(λ) − I0(λ)] / I0(λ) = ΔI(λ) / I0(λ) for pre-pulses of 10 ns duration (e) and 150 ps duration (f).
Fig. 3
Fig. 3 Calculated electron temperature dependence of the radiation emissivity coefficient ην (a) and absorption coefficient κ’(ν) (b) of Bi at an electron density of 1 × 1019 cm−3 obtained using the CR model, where ν is the frequency of the soft x-ray emission.
Fig. 4
Fig. 4 Time-integrated pinhole images of soft x-ray emission without the pre-pulse (a) and with the 150-ps pre-pulse at pulse separation times of 7 ns (b) and 100 ns (c).

Metrics