Abstract

We demonstrated a high-power (474 mW) blue superluminescent diode (SLD) on c-plane GaN-substrate for speckle-free solid-state lighting (SSL), and high-speed visible light communication (VLC) link. The device, emitting at 442 nm, showed a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. By integrating a YAG-phosphor-plate to the SLD, a CRI of 85.1 and CCT of 3392 K were measured, thus suitable for solid-state lighting. The SLD shows a relatively large 3-dB modulation bandwidth of >400 MHz, while a record high data rate of 1.45 Gigabit-per-second (Gbps) link has been achieved below forward-error correction (FEC) limit under non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Our results suggest that SLD is a promising alternative for simultaneous speckle-free white lighting and Gbps data communication dual functionalities.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ever since the first demonstration of ambient-sunlight wireless telephone communication [1], the field of optical wireless communication has evolved significantly. The recent advent of light-emitting diode (LED) and laser diode (LD) allows one to integrate efficient solid-state lighting (SSL) and high-speed visible light communication (VLC), offering data security and immunity to electromagnetic interference [2]. Beyond this, VLC provides the resource for mitigating the saturating bandwidth in the conventional radio-frequency (RF) band. The RF spectrum is limited to a bandwidth of ~300 GHz, which is significantly lower than the predicted bandwidth demand of 6 THz by 2035 [3], and ~1300 times lower than the bandwidth available in the visible light spectrum (~390 THz) [3,4]. Moreover, in the past 10 years, data transmission rate in VLC systems have remarkably improved from Megabit-per-second (Mbps) to Gigabit-per-second (Gbps) offering unprecedented possibilities of simultaneous functionalities in signaling, communication, localization, and illumination for the paradigm-shift in 5G technology [3,4] and beyond.

Light emitters are essential components in VLC, deserving a focused attention in order to push the limit for higher data rate and modulation bandwidth. Although Gbps-class high-speed data transmission based on LD has been reported [5–9], the speckle-noise and the concern for eye-safety remain as some of the existing challenges for practical implementation in SSL-VLC systems. Similarly, LED-based emitter have also been studied and demonstrated in SSL-VLC [10–12]; however in order to achieve high data rates, the LED-based VLC technology has to resort to complex modulation schemes and/or multiplexing configurations.

Group-III-Nitride-based superluminescent diodes (SLD) have received significant attention recently [13–16] owing to their unique features, which combine the advantages of both LEDs and LDs [17]. The short wavelength SLDs, have a broad spectral emission attributed to the coexistence of spontaneous and stimulated emission, known as amplified spontaneous emission (ASE) [18], making it a promising alternative for SSL-emitters. In parallel, highly directional beam (limited etendue) with high power, low speckle noise and droop-free can be achieved [19]. Conventionally, SLD is used in optical coherence tomography (OCT) [20], fiber gyroscope [21], sensing [22], and picoprojections [23]. Our previous works reported the fabrication of semipolar InGaN-based SLDs and the potential for white light generation with a CRI of 68.9 [19] and for data communications [24,25] However, the limited availability and high-cost of semipolar GaN substrate present significant challenges in eventual foundry adoption. Therefore, it is important to develop high-power blue SLD based on matured and relatively low-cost c-plane GaN substrate and fabrication technologies.

In this work, we present a high-power (>100 mW), broad spectral emission (6.5 nm) blue (442 nm) SLD on c-plane GaN substrate. The device shows a large 3-dB modulation bandwidth of >400 MHz and a record SLD data rate of 1.45 Gbps based on on-off keying (OOK) modulation. Integrating SLD with a commercial phosphor generates high quality white light with a color rendering index (CRI) of 85.1 and correlated color temperature (CCT) of 3392 K. Additionally, a record-breaking high-power of 474 mW was achieved under pulsed injection (2% duty cycle, 9.8 kHz). This is the first report on simultaneous attainment of high performance SLD characteristics for white-light communication, such as high power, color quality, modulation bandwidth and data rate, while droop-free, simply based on c-GaN substrate-platform, thus advancing SLD as a practical utility for simultaneous SSL-VLC technology.

2. Experimental setup

Various methods have been pursued to realize high-power SLD where the underlying mechanism is to suppress the formation of resonance cavity, such as implementing antireflection (AR) facet coating [26], tilting or bending the waveguide and facet [14,27,28], and utilizing a passive absorber [29]. In our work, we utilize a 12° tilted-facet as illustrated in Fig. 1(a), etched from a GaN-based 15-µm-wide ridge blue LD with a ~1 mm long waveguide. This tilted angle was adopted to minimize the reflectance from the front facet of the SLD without antireflection coatings (AR) [30], while the back facet is coated with a dielectric high-reflective (HR) mirror with >90% reflectivity in order to increase the output power. Conventional LD fabrication steps were used in a commercial epitaxial structure consisting of a c-plane GaN substrate, AlGaN p- and n-type cladding layers, InGaN active region with multiple quantum wells, p-AlGaN electron blocking layer, highly Mg-doped p-GaN contact layer and GaN waveguides similar to previous reported structures [31].

 figure: Fig. 1

Fig. 1 SLD device and electro-optical characteristics: (a) Scanning electron microscope image of the SLD and showing the angled facet. (b) Bias-dependent EL spectrum. (c) FWHM and peak position. (d) CW and (e) pulsed injection L–I–V curve of the SLD showing high peak optical power of 105 mW and 474 mW respectively. (f) External quantum efficiency (ηext) of the SLD, calculated from optical power (Poptical), elementary charge (e), injection current (I), Planck’s constant (h) and frequency of emitted light (υ).

Download Full Size | PPT Slide | PDF

The light-output – current – voltage (L–I–V) characteristics of the SLD device were measured up to 1 A in both continuous wave (CW) and pulsed mode (2% duty cycle, 9.8 kHz) using a customized probe station equipped with a Keithley 2520 pulsed laser diode system, a Labsphere integrating sphere, and a thermoelectric cooler (TEC) to stabilize the operation at room temperature (18 °C to 22 °C). The electroluminescence (EL) spectra measurement was conducted using an Ocean Optics HR4000 spectrometer. The generated white light from combining the SLD and a commercial phosphor-plate 930-LR from ChromaLit Linear Intematix was characterized using a GL-Spectis 5.0 Touch from GL-Optic, and the illuminance was measured using a Uni-T UT383 meter. The frequency response was measured using an Agilent E8361C PNA network analyzer. An Agilent 85093-60010 RF electronic calibration (E-cal) module was utilized for the calibration process. The data transmission experiment was conducted using the non-return-to-zero on-off-keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 210-1 data stream from the Agilent N4903B J-BERT pattern generator. The setup involves a Tektronix PSPL5580 bias tee, a Tektronix PSPL5866 linear amplifier, and a Menlo Systems APD210 Si avalanche photodetector as the receiver. Also, the eye diagrams were captured using an Agilent DCA-86100C digital communication analyzer during the NRZ-OOK data transmission measurement.

3. Results and discussion

The EL spectra of the SLD at different injection current are shown in Fig. 1(b). The change in the peak position and full-width at half-maximum (FWHM) of the SLD emission are summarized in Fig. 1(c). FWHM decreases from 20 nm to 6.5 nm on increasing injection current from 100 mA to 1 A respectively. Broad FWHM (6.5 nm) even at high injection currents (1 A, CW) confirm that the SLD is working in ASE regime. Such spectral narrowing is expected and attributed to the higher ASE near the peak optical gain of the active region [32]. Furthermore, initial blue shift is observed in the EL peak position of the SLD, which is mainly attributed to the band-filling effect, with a further red-shift in the peak positions at higher currents due to the increase in device heating.

L–I–V plots are presented in Fig. 1(d) and 1(e) under CW and pulsed injection (duty cycle of 2%, 9.8 kHz). The output power (optical) under both conditions reaches maximum values of 105 mW and 474 mW respectively, where the lower output power under CW injection is attributed to self-heating effect caused by high injection current, increasing the non-radiative recombinations and carrier escape from the heterostructure [33,44]. The L–I plots prove an exponential dependency of output power at lower injection currents (<700 mA), followed by a superlinear L–I characteristic. These characteristics are translated into droop-free emission with maximum external quantum efficiencies (EQE, ηext) of 6.74% and 16.91% for CW and pulsed injection respectively (Fig. 1(f)).

It is important to ponder the emission wavelength and the crystal plane of growth in light emitting devices. It is well known that increasing the indium (In) composition of the active region of InGaN-based emitters decreases the quantum efficiency significantly [45], therefore, longer emission wavelengths represent a higher challenge for device operation. Also, it has been shown that piezoelectric effects found in c-plane GaN affect the performance of the light emitters [46] and semipolar/non-polar GaN substrates can be a solution, however, the high-cost and low availability of these substrates, as compared to c-plane GaN, delay their implementation. Considering these facts whereby we can ponder the information listed in Table 1, and compare the product of optical power and FWHM among the reports, it can be shown that our SLD device stands out among all previous results.

Tables Icon

Table 1. Comparison of characteristics on GaN-based superluminescent diodes (SLDs).

The performance of the SLD in generating white light was evaluated based on the speckle density and high-CRI value. In Fig. 2, we compared the emission path and far-field projection of the SLD against a blue LD from the same epitaxial structure and dimensions. The emission path of LD and SLD are shown in Fig. 2(a) and 2(b) respectively where the insets in each of the figures illustrate the far field projection of the devices. Owing mainly to the incoherence nature of ASE and the broader emission (6.5 nm) as compared to the LD (<2 nm), the speckles in the case of LD are denser than those in SLD, which makes SLD promising for the generation of high-power speckle-free white light.

 figure: Fig. 2

Fig. 2 Light beam of LD and SLD: (a) LD beam path. (b) SLD beam path. Insets are the far field projections of the LD and SLD beam patterns, respectively.

Download Full Size | PPT Slide | PDF

A commercially available phosphor (ChromaLit Linear Intematix) was integrated with the blue SLD to generate white light obtaining an illuminance of 1550 lux measured directly at the source under 1 A CW injection (Fig. 3). Thus generated white light presented a CRI of 85.1, a CCT of 3392 K, and corresponding Commission Internationale de l'Eclairage (CIE 1931) chromaticity coordinates at (0.3991, 0.3625). These values were consistent at different SLD injection current ranging from 700 mA to 1 A. Moreover, the CRI value obtained in this report is significantly higher than our previously reported value of SLD-based SSL on semipolar GaN substrate [19]. In the search for warmer SSL-based white light due to health concerns [47,48], the CCT of 3392 K obtained in this work represents one step further on integrating blue emitters into indoor lighting solutions offering warm illumination with a competent CRI (>85).

 figure: Fig. 3

Fig. 3 SLD-based SSL white light characteristics: (a) Photograph of SLD in combination with a phosphor plate operating at 1A CW. (b) Illuminance of the generated white light at different injection current. (c) Spectral shape of the white light with CRI of 85.1 and CCT of 3392 K. (d) CIE diagram showing the chromaticity coordinates of the generated white light.

Download Full Size | PPT Slide | PDF

The modulation bandwidth capability of the SLD was explored and plotted in Fig. 4(a). By increasing the current density (J), it is expected that the active region carrier concentration (N) increases, leading to a decrease in the differential carrier lifetime (τ) [49,50]. This differential lifetime is inversely proportional to the frequency modulation bandwidth (f3dB), given by f3dB=(3/2πτ), leading to incremental modulation bandwidths at higher injection currents [51,52]. The 3-dB modulation bandwidth of our device was measured to be 376 MHz, 398 MHz, and 404 MHz, at 800 mA, 900 mA, and 1A respectively. As shown in Fig. 4(a), the natural frequency response of the SLD shows a continuous flat response without the need of equalization techniques [53]. This bandwidth flat response is desired when using modulation schemes for high density data such as orthogonal frequency division multiplexing (OFDM) [54,55]. Moreover, the absence of the relaxation resonance frequency peak (ωr), which is characteristic of LD cavities [56] is one more evidence of the existence of ASE and the suppression of the resonance cavity.

 figure: Fig. 4

Fig. 4 Stand-alone SLD modulation bandwidth and data rate: (a) Modulation bandwidth response at different injection currents. (b) and (c) show the eye diagram for data rate of 1 Gbps, and 1.45 Gbps respectively.

Download Full Size | PPT Slide | PDF

Furthermore, we measure the VLC data rate using NRZ-OOK modulation scheme. As seen in Table 2, we demonstrated data rates up to 1.45 Gbps with corresponding bit error rate (BER) of 1.8 × 10−3, which is below the forward error correction (FEC) limit of 3.8 × 10−3. The distance between the emitter and the receiver was ~25 cm. The eye diagrams showing clear open eyes are presented in Fig. 4(b) and 4(c) for two different data rates 1 Gbps and 1.45 Gbps, respectively. The values reported herewith represent the highest data rate ever achieved in SLD (Table 3) and pave the way for future SLD-based SSL-VLC systems.

Tables Icon

Table 2. Data rates achieved with the SLD used for visible light communication (VLC).

Tables Icon

Table 3. Comparison of superluminescent diodes (SLD) used for visible light communications (VLC)

4. Conclusions

In conclusion, we demonstrated VLC and SSL combined functionality visible-light device based on a c-plane GaN blue (442 nm) SLD with a broad FWHM of 6.5 nm and high-power output of 105 mW at 1 A of CW injection current. SLD-based warm white light with CCT of 3392 K and CRI of 85.1 were demonstrated along with a VLC record data rate of 1.45 Gbps using NRZ-OOK modulation scheme. Moreover, a record peak power of 474 mW was achieved under pulsed injection (2% duty cycle, 9.8 kHz). These results underscore the practicality of c-plane SLDs in realizing high-power, high data rate, speckle-free and droop-free SSL-VLC apparatus.

Funding

King Abdulaziz City for Science and Technology (KACST), Grant No. KACST TIC R2-FP-008; This work was partially supported by the King Abdullah University of Science and Technology (KAUST) baseline funding, BAS/1/1614-01-01; KAUST equipment funding KCR/1/2081-01-01; GEN/1/6607-01-01; KAUST-KFUPM Special Initiative (KKI) Program, REP/1/2878-01-01.

References and links

1. A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).

2. R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018). [CrossRef]  

3. H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017). [CrossRef]  

4. H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018). [CrossRef]  

5. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015). [CrossRef]   [PubMed]  

6. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016). [CrossRef]  

7. C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018). [CrossRef]   [PubMed]  

8. C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017). [CrossRef]   [PubMed]  

9. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015). [CrossRef]   [PubMed]  

10. S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017). [CrossRef]  

11. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015). [CrossRef]  

12. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016). [CrossRef]  

13. E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009). [CrossRef]  

14. A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015). [CrossRef]  

15. A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

16. N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015). [CrossRef]  

17. M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012). [CrossRef]  

18. T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

19. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016). [CrossRef]   [PubMed]  

20. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995). [CrossRef]   [PubMed]  

21. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981). [CrossRef]  

22. H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007). [CrossRef]  

23. F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013). [CrossRef]  

24. C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016). [CrossRef]   [PubMed]  

25. C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017). [CrossRef]  

26. I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983). [CrossRef]  

27. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988). [CrossRef]  

28. A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012). [CrossRef]  

29. H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006). [CrossRef]  

30. C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991). [CrossRef]  

31. C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006). [CrossRef]  

32. C. E. Dimas, H. S. Djie, and B. S. Ooi, “Gain optimization method of a DQW superluminescent diode with broad multi-state emission,” 2010 Photonics Glob. Conf. 1–5 (2010).

33. K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010). [CrossRef]  

34. H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506. [CrossRef]  

35. A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016). [CrossRef]  

36. A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013). [CrossRef]  

37. A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017). [CrossRef]  

38. A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016). [CrossRef]   [PubMed]  

39. M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010). [CrossRef]  

40. G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017). [CrossRef]  

41. M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009). [CrossRef]  

42. C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014). [CrossRef]  

43. F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012). [CrossRef]  

44. M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979). [CrossRef]  

45. J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011). [CrossRef]  

46. D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013). [CrossRef]  

47. D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010). [CrossRef]   [PubMed]  

48. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011). [CrossRef]   [PubMed]  

49. Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985). [CrossRef]  

50. B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992). [CrossRef]  

51. R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013). [CrossRef]  

52. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006).

53. L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014). [CrossRef]  

54. K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018). [CrossRef]   [PubMed]  

55. R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. (Artech House Publishers, 2000).

56. K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).
  2. R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
    [Crossref]
  3. H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
    [Crossref]
  4. H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018).
    [Crossref]
  5. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
    [Crossref] [PubMed]
  6. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
    [Crossref]
  7. C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
    [Crossref] [PubMed]
  8. C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
    [Crossref] [PubMed]
  9. B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
    [Crossref] [PubMed]
  10. S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
    [Crossref]
  11. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
    [Crossref]
  12. R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  13. E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
    [Crossref]
  14. A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
    [Crossref]
  15. A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).
  16. N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
    [Crossref]
  17. M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
    [Crossref]
  18. T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).
  19. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
    [Crossref] [PubMed]
  20. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
    [Crossref] [PubMed]
  21. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
    [Crossref]
  22. H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
    [Crossref]
  23. F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
    [Crossref]
  24. C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
    [Crossref] [PubMed]
  25. C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
    [Crossref]
  26. I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
    [Crossref]
  27. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
    [Crossref]
  28. A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
    [Crossref]
  29. H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
    [Crossref]
  30. C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991).
    [Crossref]
  31. C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
    [Crossref]
  32. C. E. Dimas, H. S. Djie, and B. S. Ooi, “Gain optimization method of a DQW superluminescent diode with broad multi-state emission,” 2010 Photonics Glob. Conf. 1–5 (2010).
  33. K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
    [Crossref]
  34. H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
    [Crossref]
  35. A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
    [Crossref]
  36. A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
    [Crossref]
  37. A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
    [Crossref]
  38. A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
    [Crossref] [PubMed]
  39. M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
    [Crossref]
  40. G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
    [Crossref]
  41. M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
    [Crossref]
  42. C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
    [Crossref]
  43. F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
    [Crossref]
  44. M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
    [Crossref]
  45. J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
    [Crossref]
  46. D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
    [Crossref]
  47. D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010).
    [Crossref] [PubMed]
  48. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
    [Crossref] [PubMed]
  49. Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
    [Crossref]
  50. B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
    [Crossref]
  51. R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
    [Crossref]
  52. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006).
  53. L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
    [Crossref]
  54. K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
    [Crossref] [PubMed]
  55. R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. (Artech House Publishers, 2000).
  56. K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
    [Crossref]

2018 (5)

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018).
[Crossref]

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
[Crossref] [PubMed]

2017 (6)

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
[Crossref]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

2016 (6)

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

2015 (5)

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
[Crossref]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

2014 (2)

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

2013 (4)

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

2012 (3)

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

2011 (2)

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

2010 (3)

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010).
[Crossref] [PubMed]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

2009 (2)

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

2007 (1)

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

2006 (2)

H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

1992 (1)

B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
[Crossref]

1991 (1)

C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991).
[Crossref]

1988 (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

1985 (1)

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

1983 (2)

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

1979 (1)

M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
[Crossref]

1973 (1)

T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

1880 (1)

A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).

Achatz, U.

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

Alias, M. S.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Alouini, M.-S.

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Al-Saggaf, A. A.

Alyamani, A. Y.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

Andersson, S. M. L.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Arakawa, Y.

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

Asgari, A.

N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
[Crossref]

Avramescu, A.

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Bar-Chaim, N.

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

Beiju, H.

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).

Bockowski, M.

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Boldin, A.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bowers, J. E.

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Brüderl, G.

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Burrus, C. A.

T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

Cantore, M.

Carlin, J. F.

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Carlin, J.-F.

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

Castiglia, A.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Chang, W. H.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Chen, C.

H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
[Crossref]

Chen, R.

Chen, T. R.

B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
[Crossref]

Chi, Y.-C.

Childs, D. T. D.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Chun, H.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Cinzano, P.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

Cosendey, G.

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Cozzan, C.

Czernecki, R.

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Da Lin, Y.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Dang, G. T.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Danying, T.

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Dawson, M. D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

DenBaars, S. P.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Dimas, C. E.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
[Crossref]

Djie, H. S.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
[Crossref]

Dorsaz, J.

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Duelk, M.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Durán Retamal, J. R.

Eichler, C.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Eisenstein, G.

I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

Eldesouki, M. M.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

El-Desouki, M. M.

Elvidge, C. D.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
[Crossref]

Falchi, F.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

Farrell, R. M.

Faulkner, G.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Feezell, D. F.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

Feltin, E.

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Feng, M.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Ferreira, R. X. G.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Fujito, K.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Furitsch, M.

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

Goldberg, G. R.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Goss, J.

Grandjean, N.

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Green, R. P.

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Groom, K. M.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Grzanka, S.

Gu, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Haas, H.

H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018).
[Crossref]

H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
[Crossref]

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Haim, A.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

Harder, C.

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

Hardy, M. T.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Härle, V.

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

He, J.-H.

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Herrnsdorf, J.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Ho, K.-T.

Hogg, R. A.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Holc, K.

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Holguin-Lerma, J.

Holzman, D. C.

D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010).
[Crossref] [PubMed]

Hongda, C.

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Honglei, L.

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Höß, C.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Hsu, P. S.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Hwang, J. C. M.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Ivanov, P.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Janjua, B.

Ji, R.

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

Jiang, D.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Kafar, A.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

Kalavally, V.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

Kamiya, T.

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

Karunatilaka, D.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Kawaguchi, M.

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

Keith, D. M.

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

Kelchner, K. M.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Kelly, A. E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Kennedy, K. L.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Kopp, F.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Kressel, H.

M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
[Crossref]

Kuo, H.-C.

Laino, V.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Lau, K. Y.

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

Leber, A.

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Lee, C.

Lee, T.-P.

T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

Lell, A.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Leonard, J. T.

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Lermer, T.

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

Leszczynski, M.

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

Li, D.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Li, Z.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Lin, C.-F.

C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991).
[Crossref]

Lin, G.-R.

Liu, G.

Liu, J.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Liu, Q.

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

Lu, W.

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

Lutgen, S.

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

Makarowa, I.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Malinverni, M.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

Margalith, T.

Marona, L.

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Massoubre, D.

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Matuschek, N.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

McKendry, J. J. D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Miler, A.

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Miller, B. I.

T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

Mohadesi, V.

N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
[Crossref]

Moslehi Milani, N.

N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
[Crossref]

Mounir, C.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

Müller, J.

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

Najda, S.

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Nakamura, S.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Napierala, J.

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

Ng, T. K.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Nishioka, M.

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

Nowakowska-Siwinska, A.

Nuese, C. J.

M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
[Crossref]

O’Brien, D.

H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
[Crossref]

O’Brien, D. C.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Obrien, D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Oh, S. H.

Ohno, H.

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

Ohta, H.

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Ooi, B. S.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
[Crossref]

Orita, K.

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

Oto, T.

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Oubei, H. M.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

Ozaki, N.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Parthiban, R.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Penty, R. V.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Perlin, P.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Pourhashemi, A.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Rajbhandari, S.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Rezzonico, R.

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

Ristic, J.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Rossetti, M.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Rumbolz, C.

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Sakaki, H.

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

Sarzynski, M.

Schwarz, U. T.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Shen, C.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Speck, J. S.

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-brightness semipolar (202¯1¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications,” Opt. Lett. 41(11), 2608–2611 (2016).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

Stanczyk, S.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

Stojetz, B.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Strauss, U.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Strauß, U.

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Stulz, L. W.

I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

Sulmoni, L.

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Suski, T.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, I. Makarowa, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “InAlGaN superluminescent diodes fabricated on patterned substrates: an alternative semiconductor broadband emitter,” Photon. Res. 5(2), A30 (2017).
[Crossref]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Takigawa, S.

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

Targowski, G.

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Tautz, S.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Taylor, R. J. E.

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

Tearney, G. J.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Tsai, C.-T.

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Ury, I.

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

Velez, C.

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Vélez, C.

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

Wang, D.-N.

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

Wang, F.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Wang, H.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Wang, H.-Y.

Wang, S.

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

Watson, I. M.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Watson, S.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Weig, T.

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

White, I. H.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Wisniewski, P.

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

Xie, E.

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Xiongbin, C.

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

Yamanaka, K.

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

Yang, H.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Yariv, A.

B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
[Crossref]

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

Yoshino, J.

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

Zafar, F.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Zeng, C.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Zhang, C.

Zhang, S.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Zhao, B.

B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
[Crossref]

Zhou, K.

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

ACS Photonics (1)

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Appl. Phys. Express (4)

A. Kafar, S. Stanczyk, G. Targowski, T. Oto, I. Makarowa, P. Wisniewski, T. Suski, and P. Perlin, “High-optical-power InGaN superluminescent diodes with “j-shape” waveguide,” Appl. Phys. Express 6(9), 092102 (2013).
[Crossref]

M. Rossetti, J. Dorsaz, R. Rezzonico, M. Duelk, C. Velez, E. Feltin, A. Castiglia, G. Cosendey, J. F. Carlin, and N. Grandjean, “High power blue-violet superluminescent light emitting diodes with InGaN quantum wells,” Appl. Phys. Express 3(6), 061002 (2010).
[Crossref]

M. T. Hardy, K. M. Kelchner, Y. Da Lin, P. S. Hsu, K. Fujito, H. Ohta, J. S. Speck, S. Nakamura, and S. P. DenBaars, “m-plane GaN-based blue superluminescent diodes fabricated using selective chemical wet etching,” Appl. Phys. Express 2(12), 121004 (2009).
[Crossref]

F. Kopp, T. Lermer, C. Eichler, and U. Strauss, “Cyan superluminescent light-emitting diode based on InGaN quantum wells,” Appl. Phys. Express 5(8), 082105 (2012).
[Crossref]

Appl. Phys. Lett. (4)

Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T. Kamiya, “Recombination lifetime of carriers in GaAs-GaAlAs quantum wells near room temperature,” Appl. Phys. Lett. 46(5), 519–521 (1985).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

K. Y. Lau, I. Ury, N. Bar-Chaim, C. Harder, and A. Yariv, “Superluminescent damping of relaxation resonance in the modulation response of GaAs lasers,” Appl. Phys. Lett. 43(4), 329–331 (1983).
[Crossref]

E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J. F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, and C. Velez, “Broadband blue superluminescent light-emitting diodes based on GaN,” Appl. Phys. Lett. 95(8), 081107 (2009).
[Crossref]

Appl. Sci. (1)

R. Ji, S. Wang, Q. Liu, and W. Lu, “High-speed visible light communications: enabling technologies and State of the Art,” Appl. Sci. 8(4), 589 (2018).
[Crossref]

Chin. Sci. Bull. (1)

C. Zeng, S. Zhang, J. Liu, D. Li, D. Jiang, M. Feng, Z. Li, K. Zhou, F. Wang, H. Wang, H. Wang, and H. Yang, “Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet,” Chin. Sci. Bull. 59(16), 1903–1906 (2014).
[Crossref]

Electron. Lett. (2)

C.-F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27(11), 968–970 (1991).
[Crossref]

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Environ. Health Perspect. (1)

D. C. Holzman, “What’s in a color? The unique human health effect of blue light,” Environ. Health Perspect. 118(1), A22–A27 (2010).
[Crossref] [PubMed]

IEEE Comm. Surv. and Tutor. (1)

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the Art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

IEEE J. Quantum Electron. (4)

T.-P. Lee, C. A. Burrus, and B. I. Miller, “A stripe geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9(8), 820–828 (1973).

I. P. Kaminow, G. Eisenstein, and L. W. Stulz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24(12), 2454–2457 (1988).
[Crossref]

B. Zhao, T. R. Chen, and A. Yariv, “The gain and carrier density in semiconductor lasers under steady-state and transient conditions,” IEEE J. Quantum Electron. 28(6), 1479–1486 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. R. Goldberg, A. Boldin, S. M. L. Andersson, P. Ivanov, N. Ozaki, R. J. E. Taylor, D. T. D. Childs, K. M. Groom, K. L. Kennedy, and R. A. Hogg, “Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications,” IEEE J. Sel. Top. Quantum Electron. 23(6), 2000511 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Honglei, C. Xiongbin, H. Beiju, T. Danying, and C. Hongda, “High bandwidth visible light communications based on a post-equalization circuit,” IEEE Photonics Technol. Lett. 26(2), 119–122 (2014).
[Crossref]

H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6 μm,” IEEE Photonics Technol. Lett. 18(16), 1747–1749 (2006).
[Crossref]

R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

IEEE Sens. J. (1)

H. S. Djie, C. E. Dimas, D.-N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[Crossref]

J. Appl. Phys. (4)

A. Kafar, S. Stańczyk, S. Grzanka, R. Czernecki, M. Leszczyński, T. Suski, and P. Perlin, “Cavity suppression in nitride based superluminescent diodes,” J. Appl. Phys. 111(8), 083106 (2012).
[Crossref]

K. Holc, Ł. Marona, R. Czernecki, M. Boćkowski, T. Suski, S. Najda, and P. Perlin, “Temperature dependence of superluminescence in InGaN-based superluminescent light emitting diode structures,” J. Appl. Phys. 108(1), 013110 (2010).
[Crossref]

N. Moslehi Milani, V. Mohadesi, and A. Asgari, “A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes,” J. Appl. Phys. 117(5), 054502 (2015).
[Crossref]

M. Ettenberg, C. J. Nuese, and H. Kressel, “The temperature dependence of threshold current for double-heterojunction lasers,” J. Appl. Phys. 50(4), 2949–2950 (1979).
[Crossref]

J. Disp. Technol. (1)

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, “Semipolar ((202¯1¯)) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Disp. Technol. 9(4), 190–198 (2013).
[Crossref]

J. Environ. Manage. (1)

F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92(10), 2714–2722 (2011).
[Crossref] [PubMed]

J. Soc. Telegr. Eng. (1)

A. G. Bell, “On the production and reproduction of sound by light,” J. Soc. Telegr. Eng. 9(34), 404–426 (1880).

Jpn. J. Appl. Phys. (1)

F. Kopp, C. Eichler, A. Lell, S. Tautz, J. Ristić, B. Stojetz, C. Höß, T. Weig, U. T. Schwarz, and U. Strauss, “Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection,” Jpn. J. Appl. Phys. 52(8S), 08JH07 (2013).
[Crossref]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Opt. Express (7)

C. Shen, C. Lee, T. K. Ng, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth,” Opt. Express 24(18), 20281–20286 (2016).
[Crossref] [PubMed]

A. Kafar, S. Stanczyk, M. Sarzynski, S. Grzanka, J. Goss, G. Targowski, A. Nowakowska-Siwinska, T. Suski, and P. Perlin, “Nitride superluminescent diodes with broadened emission spectrum fabricated using laterally patterned substrate,” Opt. Express 24(9), 9673–9682 (2016).
[Crossref] [PubMed]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23(12), 16232–16237 (2015).
[Crossref] [PubMed]

C. Shen, T. K. Ng, C. Lee, S. Nakamura, J. S. Speck, S. P. DenBaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications,” Opt. Express 26(6), A219–A226 (2018).
[Crossref] [PubMed]

C. Lee, C. Shen, C. Cozzan, R. M. Farrell, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors,” Opt. Express 25(15), 17480–17487 (2017).
[Crossref] [PubMed]

B. Janjua, H. M. Oubei, J. R. Durán Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, “Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication,” Opt. Express 23(14), 18746–18753 (2015).
[Crossref] [PubMed]

K.-T. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M.-S. Alouini, J.-H. He, and B. S. Ooi, “3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector,” Opt. Express 26(3), 3037–3045 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Res. (1)

Phys. Status Solidi (2)

A. Kafar, S. Stańczyk, P. Wisniewski, T. Oto, I. Makarowa, G. Targowski, T. Suski, and P. Perlin, “Design and optimization of InGaN superluminescent diodes,” Phys. Status Solidi 212(5), 997–1004 (2015).
[Crossref]

J. Müller, U. Strauß, T. Lermer, G. Brüderl, C. Eichler, A. Avramescu, and S. Lutgen, “Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529 nm continuous wave operation,” Phys. Status Solidi 208(7), 1590–1592 (2011).
[Crossref]

Phys. Status Solidi Appl. Mater. Sci. (1)

C. Rumbolz, G. Brüderl, A. Leber, C. Eichler, M. Furitsch, A. Avramescu, A. Miler, A. Lell, U. Strauß, and V. Härle, “Development of AlInGaN based blue-violet lasers on GaN and SiC substrates,” Phys. Status Solidi Appl. Mater. Sci. 203(7), 1792–1796 (2006).
[Crossref]

Proc. SPIE (4)

A. Castiglia, M. Rossetti, N. Matuschek, R. Rezzonico, M. Duelk, C. Vélez, J.-F. Carlin, and N. Grandjean, “GaN-based superluminescent diodes with long lifetime,” Proc. SPIE 9748, 97481V (2016).
[Crossref]

C. Shen, T. K. Ng, C. Lee, J. T. Leonard, S. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. El-Desouki, and B. S. Ooi, “Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications,” Proc. SPIE 10104, 101041U (2017).
[Crossref]

A. Castiglia, M. Rossetti, M. Malinverni, C. Mounir, N. Matuschek, M. Duelk, and C. Vélez, “Recent progress on GaN-based superluminescent light-emitting diodes in the visible range,” Proc. SPIE 10532, 105321X (2018).

M. Rossetti, J. Napierala, N. Matuschek, U. Achatz, M. Duelk, C. Vélez, A. Castiglia, N. Grandjean, J. Dorsaz, and E. Feltin, “Superluminescent light emitting diodes: the best out of two worlds,” Proc. SPIE 8252, 825208 (2012).
[Crossref]

Prog. Quantum Electron. (1)

H. Haas, C. Chen, and D. O’Brien, “A guide to wireless networking by light,” Prog. Quantum Electron. 55, 88–111 (2017).
[Crossref]

Rev. Phys. (1)

H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys. 3, 26–31 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. Obrien, and M. D. Dawson, “A review of gallium nitride LEDs for multi- gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Other (4)

C. E. Dimas, H. S. Djie, and B. S. Ooi, “Gain optimization method of a DQW superluminescent diode with broad multi-state emission,” 2010 Photonics Glob. Conf. 1–5 (2010).

H. Ohno, K. Orita, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “200mW GaN-based superluminescent diode with a novel waveguide structure,” in Proc. IEEE Photonic Soc. 24th Annu. Meet. (IEEE, 2011), pp. 505–506.
[Crossref]

R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. (Artech House Publishers, 2000).

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SLD device and electro-optical characteristics: (a) Scanning electron microscope image of the SLD and showing the angled facet. (b) Bias-dependent EL spectrum. (c) FWHM and peak position. (d) CW and (e) pulsed injection L–I–V curve of the SLD showing high peak optical power of 105 mW and 474 mW respectively. (f) External quantum efficiency (ηext) of the SLD, calculated from optical power (Poptical), elementary charge (e), injection current (I), Planck’s constant (h) and frequency of emitted light (υ).
Fig. 2
Fig. 2 Light beam of LD and SLD: (a) LD beam path. (b) SLD beam path. Insets are the far field projections of the LD and SLD beam patterns, respectively.
Fig. 3
Fig. 3 SLD-based SSL white light characteristics: (a) Photograph of SLD in combination with a phosphor plate operating at 1A CW. (b) Illuminance of the generated white light at different injection current. (c) Spectral shape of the white light with CRI of 85.1 and CCT of 3392 K. (d) CIE diagram showing the chromaticity coordinates of the generated white light.
Fig. 4
Fig. 4 Stand-alone SLD modulation bandwidth and data rate: (a) Modulation bandwidth response at different injection currents. (b) and (c) show the eye diagram for data rate of 1 Gbps, and 1.45 Gbps respectively.

Tables (3)

Tables Icon

Table 1 Comparison of characteristics on GaN-based superluminescent diodes (SLDs).

Tables Icon

Table 2 Data rates achieved with the SLD used for visible light communication (VLC).

Tables Icon

Table 3 Comparison of superluminescent diodes (SLD) used for visible light communications (VLC)

Metrics