Abstract

Measuring nanoscale displacement is crucial for optical nanometrology and optical calibration. Here, we present a comprehensive analysis of the far-field scattering of dielectric nano-dimer antennas excited precisely by a Gaussian beam. We demonstrated that the interaction of a Gaussian beam with a dielectric nanoantenna will lead to remarkable sensitivity of the far-field scattering to the displacement at a scale much smaller than the wavelength. The electric/magnetic dipole-dipole interaction model is drawn to analyze the far-field scattering and the results are in good agreement with numerical simulations. This study will pave a simple way to a novel position detection and displacement sensing based on the interaction of general Gaussian beam with nanoantennas.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical antennas are fundamental nanostructures that convert far-field optical radiation into near-field localized energy, and vice versa [1, 2]. They enable the control and manipulation of optical fields at subwavelength scale. Traditional nanoantennas rely on metallic structures, in which the surface plasmon polaritons (SPPs) greatly enhance the optical electric response [3–5]. However, metallic nanoantennas also suffer from inevitable Ohmic losses because of the plasmonic excitations [6]. In the last few years, high refractive index dielectric nanoantennas have drawn a lot of attentions for their relatively low losses and optical magnetism formed by the induced circular displacement currents inside the antennas [7, 8]. Optical magnetism provides an extra dimension to control and engineer the far-field scattering pattern. The combination of the electric mode and magnetic mode may yield enhanced or suppressed forward/backward scattering [9–16]. Forming two antennas into a dimer could also bring about some intriguing effects, such as hotspots and asymmetric scattering [17–23]. Besides, the excitation field could also bring about extra field polarization, amplitude and phase distribution to control the scattering properties of the antennas. Gittes et al. proposed a method to determine the lateral position by monitoring the intensity shift caused by the interference between the scattering field by the particle and unscattered field in the back focal plane [24]. Recently, Barreda et al. observed a switching effect controlled by the incident polarization [17]. M. Neugebauer et al. proposed a method to achieve distinct lateral directionality by exciting longitudinal mode inside a single silicon antenna with tightly focused radially polarized light [25]. The resultant directionality relies on the antenna’s position relative to the focus, which can be applied for position detection. Similarly, Xi et al. introduces a far-field deep subwavelength position detection method based on the interaction of focused azimuthally polarized beam with metallic dimer antennas [26].

In this paper, we present a comprehensive analysis of the far-field scattering of dielectric nano-dimer antenna excited precisely by a linearly polarized Gaussian beam. We find that a simple Gaussian beam is sufficient to obtain prominent lateral directivity. Similarly, the resultant directivity is determined by the relative position of the dimer center to the beam center. In turn, by detecting the lateral scattering intensity contrast ratio, one can also determine the dimer’s displacement relative to the incident field. Moreover, unlike its metallic counterpart which only responds to the incident field with polarization perpendicular to the dimer axis [26], our dielectric dimer antenna can respond to incident polarization both perpendicular and parallel to the dimer axis.

The whole paper is arranged as follows: Section 2 gives a full depiction of the interaction between the incident inhomogeneous field and the nano-dimer antennas. A semi-analytical method, called dipole-dipole interaction model, is applied to give a relation of the scattering far-field to the translational displacement. Section 3 makes a detailed analysis of the far-field scattering radiated from nano-dimer antennas formed by two coupled dielectric nano-cubes. Section 4 presents a numerical demonstration when the nano-dimer antenna is illuminated by a Gaussian beam. Finally, a summary and conclusion of the study will be drawn.

2. Electric/magnetic dipole-dipole interaction model

Let us first consider a nano-dimer antenna formed by two identical particles embedded in a uniform host medium. The host medium is assumed to be air throughout the whole paper. The dimer is illuminated by a monochromatic wave along +z axis. The incident field is inhomogeneous and related to its spatial coordinates: E = E(r). Under dipole approximation, each individual particle can be regarded as a combination of an induced electric dipole and an induced magnetic dipole. The induced electric dipole moment pi=(pix,piy,piz) and magnetic dipole mi=(mix,miy,miz) are strongly related to its local electric field Eloc(ri)=(Elocix,Elociy,Elociz) and magnetic field Hloc(ri)=(Hlocix,Hlociy,Hlociz):

pi=α¯¯eeEloc(ri)+α¯¯emHloc(ri),mi=α¯¯meEloc(ri)+α¯¯mmHloc(ri),
where α¯¯ee/α¯¯mm/α¯¯em/α¯¯me are the electric/magnetic/electromagnetic/magnetoelectric polarizability tensors of each individual particle and ri(i = 1, 2) corresponds to the spatial coordinate. The local fields around the particle are the superposition of the incident field and the field radiated from neighboring particle:
Eloc(ri)=Einc(ri)+G¯¯ee(rirj)pj+G¯¯em(rirj)mj,Hloc(ri)=Hinc(ri)+G¯¯me(rirj)pj+G¯¯mm(rirj)mj,
where the radiation fields from a dipole read as:
G¯¯ee(rirj)pj=14πϵ0{k2(nij×pj)×nijeikrijrij+[3nij(nijpj)pj](1rij3ikrij2)eikrij},G¯¯em(rirj)mj=η0k24π(nij×mj)eikrijrij(11ikrij),G¯¯me(rirj)pj=ck24π(nij×pj)eikrijrij(11ikrij),G¯¯mm(rirj)mj=14π{k2(nij×mj)×nijeikrijrij+[3nij(nijmj)mj](1rij3ikrij2)eikrij},
where rij = |rirj| is the distance between the two particle centers; nij=rirj|rirj| is the unit vector from point i to point j; k is the wavenumber. Therefore, the scattering far-field of the nano-dimer antenna is the interference of the far-fields radiating from all the dipoles:
Efar=i=1,214πϵ0k2(noi×pi)×noieikroiroiη0k24π(noi×mi)eikroiroi,
where the subscript o denotes the far-field observation point.

3. Lateral far-field scattering of a dielectric nano-dimer antenna

Consider a nano-dimer consisting of two identical silicon nano-cubes located at r1=(d2,0,0) and r2=(d2,0,0), respectively, as shown in Fig. 1(a). d = 200nm is the distance between the two cube centers and a = 100nm is the side length of the nano-cube. The permittivity of silicon used here is obtained from Palik [27]. Due to the isotropy of the cube, its polarizabilities can be written as scalar: α¯¯=αI, where I is the identity matrix. Meanwhile, for a dielectric cube, both electric polarizability αee and magnetic polarizability αmm exist. The exact polarizability components, shown in Fig. 1(b), are retrieved using the scattering far-field method [28]. The analysis can also be applied for spherical particles due to its isotropy. While for a general geometrical shape, we need to consider all the components of its polarizability tensor.

 figure: Fig. 1

Fig. 1 (a) Schematic of the structure. The origin of the coordinate system is chosen at the center of the gap of the dimer and the x-axis is chosen to be aligned with the dimer axis. The dimer consists of two coupled silicon nano-cubes. The distance between the two cube centers is d = 200nm. The side length of the nano-cube is a = 100nm. (b) Electric (blue solid/dashed line for amplitude/phase part) and magnetic (green solid/dashed line for amplitude/phase part) polarizability of an individual cube as a function of the wavelength.

Download Full Size | PPT Slide | PDF

3.1. Electric polarization of the incident wave perpendicular to the dimer axis

Now, consider a wave illuminating along z axis with the electric field polarized along the y axis and magnetic field along the x axis (dimer axis), as shown in Fig. 2(a). Due to the existence of both αee and αmm, y-polarized electric dipoles and x-polarized magnetic dipoles are directly induced by the incident field. Meanwhile, additional z-polarized magnetic dipoles are induced by the scattering fields from nearby y-polarized electric dipoles. When the beam is tightly focused, the longitudial components of the incident fields, Ez and Hz, also need to be taken into consideration. All the dipole moments can be deduced from Eqs. (1)(3):

m1x=αmm(Hinc1x+2g1m2x),m2x=αmm(Hinc2x+2g1m1x),p1y=αee(Einc1y+1ϵ0g2p2yη0g3m2z),p2y=αee(Einc2y+1ϵ0g2p1y+η0g3m1z),m1z=αmm(cg3p2y+g2m2z+Hinc1z),m2z=αmm(cg3p1y+g2m1z+Hinc2z),
where Einc1/Hinc1 and Einc2/Hinc2 denote the incident electric/magnetic fields at r1 and r2, respectively, g1=eikd4πd(ikd+1d2), g2=eikd4πd(k2+ikd1d2), g3=eikd4πd(k2+ikd). By solving the equations above, we can get
m1x=αmmHinc1x+2g1αmm2Hinc2x[14(g1αmm)2],m2x=αmmHinc2x+2g1αmm2Hinc1x[14(g1αmm)2],p1y=Δ1Einc1y+Δ2Einc2y+Δ3Hinc1z+Δ4Hinc2zΔ,p2y=Δ1Einc2y+Δ2Einc1yΔ3Hinc2zΔ4Hinc1zΔ,m1z=Δ5Einc1y+Δ6Einc2y+Δ7Hinc1z+Δ8Hinc2zΔ,m2z=Δ5Einc2yΔ6Einc1y+Δ7Hinc2z+Δ8Hinc1zΔ,
where, Δ1=(1+1ϵ0g32αeeαmmg22αmm2)αee, Δ2=(1g22αmm2+g32αmm2)1ϵ0g2αee2, Δ3=(1ϵ0αeeαmm)η0g2g3αeeαmm, Δ4=(11ϵ0g32αeeαmm+1ϵ0g22αeeαmm)η0g3αeeαmm, Δ5=(1ϵ0αee+αmm)cg2g3αeeαmm, Δ6=(1+1ϵ0g32αeeαmmg22αmm2)αee, Δ7=(11ϵ02g22αee2+1ϵ0g32αeeαmm)αmm, Δ8=(11ϵ02g22αee2+1ϵ02g32αee2)g2αmm2, η0=μ0ϵ0, Δ=1(1ϵ0g2αee)2(g2αmm)2+21ϵ0g32αeeαmm+(1ϵ0g32αeeαmm1ϵ0g22αeeαmm)2.

 figure: Fig. 2

Fig. 2 (a) Schematic representation of the induced dipoles of the silicon dimer antenna when the electric polarization of the incident wave is perpendicular to the dimer axis. (b) Lateral scattering intensity contrast ratio V as ρ varies from 0 to +1 when φ = 0. (c) Contrast ratio V as φ varies from −π to +π when ρ = 1. (d) Contrast ratio V at λ = 528nm.

Download Full Size | PPT Slide | PDF

As we know, the x-polarized dipoles do not contribute the far-field scattering along x-axis. Thus, the lateral scattering is the interference of two pairs of orthogonal dipoles perpendicular to the x axis, that is:

E+xy=k24π(1ϵ0p2yeik(rod/2)rod/2+1ϵ0p1yeik(ro+d/2)ro+d/2+η0m2zeik(rod/2)rod/2+η0m1zeik(ro+d/2)ro+d/2),Exy=k24π(1ϵ0p1yeik(rod/2)rod/2+1ϵ0p2yeik(ro+d/2)ro+d/2η0m1zeik(rod/2)rod/2η0m2zeik(ro+d/2)ro+d/2),
where ro is the distance from the origin of the coordinate to the far-field observation point. In order to evaluate the lateral far-field scattering, here, we define a contrast ratio of the intensity in the +x direction to that in the −x direction:
V=|I+x||Ix||I+x|+|Ix|=|E+x|2|Ex|2|I+x|2+|Ex|2.

Obviously, V = 1 means that the electric field is totally scattered towards +x direction; V = −1 means that the electric field is totally scattered towards −x direction; and V = 0 means equal scattering. Once the structure is fixed, under weak focusing when the longitudinal components Hz can be ignored, V is determined only by the relative incident field Einc2yEinc1y=ρeiφ, where ρ is the amplitude ratio and φ is the phase difference. Figures 2(b) and 2(c) depict the relation between the lateral intensity contrast ratio V and wavelength λ from 400 nm to 800 nm when there is only amplitude ratio (φ = 0) or phase difference (ρ = 1), respectively. We can achieve unidirectional lateral scattering either by solely adjusting the phase difference or by solely adjusting the amplitude ratio between the incident fields. Interestingly, by adjusting the phase difference we can get unidirectional scattering within a wide spectrum while by adjusting the amplitude ratio the unidirectional scattering can be achieved only at some particular wavelength. Here, for our structure, the +x unidirectional scattering can be achieved only at λ = 528 nm when there is no phase difference between the incident fields. This provides the possibilities for a Gaussian beam to achieve unidirectional scattering. Figure 2(d) presents the contrast ratio V in a complex plane at λ = 528 nm.

3.2. Electric polarization of the incident wave parallel to the dimer axis

For an x-polarized incident beam as shown in Fig. 3(a), the induced dipoles are x-polarized electric dipoles, y-polarized magnetic dipoles as well as z-polarized electric dipoles:

p1x=αee(Einc1x+21ϵ0g1p2x),p2x=αee(Einc2x+21ϵ0g1p1x),m1y=αmm(Hinc1y+cg3p2z+g2m2y),m2y=αmm(Hinc2ycg3p1z+g2m1y),p1z=αee(Einc1z+1ϵ0g2p2z+η0g3m2y),p2z=αee(Einc2z+1ϵ0g2p1zη0g3m1y).
By solving the above equations, we can get
p1x=αee(Einc1x+21ϵ0g1αeeEinc2x)1(21ϵ0g1αee)2,p2x=αee(Einc2x+21ϵ0g1αeeEinc1x)1(21ϵ0g1αee)2,m1y=Δ9Hinc1y+Δ10Hinc2y+Δ11Einc1z+Δ12Einc2zΔ,m2y=Δ9Hinc2y+Δ10Hinc1yΔ11Einc2zΔ12Einc1zΔ,p1z=Δ13Hinc1y+Δ14Hinc2y+Δ15Einc1z+Δ16Einc2zΔ,p2z=Δ13Hinc2yΔ14Hinc1y+Δ15Einc2z+Δ16Einc1zΔ,
where Δ9=(1+1ϵ0g32αeeαmm1ϵ02g22αee2)αmm, Δ10=(11ϵ02g22αee2+1ϵ02g32αee2)g2αmm2, Δ11=(1ϵ0αeeαmm)cg2g3αeeαmm, Δ12=(11ϵ0g22αeeαmm+1ϵ0g32αeeαmm)cg3αeeαmm, Δ13=(1ϵ0αee+αmm)η0g2g3αeeαmm, Δ14=(1+1ϵ00g32αeeαmm1ϵ0g22αeeαmm)η0g3αeeαmm, Δ15=(1+1ϵ0g22αeeαmmg22αmm2)αee, Δ16=(1+g32αmm2g22αmm2)1ϵ0g2αee2. Similarly, only y-polarized dipoles and z-polarized dipoles will contribute to the far-field scattering along x-axis.
E+xz=k24π(1ϵ0p1zeik(ro+d/2)ro+d/2+1ϵ0p2zeik(rod/2)rod/2η0m1yeik(ro+d/2)ro+d/2η0m2yeik(rod/2)rod/2),Exz=k24π(1ϵ0p1zeik(rod/2)rod/2+1ϵ0p2zeik(ro+d/2)ro+d/2+η0m1yeik(rod/2)rod/2+η0m2yeik(ro+d/2)ro+d/2).

 figure: Fig. 3

Fig. 3 (a) Schematic representation of the induced dipoles of the silicon dimer antenna when the electric polarization of the incident wave is parallel to the dimer axis. (b) Lateral scattering intensity contrast ratio V as ρ varies from 0 to +1 when φ = 0. (c) Contrast ratio V as φ varies from −π to +π when ρ = 1. (d) Contrast ratio V at λ = 482nm.

Download Full Size | PPT Slide | PDF

Figures 3(b) and 3(c) depict the relation between the lateral intensity contrast ration V and wavelength λ from 400 nm to 800 nm when there is only amplitude ratio (φ = 0) or phase difference (ρ = 1), respectively. Similarly, for x polarized incident fields, the +x unidirectional scattering can be achieved only at λ = 482 nm when there is no phase difference between the incident fields. Figure 3(d) presents the contrast ratio V in a complex plane at λ = 482 nm.

4. Dimer antenna illuminated by a Gaussian beam

Let’s consider that the dimer is illuminated by a Gaussian beam whose electromagnetic field is related to its spatial coordinates. Assuming propagation in the +z direction, for a fundamental Gaussian beam, the electric field at focal plane can be calculated using Richard-Wolf diffraction integral [29]. Assuming the dimer is initially located at the center of the beam waist, the contrast ratio is zero for ρ = 1 and φ = 0. When the beam is moving towards +x axis with a small displacement Δx as shown in Fig. 4(a), the incident field amplitude ratio then become a function of Δx while φ is always zero. The asymmetric field amplitude distribution leads to asymmetric lateral scattering and the lateral contrast ratio can therefore be expressed as a function of Δx. This encodes the lateral displacement into the far-field scattering intensity contrast ratio which means the lateral displacement can be determined by detecting the far-field contrast ratio. Figures 4(b) and 4(c) show the relation between contrast ratio V and lateral displacement Δx under x-polarized excitation at 482 nm and under y-polarized excitation at 528 nm, respectively. It can be seen that the contrast ratio V is in approximate proportion to lateral displacement Δx. Here, we define sensitivity S=|VΔx|. A high sensitivity means that a small displacement change will cause drastic change in the far-field contrast ratio which is always preferable for experimental detecting. For x-polarized excitation, the sensitivity can reach 5.0 × 10−3nm−1 when the beam waist is 400 nm. While for y-polarized excitation, the sensitivity can reach 6.6 × 10−3nm−1. As the beam waist increases, the sensitivity decreases. However, for y-polarized excitation, the sensitivity is always higher than that for x-polarized excitation. To be more detailed, the sensitivity can be decomposed as two parts: S=|Vρ||ρΔx|, where the first item is determined by the dimer and the second item is related to the incident field. Figure 5 shows the relation between ρ and Δx as well as V and ρ. We know that the partial derivative means the slope of a curve. From Fig. 5(a), it can be seen that |ρΔx| increases as ω0 decreases, thus leading to higher sensitivity for smaller beam waist. Similarly, it can be seen from Fig. 5(b) that |Vρ| is bigger for y-polarized beam than that for x-polarized one. That accounts for why y-polarized beam has higher sensitivity than x-polarized one does for the same beam waist.

 figure: Fig. 4

Fig. 4 (a) Schematic illustration of the configuration, the Gaussian beam is initially focusing on the center of the dimer, then moves towards +x direction with a displacement Δx. Contrast ration as a function of Δx for (b) x-polarized incident Gaussian beam at 482 nm and (c) y-polarized incident Gaussian beam at 528 nm, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 (a) Amplitude ratio as a function of lateral displacement Δx. (b) Contrast ratio as a function of ρ for x-polarized incident Gaussian beam at 482 nm (blue solid line) and y-polarized incident Gaussian beam at 528 nm (green solid line), respectively.

Download Full Size | PPT Slide | PDF

To verify our model, a full-wave simulation is performed using Finite Difference Time Domain (FDTD) method. The dimer is located at the center of the simulation region. The surrounding medium is chosen to be air. The boundary is chosen as Perfect Matched Layer (PML). A non-uniform mesh is used throughout the whole simulation region and the minimum mesh size is 4nm. A broadband Gaussian beam illuminates the dimer and the monitors collects the data of the total fields. The scattering fields can be obtained by subtracting the incident fields from the total fields. Finally, a far-field transformation is carried out to get the far-field scattering pattern. Figures 6(a) and 6(b) show the far-field scattering pattern for x-polarized excitation and y-polarized excitation when beam waist is 400 nm, respectively. The different scattering pattern results from the interference of different polarized dipoles. It can be seen that when the lateral displacement Δx increases from 0 to 200 nm, the scattering pattern changes from symmetric to −x unidirectional scattering pattern. Also, when the displacement is fixed, Δx = 100nm, smaller beam waist will lead to a more asymmetric scattering pattern as shown in Figs. 6(c) and 6(d). Further, we plot the contrast ratio as a function of the displacement as shown Figs. 6(e) and 6(f). It can be seen that smaller beam waist leads to higher sensitivity and the sensitivity is higher for y-polarized beam than that of x-polarized beam, which agrees quite well with our analytical model.

 figure: Fig. 6

Fig. 6 FDTD simulation results. Far-field scattering pattern under x-polarized excitation (a) and y-polarized excitation (b) for different lateral displacement when the beam waist is fixed at 400 nm. Far-field scattering pattern under x-polarized excitation (c) and y-polarized excitation (d) in xy-plane for different beam waist when the lateral displacement is fixed at 100 nm. Contrast ratio under x-polarized excitation (e) and y-polarized excitation (f) as a function of lateral displacement for different beam waist.

Download Full Size | PPT Slide | PDF

It’s also very interesting to see the lateral contrast ratio and sensitivity when one particle is fixed at the center of the Gaussian beam while the other moves off the center towards +x direction. Figure 7 shows the lateral contrast ratio as a function of the gap. The same effect can also be observed: smaller beam waist leads to higher sensitivity and the sensitivity for y-polarized beam is larger than that of x-polarized beam.

 figure: Fig. 7

Fig. 7 Contrast ratio as a function of the gap for (a) x-polarized incident Gaussian beam at 482 nm and (b) y-polarized incident Gaussian beam at 528 nm

Download Full Size | PPT Slide | PDF

Theoretically, once the structure is fixed, we can always increase the sensitivity by reducing the beam waist. However, Gaussian beam with too small beam waist is hard to obtain experimentally while large beam waist will lose high sensitivity. In order to circumvent this problem, we further investigate Hermite-Gaussian beam: HG10 mode. The strong field gradient |ρΔx| make it possible to obtain large sensitivity. Similarly, the dimer is initially located at the center of the beam waist and the beam move towards +x direction with displacement Δx. Figure 8 shows the lateral contrast ratio as a function of the lateral displacement. It can be seen that the sensitivity is indeed enhanced and still keeps high even for larger beam waist.

 figure: Fig. 8

Fig. 8 Contrast ratio as a function of Δx for x-polarized incident HG10 mode at 482 nm.

Download Full Size | PPT Slide | PDF

5. Conclusion

To conclude, we analyzed the scattering properties of silicon dimer antennas under a Gaussian beam illumination using dipole-dipole interaction method. We also showed that the lateral far-field scattering contrast ratio is highly related to the incident field on each individual particle. Meanwhile, the contrast ratio is determined by the translational displacement relative to the dimer antennas. The detection sensitivity can be enhanced by using HG10 beam. This work will pave way to a novel position detection technique, which might be applied in nanoscale metrology and super-resolution imaging.

Funding

National Natural Science Foundation of China (11674303, 61377053, 11574293).

References and links

1. M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012). [CrossRef]  

2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014). [CrossRef]  

3. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]   [PubMed]  

4. L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011). [CrossRef]  

5. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [CrossRef]   [PubMed]  

6. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012). [CrossRef]  

7. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012). [CrossRef]   [PubMed]  

8. A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011). [CrossRef]  

9. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983). [CrossRef]  

10. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013). [CrossRef]   [PubMed]  

11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013). [CrossRef]   [PubMed]  

12. J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, and M. Nieto-Vesperinas et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012). [CrossRef]  

13. M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011). [CrossRef]   [PubMed]  

14. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012). [CrossRef]   [PubMed]  

15. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016). [CrossRef]   [PubMed]  

16. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013). [CrossRef]   [PubMed]  

17. A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017). [CrossRef]   [PubMed]  

18. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015). [PubMed]  

19. G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014). [CrossRef]  

20. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015). [CrossRef]   [PubMed]  

21. E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017). [CrossRef]   [PubMed]  

22. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017). [CrossRef]  

23. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015). [CrossRef]  

24. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998). [CrossRef]  

25. M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016). [CrossRef]   [PubMed]  

26. Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016). [CrossRef]   [PubMed]  

27. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).

28. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

29. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012). [CrossRef]  

References

  • View by:

  1. M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
    [Crossref]
  2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
    [Crossref]
  3. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  4. L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  5. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref] [PubMed]
  6. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
    [Crossref]
  7. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  8. A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
    [Crossref]
  9. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
    [Crossref]
  10. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
    [Crossref] [PubMed]
  11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  12. J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
    [Crossref]
  13. M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
    [Crossref] [PubMed]
  14. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  15. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
    [Crossref] [PubMed]
  16. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref] [PubMed]
  17. A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
    [Crossref] [PubMed]
  18. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
    [PubMed]
  19. G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
    [Crossref]
  20. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
    [Crossref] [PubMed]
  21. E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
    [Crossref] [PubMed]
  22. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
    [Crossref]
  23. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
    [Crossref]
  24. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998).
    [Crossref]
  25. M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
    [Crossref] [PubMed]
  26. Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
    [Crossref] [PubMed]
  27. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).
  28. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).
  29. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
    [Crossref]

2017 (3)

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

2016 (3)

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
[Crossref] [PubMed]

2015 (3)

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[PubMed]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

2014 (3)

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
[Crossref]

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
[Crossref]

2013 (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (5)

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

2011 (3)

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
[Crossref] [PubMed]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

1998 (1)

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998).
[Crossref]

1983 (1)

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Abdeddaim, R.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
[Crossref]

Adam, A.

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

Agio, M.

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

Aizpurua, J.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Albella, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
[Crossref] [PubMed]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[PubMed]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Asadchy, V. S.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

Bag, A.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Banzer, P.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
[Crossref]

Barreda, A. I.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

Boltasseva, A.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

Bonod, N.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
[Crossref]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

Boudarham, G.

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Chichkov, B. N.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Du, L.

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Eyraud, C.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Faniayeu, I. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Froufe-Pérez, L.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Fu, Y.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

Fu, Y. H.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

García-Cámara, B.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Geffrin, J.-M.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Giles, C.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Gittes, F.

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998).
[Crossref]

Gomez-Medina, R.

M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
[Crossref] [PubMed]

Gómez-Medina, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

González, F.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Hao, H.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Kerker, M.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Khaidarov, E.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Kuznetsov, A.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

Kuznetsov, A. I.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Leuchs, G.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Litman, A.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

Maier, S. A.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
[Crossref] [PubMed]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[PubMed]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mascher, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

Matsui, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
[Crossref]

Miroshnichenko, A.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Moreno, F.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Ng, J. S. K.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).

Paniagua-Domínguez, R.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Pohl, D.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Ra’di, Y.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

Reinhardt, C.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Rolly, B.

Roschuk, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

Saenz, J.

M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
[Crossref] [PubMed]

Sáenz, J. J.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Saleh, H.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Schmidt, C. F.

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998).
[Crossref]

Schmidt, M. K.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Shibanuma, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
[Crossref] [PubMed]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[PubMed]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Stout, B.

Toh, Y. T.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Tretyakov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

Urbach, H.

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

Vaillon, R.

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

Valuckas, V.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Wang, D.-S.

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

Wei, L.

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Wojcik, J.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

Wozniak, P.

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Xi, Z.

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

Yap, S. L. K.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

Yu, Y. F.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Zhang, J.

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

Zywietz, U.

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (1)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and et al., “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4, 489–494 (2017).
[Crossref]

U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Applied Physics Letters (1)

G. Boudarham, R. Abdeddaim, and N. Bonod, “Enhancing the magnetic field intensity with a dielectric gap antenna,” Applied Physics Letters 104, 021117 (2014).
[Crossref]

JOSA (1)

M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” JOSA 73, 765–767 (1983).
[Crossref]

JOSA A (1)

M. Nieto-Vesperinas, R. Gomez-Medina, and J. Saenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” JOSA A 28, 54–60 (2011).
[Crossref] [PubMed]

MRS Bulletin (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

Nano Lett. (2)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref] [PubMed]

Nano letters (2)

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano letters 17, 6267–6272 (2017).
[Crossref] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano letters 13, 1806–1809 (2013).
[Crossref] [PubMed]

Nanoscale (2)

M. Agio, “Optical antennas as nanoscale resonators,” Nanoscale 4, 692–706 (2012).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8, 14184–14192 (2016).
[Crossref] [PubMed]

Nature Commun. (4)

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nature Commun. 7, 11286 (2016).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nature Commun. 4, 1527 (2013).
[Crossref] [PubMed]

J.-M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, and et al., “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Commun. 3, 1171 (2012).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nature Commun. 8, 13910 (2017).
[Crossref] [PubMed]

Nature Photon. (2)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nature Photon. 8, 889–898 (2014).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Opt. Express (1)

Optics letters (1)

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Optics letters 23, 7–9 (1998).
[Crossref]

Photonics and Nanostructures-Fundamentals and Applications (1)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov, “Determining polarizability tensors for an arbitrary small electromagnetic scatterer,” Photonics and Nanostructures-Fundamentals and Applications 12, 298–304 (2014).

Phys. Rev. Lett. (2)

Z. Xi, L. Wei, A. Adam, H. Urbach, and L. Du, “Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing,” Phys. Rev. Lett. 117, 113903 (2016).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Sci. Rep. (2)

A. Kuznetsov, A. Miroshnichenko, Y. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2011).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5, 18322 (2015).
[PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic, 1998).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2012).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the structure. The origin of the coordinate system is chosen at the center of the gap of the dimer and the x-axis is chosen to be aligned with the dimer axis. The dimer consists of two coupled silicon nano-cubes. The distance between the two cube centers is d = 200nm. The side length of the nano-cube is a = 100nm. (b) Electric (blue solid/dashed line for amplitude/phase part) and magnetic (green solid/dashed line for amplitude/phase part) polarizability of an individual cube as a function of the wavelength.
Fig. 2
Fig. 2 (a) Schematic representation of the induced dipoles of the silicon dimer antenna when the electric polarization of the incident wave is perpendicular to the dimer axis. (b) Lateral scattering intensity contrast ratio V as ρ varies from 0 to +1 when φ = 0. (c) Contrast ratio V as φ varies from −π to +π when ρ = 1. (d) Contrast ratio V at λ = 528nm.
Fig. 3
Fig. 3 (a) Schematic representation of the induced dipoles of the silicon dimer antenna when the electric polarization of the incident wave is parallel to the dimer axis. (b) Lateral scattering intensity contrast ratio V as ρ varies from 0 to +1 when φ = 0. (c) Contrast ratio V as φ varies from −π to +π when ρ = 1. (d) Contrast ratio V at λ = 482nm.
Fig. 4
Fig. 4 (a) Schematic illustration of the configuration, the Gaussian beam is initially focusing on the center of the dimer, then moves towards +x direction with a displacement Δx. Contrast ration as a function of Δx for (b) x-polarized incident Gaussian beam at 482 nm and (c) y-polarized incident Gaussian beam at 528 nm, respectively.
Fig. 5
Fig. 5 (a) Amplitude ratio as a function of lateral displacement Δx. (b) Contrast ratio as a function of ρ for x-polarized incident Gaussian beam at 482 nm (blue solid line) and y-polarized incident Gaussian beam at 528 nm (green solid line), respectively.
Fig. 6
Fig. 6 FDTD simulation results. Far-field scattering pattern under x-polarized excitation (a) and y-polarized excitation (b) for different lateral displacement when the beam waist is fixed at 400 nm. Far-field scattering pattern under x-polarized excitation (c) and y-polarized excitation (d) in xy-plane for different beam waist when the lateral displacement is fixed at 100 nm. Contrast ratio under x-polarized excitation (e) and y-polarized excitation (f) as a function of lateral displacement for different beam waist.
Fig. 7
Fig. 7 Contrast ratio as a function of the gap for (a) x-polarized incident Gaussian beam at 482 nm and (b) y-polarized incident Gaussian beam at 528 nm
Fig. 8
Fig. 8 Contrast ratio as a function of Δx for x-polarized incident HG10 mode at 482 nm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p i = α ¯ ¯ e e E l o c ( r i ) + α ¯ ¯ e m H l o c ( r i ) , m i = α ¯ ¯ m e E l o c ( r i ) + α ¯ ¯ m m H l o c ( r i ) ,
E l o c ( r i ) = E i n c ( r i ) + G ¯ ¯ e e ( r i r j ) p j + G ¯ ¯ e m ( r i r j ) m j , H l o c ( r i ) = H i n c ( r i ) + G ¯ ¯ m e ( r i r j ) p j + G ¯ ¯ m m ( r i r j ) m j ,
G ¯ ¯ e e ( r i r j ) p j = 1 4 π ϵ 0 { k 2 ( n i j × p j ) × n i j e i k r i j r i j + [ 3 n i j ( n i j p j ) p j ] ( 1 r i j 3 i k r i j 2 ) e i k r i j } , G ¯ ¯ e m ( r i r j ) m j = η 0 k 2 4 π ( n i j × m j ) e i k r i j r i j ( 1 1 i k r i j ) , G ¯ ¯ m e ( r i r j ) p j = c k 2 4 π ( n i j × p j ) e i k r i j r i j ( 1 1 i k r i j ) , G ¯ ¯ m m ( r i r j ) m j = 1 4 π { k 2 ( n i j × m j ) × n i j e i k r i j r i j + [ 3 n i j ( n i j m j ) m j ] ( 1 r i j 3 i k r i j 2 ) e i k r i j } ,
E f a r = i = 1 , 2 1 4 π ϵ 0 k 2 ( n o i × p i ) × n o i e i k r o i r o i η 0 k 2 4 π ( n o i × m i ) e i k r o i r o i ,
m 1 x = α m m ( H i n c 1 x + 2 g 1 m 2 x ) , m 2 x = α m m ( H i n c 2 x + 2 g 1 m 1 x ) , p 1 y = α e e ( E i n c 1 y + 1 ϵ 0 g 2 p 2 y η 0 g 3 m 2 z ) , p 2 y = α e e ( E i n c 2 y + 1 ϵ 0 g 2 p 1 y + η 0 g 3 m 1 z ) , m 1 z = α m m ( c g 3 p 2 y + g 2 m 2 z + H i n c 1 z ) , m 2 z = α m m ( c g 3 p 1 y + g 2 m 1 z + H i n c 2 z ) ,
m 1 x = α m m H i n c 1 x + 2 g 1 α m m 2 H i n c 2 x [ 1 4 ( g 1 α m m ) 2 ] , m 2 x = α m m H i n c 2 x + 2 g 1 α m m 2 H i n c 1 x [ 1 4 ( g 1 α m m ) 2 ] , p 1 y = Δ 1 E i n c 1 y + Δ 2 E i n c 2 y + Δ 3 H i n c 1 z + Δ 4 H i n c 2 z Δ , p 2 y = Δ 1 E i n c 2 y + Δ 2 E i n c 1 y Δ 3 H i n c 2 z Δ 4 H i n c 1 z Δ , m 1 z = Δ 5 E i n c 1 y + Δ 6 E i n c 2 y + Δ 7 H i n c 1 z + Δ 8 H i n c 2 z Δ , m 2 z = Δ 5 E i n c 2 y Δ 6 E i n c 1 y + Δ 7 H i n c 2 z + Δ 8 H i n c 1 z Δ ,
E + x y = k 2 4 π ( 1 ϵ 0 p 2 y e i k ( r o d / 2 ) r o d / 2 + 1 ϵ 0 p 1 y e i k ( r o + d / 2 ) r o + d / 2 + η 0 m 2 z e i k ( r o d / 2 ) r o d / 2 + η 0 m 1 z e i k ( r o + d / 2 ) r o + d / 2 ) , E x y = k 2 4 π ( 1 ϵ 0 p 1 y e i k ( r o d / 2 ) r o d / 2 + 1 ϵ 0 p 2 y e i k ( r o + d / 2 ) r o + d / 2 η 0 m 1 z e i k ( r o d / 2 ) r o d / 2 η 0 m 2 z e i k ( r o + d / 2 ) r o + d / 2 ) ,
V = | I + x | | I x | | I + x | + | I x | = | E + x | 2 | E x | 2 | I + x | 2 + | E x | 2 .
p 1 x = α e e ( E i n c 1 x + 2 1 ϵ 0 g 1 p 2 x ) , p 2 x = α e e ( E i n c 2 x + 2 1 ϵ 0 g 1 p 1 x ) , m 1 y = α m m ( H i n c 1 y + c g 3 p 2 z + g 2 m 2 y ) , m 2 y = α m m ( H i n c 2 y c g 3 p 1 z + g 2 m 1 y ) , p 1 z = α e e ( E i n c 1 z + 1 ϵ 0 g 2 p 2 z + η 0 g 3 m 2 y ) , p 2 z = α e e ( E i n c 2 z + 1 ϵ 0 g 2 p 1 z η 0 g 3 m 1 y ) .
p 1 x = α e e ( E i n c 1 x + 2 1 ϵ 0 g 1 α e e E i n c 2 x ) 1 ( 2 1 ϵ 0 g 1 α e e ) 2 , p 2 x = α e e ( E i n c 2 x + 2 1 ϵ 0 g 1 α e e E i n c 1 x ) 1 ( 2 1 ϵ 0 g 1 α e e ) 2 , m 1 y = Δ 9 H i n c 1 y + Δ 10 H i n c 2 y + Δ 11 E i n c 1 z + Δ 12 E i n c 2 z Δ , m 2 y = Δ 9 H i n c 2 y + Δ 10 H i n c 1 y Δ 11 E i n c 2 z Δ 12 E i n c 1 z Δ , p 1 z = Δ 13 H i n c 1 y + Δ 14 H i n c 2 y + Δ 15 E i n c 1 z + Δ 16 E i n c 2 z Δ , p 2 z = Δ 13 H i n c 2 y Δ 14 H i n c 1 y + Δ 15 E i n c 2 z + Δ 16 E i n c 1 z Δ ,
E + x z = k 2 4 π ( 1 ϵ 0 p 1 z e i k ( r o + d / 2 ) r o + d / 2 + 1 ϵ 0 p 2 z e i k ( r o d / 2 ) r o d / 2 η 0 m 1 y e i k ( r o + d / 2 ) r o + d / 2 η 0 m 2 y e i k ( r o d / 2 ) r o d / 2 ) , E x z = k 2 4 π ( 1 ϵ 0 p 1 z e i k ( r o d / 2 ) r o d / 2 + 1 ϵ 0 p 2 z e i k ( r o + d / 2 ) r o + d / 2 + η 0 m 1 y e i k ( r o d / 2 ) r o d / 2 + η 0 m 2 y e i k ( r o + d / 2 ) r o + d / 2 ) .

Metrics