Abstract

In this paper, a broadband absorber utilizing monolayer molybdenum disulfide (MoS2) is proposed, and a generalized interference theory (GIT) is derived to investigate this absorber. Using the hybrid Lorentz–Drude and Gaussian model of monolayer MoS2 and the dyadic Green’s functions, the propagation properties of monolayer MoS2 are first investigated. Then, a sandwich-like MoS2-based absorber design is proposed in the visible regime. The sandwich-like structure is mounted on a fully reflective gold mirror, which forms a Fabry-Perot resonator to strengthen light–matter interactions and enhance the absorption. To numerically calculate the absorption performance of this absorber, the GIT is next derived from interference theory. The numerical results indicate that an absorption ≥ 90% is obtained for a range of wavelengths (λ) from 389 to 517 nm, and this absorber can operate well, even with an angle of incidence up to 60°, which also verifies the prediction of the MoS2-based absorber mainly operating at λ < 700 nm. Afterward, the operating mechanism of the proposed design is determined using the theory of destructive interference. Finally, the proposed design and derived GIT are validated by a simulation using commercial electromagnetic software. The derived GIT drives the numerical investigation of the multilayer structure with various polarization types and angles of incidence of the waves, and the MoS2-based absorber can be used in several applications such as photoelectric storage and photoelectric detection.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Absorbers have attracted significant research interest as they have several applications in sensing [1], imaging [2], and energy storage [3] from the microwave to UV regime [4–6]. In recent years, engineers and scientists have developed more efficient absorbers using two-dimensional (2D) materials, e.g., graphene [7–9], black phosphorus (BP) [10–13], and molybdenum disulfide (MoS2) [14,15].

Graphene has been frequently investigated because of its exotic thermal, mechanically flexible, optical, and electrical properties [16–22]. However, the direct application of graphene in some devices is very difficult, because it is characterized by a zero or near-zero band gap and low absorption coefficient, which limits its applications under conditions where high on–off ratios and strong light–matter interactions are required [23]. BP, conversely, possesses a direct band gap; however, its environmentally induced degradation still blocks the development of BP-based devices [24,25]. MoS2 also has a direct band gap [26], high current cut-off ratios [27], and tunable optical and electronic properties. Because of these attractive features, MoS2 can function as or play a significant role in field-effect tunneling transistors [28], photovoltaic cells [29–31], photodetectors [32,33], and thermal management [34,35]. However, the monolayer MoS2 is approximately 0.65-nm thick and can only absorb about 25% of the incident energy in the visible regime [36]. Many researchers have made significant efforts to enhance the absorption of MoS2. Long et al. theoretically increased the optical absorption in monolayer MoS2 using multi-order magnetic polaritons [37]. Huo et al. demonstrated that monolayer MoS2 and other nano-metal couplings cannot only enhance the absorption but also expand the bandwidth [38]. However, the absorptions are primarily caused by the patterned nano-metal rather than MoS2. Mukherjee et al. numerically revealed that monolayer MoS2 and silica in the form of Bragg stacks can obtain the highest average optical absorption of about 94.7% in the visible regime [14], which would, nevertheless, lead to a bulky configuration. Kang et al. showed that it is possible to fabricate multi-stacked monolayer MoS2 films, and the optical absorption of single, double, and triple stacks increases almost linearly with the stack number [39]. This work provides tremendous promise of monolayer MoS2 in many applications such as photonics and optoelectronics.

In this study, we investigate a broadband MoS2-based absorber by deriving a generalized interference theory (GIT). We first use the dyadic Green’s function to theoretically calculate the reflection and transmission coefficients of the monolayer MoS2 between different dielectrics and angles of incidence. Next, we propose a broadband sandwich-like absorber utilizing the intact monolayer MoS2, and derive the GIT from interference theory to numerically investigate the proposed absorber. Comparing with the available interference theory [24,40,41], this derived GIT can accurately calculate the absorption of the sandwich-like absorber illuminated by waves with various polarization types and angles of incidence. Then, the dielectric spacer thickness and number of layers of the sandwich-like structure (NLSS) are optimized by the derived GIT, and the absorption mechanism is revealed by the theory of destructive interference. Finally, a simulation is obtained using commercial electromagnetic software. The simulated results are consistent with the numerical results and then, verify the derived GIT.

2. Permittivity model and transmission properties of monolayer MoS2

2.1 Permittivity model of monolayer MoS2

Several models have been proposed to describe the complex permittivity of 2D materials such as MoS2 [36,42–44]. In this work, the hybrid Lorentz–Drude and Gaussian (HLDG) model [36] is used to characterize monolayer MoS2. The HLDG model can be expressed as

εc=εcLD+εcG,
where the superscripts “LD” and “G” correspond to the Lorentz–Drude term and Gaussian term, respectively; in the visible regime, the Lorentz–Drude term can be given as
εcLD(ω)=ε+j=05αjωp2ωj2ω2iωbj.
Here, ωp = 28.3 meV is the plasma frequency and ε = 4.44 is the electrostatic permittivity. ωj, aj, and bj are the resonant frequency, oscillator strength, and damping coefficients for the jth oscillator, respectively; moreover, the specific values are listed in [36]. In contrast, the imaginary component of the Gaussian term can be expressed by a typical Gaussian distribution function as
εc,iG(ω)=αexp((ωζ)22δ2).
where ζ = 2.7723 is the mean, δ = 0.3089 the standard deviation, and α = 23.224 the maximum value [29]. Furthermore, the real component of the Gaussian term can be calculated by the Kramers–Kronog relation as [45]
εc,rG(ω)=1πPV+εc,iG(ω')ω'ωdω'.
εc,iG is the imaginary component of the Gaussian term and can be expressed as Eq. (3). Given the fixed temperature of 300 K and Fermi energy of 0 eV, the real and imaginary components of the complex permittivity of monolayer MoS2 are plotted in Fig. 1. It can be seen that their values are comparable when the wavelength (λ) is smaller than 700 nm; however, the imaginary component tends to 0 when λ > 700 nm. Theoretically, the imaginary component contributes to the electromagnetic dissipation and we can, therefore, predict that the high absorption of the MoS2-based absorber mainly occurs at λ less than 700 nm.

 

Fig. 1 Complex permittivity of monolayer MoS2.

Download Full Size | PPT Slide | PDF

2.2 Propagation properties of monolayer MoS2

Figure 2(a) depicts a laterally infinite monolayer MoS2 embedded in the xy plane at the interface between two different media characterized by μl, ɛl for z > d0 and μl+1, ɛl+1 for z < 0, i.e., d0 is the thickness of the monolayer MoS2. In this case, we set d0 to be 0.65 nm [36]. Its reflection coefficient can be calculated by the following formulas from the dyadic Green’s functions [46]:

RTE=m2plpl+1jσsωμl+1m2pl+pl+1+jσsωμl+1,
RTM=ωεl(n2plpl+1)jσsplpl+1ωεl(n2pl+pl+1)jσsplpl+1,
pl2=kρ2kl2,kρ=ksinθ,ρ=(xx')2+(yy')2.
where RTE and RTM are the reflection coefficients of the transverse electric (TE) and transverse magnetic (TM) waves, respectively. In Eqs. (5) and (6), n = εl+1/εl and m = μl+1/μl, and σs is the surface conductivity of the monolayer MoS2 and can be obtained by the following formula:
σs=Im(εc)ωε0d0.
Moreover, kρ is the radial wavenumber, k the wavenumber in free space, θ the angle of incidence, and kl = ω μlεl the wavenumber in the region l. When a plane wave is incident on the interface, the far scattered field in the dielectric l, which is the reflected field, can be represented as Er = âRexp(–jklz) with the reflection coefficient of R = RTE or RTM. The scattered field in the dielectric l + 1, which is the transmitted field, can be represented as Et = âTexp(jkl + 1z) with the transmission coefficient of [46]
TTE=1+RTEm2n2
or
TTM=1RTMpl+1/pl.
Given the free space of the dielectric l and l + 1 (i.e., εl = εl+1 = ε0 and μl = μl+1 = μ0), the reflection coefficients for the TE and TM waves with different angles of incidence are presented in Figs. 2(b) and 2(c), respectively; Figs. 2(d) and 2(e) present those for the TE and TM waves if we further modify εl+1 to 3ε0, respectively. Clearly, |RTE| steadily increases with θ; however, |RTM| is different. In Fig. 2(c), |RTM| monotonically decreases with θ because of the free space of the dielectric l and l + 1. Because of the difference in the dielectric l and l + 1 in Fig. 2(e), |RTM| first decreases and then increases with θ, which is derived from the existence of the Brewster angle for the TM wave. It should be noted that the propagation coefficients for the TE and TM waves are identical when θ = 0°.

 

Fig. 2 (a) Schematic of MoS2, characterized by the surface conductivity σs, embedded between two dielectrics (side view). Reflection coefficients for (b) and (c) MoS2 in free space, (d) and (e) MoS2 covering the dielectric with εr = 3, (b) and (d) TE wave, and (c) and (e) TM wave.

Download Full Size | PPT Slide | PDF

3. Results and discussion

3.1 Absorber model

Here, we propose a broadband absorber that utilizes a multilayered MoS2 material/dielectric sandwich-like structure on a gold mirror. The gold mirror blocks all transmission and forms a Fabry–Perot resonator to enhance the light–matter interaction. A schematic of the design with NLSS = 5 is illustrated in Fig. 3(a). Five layers of the monolayer MoS2 (located along the interfaces labeled from 1st to 5th) and the gold mirror (located on the right of the 6th interface) are separated by the dielectric substrates with a relative permittivity εr = 3 and thickness dl (l = 1–5). Moreover, the total thickness of MoS2 and the dielectric substrate is d, and each layer of MoS2 is an intact 2D structure without any patterns.

 

Fig. 3 (a) Schematic of the transmission and reflection for a five-layered sandwich-like structure. (b) Absorption map for various d with normal wave illumination and NLSS = 1. (c) Absorption map and (d) absorption spectra for various NLSSs with normal wave illumination, d = 58.65 nm, and d1, d2, d3dNLSS–1 = 1 nm. (e) and (f) Absorption spectra for various angles of incidence under the incident TE and TM waves, respectively, when NLSS = 5 and d1 = d2 = d3 = d4 = 1 nm. Amplitude difference and phase difference of the direct reflection and multiple reflections for (g) various NLSS with a normally incident wave, and (h) TE and (i) TM-polarized incident wave with various angles of incidence at NLSS = 5.

Download Full Size | PPT Slide | PDF

We can theoretically calculate the absorption of the sandwich-like absorber using a GIT derived from interference theory [24,40,41] (see the next subsection). The destructive interference between the directly reflected wave and the following multiple emergent waves effectively traps the wave in the sandwiched absorber, resulting in a high absorption.

3.2 GIT and performance of the proposed absorber

Now, the GIT will be presented. The absorption associated with the multilayered design can be expressed as [24]

A=1|Γ1|2,
where
Γl=rl,l+1+tl+1,ltl,l+1Γl+1ei2ϕl1rl+1,lΓl+1ei2ϕ=rl,l+1+Λl+1,l.
Here, ϕl (l = 1–5) represents the lth delayed phase through the dielectric substrates and the monolayer MoS2. Furthermore, ϕl can be calculated by
ϕl=Dlkl2kρ2=jDlpl,
where
Dldl+Re(εc)d0εr,
in which Γl (l = 1–6) represents the total reflection coefficients at the lth interface. tl,l+1, tl+1,l, rl,l+1, and rl+1,l respectively denote the transmission and reflection coefficients across the lth interface, where rl,l+1 and rl+1,l can be calculated using Eqs. (5) and (6), respectively. Then, we obtain tl,l+1 and tl+1,l according to Eqs. (9) and (10), respectively. The gold mirror acting as a ground does not allow the transmission of waves, such that t6,7 = 0 and r6,7 = ± 1 (positive sign and negative sign respectively for TM and TE wave); therefore, Γ6 = r6,7 = ± 1 can be derived from Eq. (12). By reverse iteration, Γ1 can be calculated, and the absorption can then be obtained by Eq. (11). This is the GIT derived in this paper.

Using the above GIT, we can calculate the absorption spectra of the sandwich-like absorber with different NLSSs and dielectric thicknesses. Assuming NLSS = 1 and a normally incident wave, we first change the dielectric spacer thickness d from 10 to 100 nm and calculate the absorption at the wavelength range of 300–900 nm, as shown in Fig. 3(b). The result indicates that the highest absorption is about 72.4% and the resonant wavelength is approximately 457 nm when d is 58.65 nm. Keeping d = 58.65 nm and the normally incident wave, we increase the NLSS from 2 to 10 systematically, and the absorption is presented in Fig. 3(c). It can be seen that the absorption bandwidth broadens with the increase in the NLSS; however, the absorption peak clearly drops, and dual-band absorption appears when NLSS is greater than 5. In order to show more accurate results, we present the wavelength-dependent absorption for NLSS = 1, 3, 5 and 6 in Fig. 3(d). We see that NLSS = 5 can be selected to optimize the absorption, where the bandwidth of the absorption greater than 90% is located between 389 and 517 nm, which suggests that the proposed absorber achieves broadband performance. Illuminated by the normally incident wave, it should be noted that the result for the TE wave is coincident with that for the TM wave.

In addition, the angle of incidence θ has a great influence on the absorption performance. The absorptions for the TE and TM waves are presented in Figs. 3(e) and 3(f), respectively. For the TE wave, the proposed sandwich-like absorber realizes wideband performance while θ < 30°, and dual-band absorption can be realized at θ between 30° and 60°. Conversely, there is no dual-band absorption for the TM wave. Moreover, the absorption performance for the TM wave is very close to that for the TE wave while θ < 30°.

From Figs. 3(b)–3(f), we notice that the absorption mainly occurs at λ < 700 nm, which verifies the prediction in subsection 2.1.

3.3 Absorption mechanism

At the 1st interface (i.e., l = 1), r12 in Eq. (12) represents the direct reflection from this interface, and Λ21 represents the multiple emergent waves resulting from the superposition of the multiple reflections among the sandwich-like structure and gold mirror. Under the ideal conditions of the amplitude difference (i.e., ΔA = abs(|r12| − |Λ21|) = 0) and phase difference (i.e., Δφ = arg(r12) − arg(Λ21) = ± π), an ideal absorption would be obtained, which satisfies the strongest destructive interference of the electromagnetic field [24,40]. Illuminated by a normally incident wave, ΔA and Δφ for the proposed absorber structure with different NLSSs are presented in Fig. 3(g). For λ between 389 and 517 nm, the ΔA is far from 0; when NLSS = 3, Δφ is closest to π; however, ΔA is approximately zero at only one point. Despite Δφ for NLSS = 5 being slightly farther from π than that for NLSS = 3, ΔA is closer to zero. With increasing NLSS, Δφ deviates from π significantly. This indicates that the absorption is determined by both Δφ and ΔA. Figures 3(h) and 3(i) present the ΔA and Δφ of the direct reflection and multiple reflections for the TE and TM polarizations with different angles of incidence when NLSS = 5, respectively. While θ ≥ 60°, ΔA or Δφ deviate from the ideal value, which weakens the destructive interference. An abnormally large change emerges in Fig. 3(i), i.e., when θ = 80°, ΔA is closest to 0; however, Δφ significantly deviates from the ideal condition of destructive interference. From Fig. 2 (d), we know that the trend of |RTM| is broken when θ is greater than the Brewster angle, i.e., arg(r12) will change from 0 to π when θ crosses the Brewster angle, which causes the large change in Δφ.

3.4 Simulation verification

The absorber was further simulated using CST Microwave Studio to verify the feasibility of the derived GIT [25]. Here, the thickness of the monolayer MoS2 was still set as 0.65 nm and meshed using fine girds. Periodic boundary conditions were used in the x and y directions. The incident plane wave points downward normal to the top surface of the absorber. The wavelength (λ)-dependent absorption A(λ) is expressed as 1 – R(λ) – T(λ), where R(λ) = |S11(λ)|2 and T(λ) = |S21(λ)|2 are respectively the spectral reflection and transmission with the S-parameter S11 and S21. Owing to the gold mirror used in this platform, the light transmission is completely inhibited. Therefore, the absorption can be simplified as A(λ) = 1 – R(λ). Figures 4(a)–4(c) respectively show the absorption for the proposed absorber model with NLSS = 1, 3, and 5 illuminated by the TE wave with different angles of incidence, and Figs. 4(d), 4(e)–4(f) respectively show those for the TM wave. We can see that the theoretical numerical results are completely consistent with the simulated results, which validates the GIT derived in this paper.

 

Fig. 4 Absorptions for various NLSSs and angles of incidence with TE and TM wave: (a)–(c), (d)–(f) TE and TM waves for NLSS = 1, 3, and 5 and incident wave, respectively. The blue curves denote the theoretical calculation results, while the red isolated points denote the simulation results from CST.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, a broadband sandwich-like absorber utilizing the intact monolayer MoS2 has been proposed and the GIT that can be used to calculate the sandwich-like structure has been derived. Based on the investigation of the electrical model of monolayer MoS2 via the HLDG model, we can predict that the proposed absorber primarily operates at λ less than 700 nm, which is verified by the following numerical results. Through the dyadic Green’s functions, the propagation properties of monolayer MoS2 are then obtained. Based on interference theory, the GIT with oblique angles of incidence is derived for a TM wave and TE wave. Moreover, because any wave can be superimposed by the TE wave and TM wave, the derived GIT is validated for the excited wave with any polarization. By optimizing the dielectric spacer thickness and the NLSS of monolayer MoS2 in the proposed absorber, we obtain the optimization bandwidth range of the absorption greater than 90% from 389 to 517 nm. The absorption mechanism contributes to the strong destructive interference. Finally, the verification of the derived GIT is presented using a CST simulation. This work not only demonstrates the potential of the monolayer MoS2 in the application of the functional device but also provides a generalized approach to numerically calculating multilayer structures.

Funding

National Natural Science Foundation of China (NSFC) (61661012); Natural Science Foundation of Guangxi (GXNSF) (2017GXNSFBA198121); Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (GXKL06170104, GXKL06160108); Dean Laboratory of Cognitive Radio and Information Processing.

References and links

1. J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017). [CrossRef]   [PubMed]  

2. S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012). [CrossRef]  

3. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015). [CrossRef]  

4. S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018). [CrossRef]   [PubMed]  

5. J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016). [CrossRef]   [PubMed]  

6. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018). [CrossRef]   [PubMed]  

7. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015). [CrossRef]   [PubMed]  

8. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017). [CrossRef]   [PubMed]  

9. X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016). [CrossRef]  

10. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017). [CrossRef]   [PubMed]  

11. J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016). [CrossRef]   [PubMed]  

12. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017). [CrossRef]   [PubMed]  

13. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015). [CrossRef]   [PubMed]  

14. B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016). [CrossRef]  

15. Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018). [CrossRef]  

16. X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015). [CrossRef]  

17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef]   [PubMed]  

18. X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015). [CrossRef]   [PubMed]  

19. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012). [CrossRef]   [PubMed]  

20. D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018). [CrossRef]   [PubMed]  

21. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016). [CrossRef]   [PubMed]  

22. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018). [CrossRef]  

23. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]   [PubMed]  

24. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017). [CrossRef]   [PubMed]  

25. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017). [CrossRef]   [PubMed]  

26. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010). [CrossRef]   [PubMed]  

27. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011). [CrossRef]   [PubMed]  

28. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012). [CrossRef]   [PubMed]  

29. Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016). [CrossRef]   [PubMed]  

30. S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016). [CrossRef]  

31. A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014). [CrossRef]   [PubMed]  

32. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013). [CrossRef]   [PubMed]  

33. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015). [CrossRef]   [PubMed]  

34. J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015). [CrossRef]  

35. Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016). [CrossRef]  

36. B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015). [CrossRef]  

37. L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017). [CrossRef]  

38. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017). [CrossRef]   [PubMed]  

39. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015). [CrossRef]   [PubMed]  

40. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef]   [PubMed]  

41. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013). [CrossRef]   [PubMed]  

42. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014). [CrossRef]  

43. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014). [CrossRef]  

44. D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016). [CrossRef]  

45. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).

46. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
    [Crossref] [PubMed]
  2. S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
    [Crossref]
  3. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  4. S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
    [Crossref] [PubMed]
  5. J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
    [Crossref] [PubMed]
  6. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
    [Crossref] [PubMed]
  7. M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
    [Crossref] [PubMed]
  8. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [Crossref] [PubMed]
  9. X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
    [Crossref]
  10. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
    [Crossref] [PubMed]
  11. J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
    [Crossref] [PubMed]
  12. W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
    [Crossref] [PubMed]
  13. J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
    [Crossref] [PubMed]
  14. B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
    [Crossref]
  15. Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
    [Crossref]
  16. X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
    [Crossref]
  17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  18. X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
    [Crossref] [PubMed]
  19. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  20. D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
    [Crossref] [PubMed]
  21. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  22. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
    [Crossref]
  23. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  24. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]
  25. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
    [Crossref] [PubMed]
  26. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  27. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  28. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  29. Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
    [Crossref] [PubMed]
  30. S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
    [Crossref]
  31. A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
    [Crossref] [PubMed]
  32. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  33. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
    [Crossref] [PubMed]
  34. J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
    [Crossref]
  35. Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
    [Crossref]
  36. B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
    [Crossref]
  37. L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
    [Crossref]
  38. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
    [Crossref] [PubMed]
  39. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
    [Crossref] [PubMed]
  40. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  41. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  42. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
    [Crossref]
  43. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
    [Crossref]
  44. D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
    [Crossref]
  45. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).
  46. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]

2018 (5)

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
[Crossref]

2017 (8)

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

2016 (9)

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

2015 (10)

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

2014 (3)

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

2013 (2)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

2012 (4)

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

2011 (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

2010 (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Aközbek, N.

Amara, K. K.

Amin, M.

Aqeeli, M.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Ashrafi, M.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Bagci, H.

Bao, Q.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Bianco, G. V.

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Bruno, G.

Cai, Y.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Cartamil-Bueno, S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Chang, K.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Chang, K. H.

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Chen, H. T.

Chen, J.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Chen, J. C.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Chen, L. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Chen, S.

Chen, Y.

Cheng, Y.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Chu, P. K.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

D’Orazio, A.

Dai, S.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Davidovikj, D.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

de Ceglia, D.

De Vittorio, M.

Deng, X. H.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Du, Y.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Duesberg, G. S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Eda, G.

Faimak, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Fan, D.

Farhat, M.

Fedorinin, V. N.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Furchi, M. M.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Geim, A. K.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gelfand, A. V.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Grande, M.

Gunlycke, D.

Guo, Z.

Han, Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hou, X.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Hsin Chang, K.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

Hu, X. P.

Hu, Z.

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Huang, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Huang, L.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Huang, P. Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Huang, R. Z.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Huang, X.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

Huang, Y.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
[Crossref] [PubMed]

Huo, D.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ji, G.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Ji, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Jiang, G.

Jiang, Y.

Kang, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kim, C.J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Kuznesov, S. A.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Lazorskiy, P. A.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lei, Y.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Leng, T.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Li, B.

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Li, D.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Li, D. H.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Li, P.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Li, S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Li, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Li, Z.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Liang, X.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Lin, S.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Liu, J. Q.

Liu, J. T.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Liu, L.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Liu, W.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Liu, Y.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Long, L. S.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lu, S.

Lu, X.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Lunney, J. G.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Luo, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Ma, J.

Ma, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Man Luk, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Mccoubrey, K.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

McEvoy, N.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Mei, L.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Mirza, I.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Mishchenko, A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mu, H.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Mueller, T.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Mukherjee, B.

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Muller, D.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

O’Brien, M.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Ong, Z. Y.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Pan, C.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Park, J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Paulish, A. G.

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Peng, J.

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Petruzzelli, V.

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Ping Lau, S.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Poot, M.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Pospischil, A.

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

Pradhan, A. K.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Pradhan, S. K.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Pu, M.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Qiao, H.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Quan, B.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Ren, X.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Scalora, M.

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shao, J.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Shi, J.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Simsek, E.

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

B. Mukherjee, F. Tseng, D. Gunlycke, K. K. Amara, G. Eda, and E. Simsek, “Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible,” Opt. Mater. Express 5(2), 447–455 (2015).
[Crossref]

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Song, J.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Song, X. F.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Steeneken, P. G.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Stomeo, T.

Su, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Sun, B.

Sun, Z.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Tang, D.

Tao, W.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Thakur, S.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Tseng, F.

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

van der Zant, H. S. J.

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Vincenti, M. A.

Wang, C.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Wang, J.

Wang, L. L.

Wang, L. P.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Wang, S. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Wang, T. B.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Wang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Wang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Wang, Z. Y.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Wen, S.

Wen, S. C.

Winters, S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Wu, P.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

Wu, Y. B.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Xia, S. X.

Xiao, B.

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

Xiao, Q.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xie, H.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xie, S.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

Xie, Z. D.

Xu, J. L.

Xu, J. P.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Xu, X.

Xu, Y.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Xu, Z.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Xu, Z. Q.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Yang, W.

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

Yang, Y.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yang, Z.

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Ye, H.

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Ye, Z. L.

Yim, C.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Yu, W.

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Yu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Yu, X. F.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Yuan, J.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Zeng, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Zhai, X.

Zhang, D. W.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhang, G.

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

Zhang, H.

Y. Xue, Z. D. Xie, Z. L. Ye, X. P. Hu, J. L. Xu, and H. Zhang, “Enhanced saturable absorption of MoS2 black phosphorus composite in 2 μm passively Q-switched Tm: YAP laser,” Chin. Opt. Lett. 16(2), 020018 (2018).
[Crossref]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhang, R. J.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhang, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Zhao, C.

Zhao, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhao, Y.

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Zheng, Y. X.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhou, P.

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Zhu, M.

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Zhu, X.

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

2D Mater. (1)

X. Huang, T. Leng, K. Hsin Chang, J. C. Chen, K. S. Novoselov, and Z. Hu, “Graphene radio frequency and microwave passive components for low cost wearable electronics,” 2D Mater. 3(2), 025021 (2016).
[Crossref]

Adv Sci (Weinh) (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, and L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29(1), 1603276 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett. 106(20), 203105 (2015).
[Crossref]

J. Peng, G. Zhang, and B. Li, “Thermal management in MoS2 based integrated device using near-filed radiation,” Appl. Phys. Lett. 107(13), 133108 (2015).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Appl. Surf. Sci. (1)

D. H. Li, X. F. Song, J. P. Xu, Z. Y. Wang, R. J. Zhang, P. Zhou, H. Zhang, R. Z. Huang, S. Y. Wang, Y. X. Zheng, D. W. Zhang, and L. Y. Chen, “Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 884–890 (2016).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Long, Y. Yang, H. Ye, and L. P. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Nano Lett. (1)

D. Davidovikj, M. Poot, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “On-chip heaters for Tension tuning of graphene nanodrums,” Nano Lett. 18(5), 2852–2858 (2018).
[Crossref] [PubMed]

Nanoscale (3)

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

J. Zhang, X. Lu, Y. Lei, X. Hou, and P. Wu, “Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase,” Nanoscale 9(40), 15606–15611 (2017).
[Crossref] [PubMed]

S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, “Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration,” Nanoscale 10(15), 6945–6953 (2018).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, and Q. Bao, “Photonics and optoelectronics of two-dimensional materials beyond graphene,” Nanotechnology 27(46), 462001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, and P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer p-n diode,” Nat. Nanotechnol. 9(4), 257–261 (2014).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Nature (2)

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. Faimak, C.J. Kim, D. Muller, and J. Park, “Materials science: screen printing of 2D semiconductors,” Nature 520, 656 (2015).
[Crossref] [PubMed]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Mukherjee and E. Simsek, “utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers,” Opt. Commun. 369, 89–93 (2016).
[Crossref]

Opt. Express (8)

J. Ma, S. Lu, Z. Guo, X. Xu, H. Zhang, D. Tang, and D. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643–22648 (2015).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Aközbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based perfect optical absorbers harnessing guided mode resonances,” Opt. Express 23(16), 21032–21042 (2015).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (2)

Z. Y. Ong, Y. Cai, and G. Zhang, “Theory of substrate-directed heat dissipation for single-layer graphene and other two-dimensional crystals,” Phys. Rev. B 94(16), 165427 (2016).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2 and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

S. A. Kuznesov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, “Matrix structure of metamaterial absorbers for multispectral terahertz imaging,” Prog. Electromagnetics Res. 122, 93–103 (2012).
[Crossref]

Sci. Rep. (3)

X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep. 5(1), 18298 (2015).
[Crossref] [PubMed]

Y. B. Wu, W. Yang, T. B. Wang, X. H. Deng, and J. T. Liu, “Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure,” Sci. Rep. 6(1), 20955 (2016).
[Crossref] [PubMed]

C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, “Highly responsive MoS2 photodetectors enhanced by graphene quantum dots,” Sci. Rep. 5(1), 11830 (2015).
[Crossref] [PubMed]

Science (1)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

S. K. Pradhan, B. Xiao, and A. K. Pradhan, “Enhanced photo-response in p-Si/MoS2 heterojunctor-based on solar cells,” Sol. Energy Mater. Sol. Cells 144, 117–127 (2016).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, and P. Phelan, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (1)

V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Complex permittivity of monolayer MoS2.
Fig. 2
Fig. 2 (a) Schematic of MoS2, characterized by the surface conductivity σs, embedded between two dielectrics (side view). Reflection coefficients for (b) and (c) MoS2 in free space, (d) and (e) MoS2 covering the dielectric with εr = 3, (b) and (d) TE wave, and (c) and (e) TM wave.
Fig. 3
Fig. 3 (a) Schematic of the transmission and reflection for a five-layered sandwich-like structure. (b) Absorption map for various d with normal wave illumination and NLSS = 1. (c) Absorption map and (d) absorption spectra for various NLSSs with normal wave illumination, d = 58.65 nm, and d1, d2, d3dNLSS–1 = 1 nm. (e) and (f) Absorption spectra for various angles of incidence under the incident TE and TM waves, respectively, when NLSS = 5 and d1 = d2 = d3 = d4 = 1 nm. Amplitude difference and phase difference of the direct reflection and multiple reflections for (g) various NLSS with a normally incident wave, and (h) TE and (i) TM-polarized incident wave with various angles of incidence at NLSS = 5.
Fig. 4
Fig. 4 Absorptions for various NLSSs and angles of incidence with TE and TM wave: (a)–(c), (d)–(f) TE and TM waves for NLSS = 1, 3, and 5 and incident wave, respectively. The blue curves denote the theoretical calculation results, while the red isolated points denote the simulation results from CST.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε c = ε c LD + ε c G ,
ε c LD ( ω )= ε + j=0 5 α j ω p 2 ω j 2 ω 2 iω b j .
ε c,i G ( ω )=αexp( ( ωζ ) 2 2 δ 2 ).
ε c,r G ( ω )= 1 π PV + ε c,i G ( ω' ) ω'ω dω'.
R TE = m 2 p l p l+1 j σ s ω μ l+1 m 2 p l + p l+1 +j σ s ω μ l+1 ,
R TM = ω ε l ( n 2 p l p l+1 )j σ s p l p l+1 ω ε l ( n 2 p l + p l+1 )j σ s p l p l+1 ,
p l 2 = k ρ 2 k l 2 , k ρ =ksinθ,ρ= ( xx' ) 2 + ( yy' ) 2 .
σ s =Im( ε c )ω ε 0 d 0 .
T TE = 1+ R TE m 2 n 2
T TM = 1 R TM p l+1 / p l .
A=1 | Γ 1 | 2 ,
Γ l = r l,l+1 + t l+1,l t l,l+1 Γ l+1 e i2 ϕ l 1 r l+1,l Γ l+1 e i2ϕ = r l,l+1 + Λ l+1,l .
ϕ l = D l k l 2 k ρ 2 =j D l p l ,
D l d l + Re( ε c ) d 0 ε r ,

Metrics