Abstract

We present an omnidirectional broadband metasurface absorber whose dielectric-metal-dielectric layers are modulated by cylinder arrays. The simultaneous excitation of surface plasmon resonance and localized surface plasmon resonance affords an average optical absorption of 0.97 (0.9, experiment), with peak absorption up to 0.99 (0.984, experiment), for the wavelength range of 400-1100 nm, and absorption >0.93 (0.87, experiment) for incident angles up to 60°. The device, which is fabricated by continuously variable spatial frequency photolithography, outperforms previously reported absorbers in cost. Moreover, it exhibits considerably lower emissivity (weak absorption) in the mid-infrared range, which makes it promising for energy harvesting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metasurfaces, which are specially engineered materials that allow highly versatile manipulation of incident light at nanoscale levels, have found utility in the fabrication of special lenses [1,2], plasmonic detectors [3,4], color printing applications [5–10], and perfect absorbers [11–30]. Broadband near-perfect absorbers are mostly based on multiple pairs of stacked metal/dielectric resonators, which utilize the strong cavity resonance inside the dielectric film to afford absorption. Different material combinations such as nickel (Ni)-aluminum oxide (Al2O3) [12], wolfram (W)-Al2O3 [13], platinum (Pt)-Al2O3 [14], silver-amorphous silicon (Ag–a-Si) [15], and titanium nitride (TiN)-silicon oxide (SiO2) have been investigated as absorber materials [16]. However, for these structures, a wider absorptive bandwidth requires a corresponding increase in the total thickness, which limits their application. In this context, research efforts have been directed towards minimizing the absorber size. Meanwhile, it has been demonstrated that via assembly of resonators of varied geometries into one pixel [17–19], different resonant wavelengths can be excitated and utilized simultaneously. However, the incident angular tolerance is limited for interactions among the resonators. To achieve wider angular tolerance, absorbers incorporating patterned metals or dielectric-semiconductor-metal layers based on Mie resonance or localized surface plasmon modes have been explored [20–22], thereby resulting in absorbers consisting of stepped patterns and integrated arrays of silicon and chromium pillars. However, the process underlying the fabrication of such devices is complicated and expensive. Meanwhile, structures consisting of different patterned metal–dielectric–metal layers that utilize multi-resonance phenomena have found wide applications [23–30], however, the angular tolerance of such structures still depends on multistep fabrications or the use of noble metals.

Given this backdrop, in this study, we numerically and experimentally investigate a broadband absorber based on a thin metasurface that comprises patterned dielectric-metal-dielectric layers with a period significantly smaller than the working wavelength. Due to the excitation of both surface plasmon resonance (SPR) and localized SPR, the device exhibits near-perfect absorption over a broadband range from 400 nm to 1100 nm, thereby affording an absorptive band of 700 nm from the visible to the near-infrared range. In this range, we obtain an average absorption of 0.97 (0.9, experiment), with a peak absorption up to 0.99 (0.984, experiment), and absorption >0.93 (0.87, experiment) for incident angles up to 60°. Importantly, via combining the high throughput continuously variable spatial frequency photolithography process with coating technology, our device can be fabricated significantly faster, and low cost than previously reported structures. Furthermore, our absorber exhibits a significantly lower emissivity (weak absorption) in the mid-infrared range. Therefore, this metasurface absorber have important applications in fields such as concentrating solar power and thermal imaging technology.

2. Structural design and experimental details

The schematic of our broadband omnidirectional absorber is presented in Fig. 1, wherein SiNx-Ni layers are modulated by two-dimensional (2D) photoresist cylinder arrays. The height and diameter of cylinders are denoted as h1 and w, respectively, and the thicknesses of the Ni and SiNx layers are denoted as h2 and h3, respectively, while the period of cylinder arrays is denoted as P. These parameters are optimized as follows: P = 290 nm, w = 58 nm, h1 = 90 nm, h2 = 50 nm, and h3 = 50 nm. The optical performance of our device is calculated by means of the 3D finite difference time domain (3D–FDTD) method [31]. In the calculations, the index information associated with these materials is derived from Palik [32]. Subsequently, the absorption is calculated as A = 1 – R – T, where R and T denote the reflection and transmission, respectively.

 

Fig. 1 Schematic of proposed broadband omnidirectional absorber.

Download Full Size | PPT Slide | PDF

The device fabrication procedure is depicted in Fig. 2(a). In our study, the 2D photoresist grating was fabricated by means of the fast and simple continuously variable spatial frequency photolithography (SVG Corporation, Nanocrystal) process [33,34]. Firstly, the laser beam of 351 nm is turned into collimated plane wave by an expander system, secondly, this plane wave is transmitted through a 4F system. After that, only ± 1 orders of diffracted beams are allowed pass through the objective lens and focused on the photoresist that coated on the quartz substrate to form a minified interference pattern. A pixel filled with the grating is formed after each exposure, where different grating periods can be achieved by changing locations of the binary optical element. In addition, the stage is driven by a computer monitored micro-stepping controller, where spatially distributed pixels obtained with its accurately changed position. Therefore, gratings can be made “pixel-by-pixel”, which is much efficiency for pixelized grating arrays' fabrication. Importantly, the smallest period that can be fabricated is about 200 nm, and this technique has excellent reproducibility as several researches based on this technique have been proposed. As an example of the process efficiency, we point out that it only takes 10 min to fabricate gratings over an area of 200 mm2, which is about 500 times faster the e-beam lithography process. In our process, the photoresist gratings were next developed in NaOH solution (6‰) and dried by means of an electric blow drier. Finally, 50 nm thick Ni and SiNx films were deposited on the gratings via magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICP-CVD), respectively. The surface morphology of the fabricated absorber was characterized by means of a scanning electron microscope (SEM), as shown in Fig. 2(b). Obviously, the metallic grating arrays are neatly distributed on the quartz substrate with a period of 290 nm.

 

Fig. 2 (a) Schematic of fabrication processes. (b) Scanning electron microscope (SEM) image of proposed absorber.

Download Full Size | PPT Slide | PDF

3. Results and discussion

3.1 Performance and underlying principles

Figure 3(a) depicts the calculated absorption spectrum at normal incidence, where an average absorption intensity of 0.97 is achieved in the wavelength range from 400 to 1100 nm, with three different absorption peaks at particular wavelengths, thus indicating the simultaneous excitation of multi-resonances. Such excellent characteristics are essential for absorptive devices that need to be integrated into industrial applications. Figure 3(b) shows the measured absorption spectrum, which exhibits good agreement with the calculated spectrum. In particular, we note that peaks A and B that occurred in calculations are in accordance with that in experiment. It is further noteworthy that the peak C on the measured response is nearly disappeared, which is mainly caused by the deposited material’s refractive index as well as the fabricated structure’s period slightly violated from the simulation ones, as the characteristic of SPR and localized SPR are highly sensitive to the environment and structural geometry.

 

Fig. 3 (a) Calculated and (b) measured absorption spectra of proposed absorber at normal incidence.

Download Full Size | PPT Slide | PDF

Next, we investigated the absorption performances related to the incident angle of light. The angle-resolved absorption of this fabricated absorber was measured by using a spectrophotometer (LAMBDA 750) with the incident angle varied from 0° to 60°. From the calculated and measured spectra shown in Figs. 4(a) and 4(b), respectively, we note that two sets of absorptions exhibit excellent angular insensitivity; the slight deviation between experiment and calculation is mainly due to errors in fabrications. To further examine how the incident angle influences the absorption, we calculated the average absorption corresponding to Figs. 4(a) and 4(b) over the angle range of 0° to 60°; this result is presented in Fig. 4(c). The average absorption is almost unchanged for incident angles up to 45°, while it gradually decreases for larger incident angles. Experimentally, even for incident angles of 60°, the average absorption is still greater than 0.87. Figure 4(d) displays optical images of the fabricated absorbers acquired under indoor ambient light illumination at angles of 20°, 40°, and 60°; we note that the absorbers appear totally black. This result indicates that the proposed device presents good angular tolerance. Moreover, the device is coated with SiNx films, which limits refraction at its interface. Consequently, the absorber exhibits wide angular tolerance.

 

Fig. 4 (a) Calculated and (b) measured incident angle–resolved spectra of proposed absorber. (c) Calculated and measured average absorptions of absorber. (d) Optical images of fabricated absorber acquired at different incident angles.

Download Full Size | PPT Slide | PDF

In order to understand the physical mechanism underlying the broadband absorption, the contribution of each structural component of the absorber is analyzed. The calculated and measured absorption spectra of the sample during the fabrication procedure is depicted in Fig. 5. A good agreement between calculations [Fig. 5(a)] and experimental results [Fig. 5(b)] is observed. From Fig. 5(a), it can be inferred that a flat SiNx-coated Ni film affords efficient absorption at shorter wavelengths (green curve). However, the absorptions are still far from near-perfect across the entire bandwidth of interest. When the 2D grating arrays are patterned on the substrate, the absorption is greatly broadened and enhanced (black curve), and the average absorption increases from 0.65 to 0.97 in the wavelength of 400-1100 nm. Here, the Ni film acts as an absorptive layer because of the absorption is enhanced after the lossless grating is coated with 50 nm thick Ni (blue curve). Moreover, the lossless SiNx layer acts as an antireflection layer, whose effect can be observed from a comparison of the flat SiNx-coated Ni film and single Ni film (red/green curves). Therefore, the deposition thickness of the SiNx layers also plays a key role in achieving a high level of absorption in the broadband range. For instance, for an 80 nm thick SiNx layer (instead of 50 nm), the absorption peak shifts to longer wavelengths, which reduces the amount of light absorbed at shorter wavelengths. Thus, this device extends the stacked Ni/SiNx films to achieve broadband absorption in ultrathin structures.

 

Fig. 5 Comparison between (a) calculated and (b) measured absorption spectra corresponding to each step of fabrication process.

Download Full Size | PPT Slide | PDF

To further understand the optical behavior underlying the enhanced broadband absorption, magnetic field distributions at the absorption peaks are calculated and mapped. From Fig. 6(a), without the SiNx coating, at peak A, the field is mainly localized at the sidewall and top surface of the metallic gratings, which represents the superposition of SPR and localized SPR [22]. Meanwhile, from Figs. 6(b) and 6(c), at wavelengths of the peak B and peak C, respectively, the localized SPR is formed around the sidewall of the metallic gratings, while the coupling between adjacent gratings is highly dispersive, which means that no obvious absorption peaks can be formed. For the structures with the SiNx layer, light trapping at the wavelength of peak A is due to localized SPR and slight coupling between adjacent gratings [24], wherein the field is mainly localized at the metallic grating top corners, which suppresses reflection [Fig. 6(d)].

 

Fig. 6 Intensity maps of magnetic field for λ = 400, 600, and 938 nm. (a)–(c) Without SiNx coating. (d)–(f) With SiNx coating. (g)–(i) Without grating arrays.

Download Full Size | PPT Slide | PDF

In the case of resonance at peak B, the magnetic field is mainly distributed atop the SiNx layer, as displayed in Fig. 6(e). This resonance is also attributed to SPR, and the observed red shift in the resonant wavelength is induced by the SiNx layer [in comparison with Fig. 6(a)]. The SPR can be characterized by the following dispersion relation:

kx=2πλsinθi+2πP=wcϵdϵmεd+ϵm,
where kx denotes the wave vector component along the grating surface, P denotes the grating period, c denotes the speed of incident light, w denotes the angular frequency of incident light, θi denotes the incident angle, and εd and εm denote the dielectric constants of the dielectric and metal, respectively [35]. Simultaneously, a significantly weaker localized SPR appears at the bottom corner of the metallic gratings.

Finally, the resonance at peak C exhibits localized SPR around the metallic grating sidewalls, as depicted in Fig. 6(f). Coupling between the localized SPRs leads to a perpendicular oscillation in magnetic fields of the bottom SiNx layers, which is strongly concentrated and enhanced relative to that in Fig. 6(c). The magnetic field distribution in this case indicates that the intensity maximum at peak C is relatively higher than that of previous resonances, which aids in compensating for the lower absorption of the structure (grating + Ni) at longer wavelengths. Therefore, via utilizing the phenomena of SPR and localized SPR, our proposed device can achieve broadband, near-perfect absorption.

Remarkably, when compared with flat SiNx-coated Ni films [see Figs. 6(g)–6(i)], the stacked films modulated by 2D cylinder arrays exhibit a larger field magnitude in the SiNx region along with radical magnetic field patterns, which enables pairs of stacked Ni/SiNx layers to achieve broadband absorption in ultrathin thickness. And the comparison of our structure to the existing perfect absorbers is given in Table 1, which indicates that our developed structure as well as its fabrication has a good performance [13,20,26–28,30].

Tables Icon

Table 1. The comparison between this structure with other absorption structures

3.2 Influence of period and material on absorption

As the variations of the period in the fabricated devices could impact significantly the average absorption due to spectral shifts of the different absorption peaks, we calculated and mapped the absorptive spectrum with varied periods. As plotted in Fig. 7(a), with the increasing of periods, absorptive peaks are obviously shifted, and the absorption is decreased at long wavelength. Therefore, the period for our device is set as 290 nm to obtain a better average absorption.

 

Fig. 7 (a) Calculated absorption spectrum for different grating shapes. (b) Calculated absorption spectra for different constituent materials.

Download Full Size | PPT Slide | PDF

Moreover, we also examine the absorption of this device when various coating materials are used. While the devices discussed in the previous sections used a coating layer of Ni and SiNx, we note that materials such as chromium (Cr), W, TiN, Al2O3, and zinc oxide (ZnO) can be also used as alternative materials for different applications. The absorption spectra obtained for different material combinations are plotted in Fig. 7(b), wherein the average absorption is 0.97, 0.96, 0.94, and 0.91 for Ni + SiNx, Cr + SiNx, W + ZnO, and TiN + Al2O3 coatings, respectively. Thus, this device can be used for applications such as solar thermophotovoltaics (Ni, Cr, W), and it is also compatible with CMOS (TiN) processes as the photoresist grating also can be replaced by SiO2 gratings.

3.3 Photothermal performance of absorber

As reported before, the material used for this device is heat resisting, and then its optical performance is slightly affected by the high temperature [36,37]. Therefore, this metasurface absorber can be working as a concentrating solar power device. Figure 8(a) displays the calculated absorption spectrum overlapped with the air mass 1.5 (AM1.5) solar spectrum in the range from 300 to 2000 nm. An average absorption over 0.8 is achieved over this broad range, which indicates that almost all the solar energy is absorbed by our device. More remarkably, this metasurface absorber shows very weak absorption in the mid-infrared range. From Fig. 8(b), an average absorption of 0.08 is obtained for the wavelength from 5 to 10 µm as the period of this absorber is significantly smaller than the incident wavelength. Consequently, the absorber minimizes heat dispersion through infrared radiation [38]. Therefore, this metasurface absorber can be employed as an efficient concentrating solar power device.

 

Fig. 8 (a) Calculated absorption spectrum of proposed device overlapped with AM1.5 solar spectrum (300–2000 nm). (b) Calculated absorption spectrum of device in mid-infrared range.

Download Full Size | PPT Slide | PDF

4. Summary

In summary, we numerically and experimentally demonstrated a novel broadband near–perfect absorber based on an ultrathin metasurface. The absorber exploits the phenomena of surface plasmon resonance and localized surface plasmon resonance to afford an average optical absorption of 0.97 (0.9, experiment) over the wavelength range from 400 nm to 1100 nm, and the absorption remains at 0.94 (0.87, experiment) even for incidence angles up to 60°. Remarkably, several types of coating materials can be used in this absorber, which significantly broadens its application. Furthermore, this device effectively absorbs light in the visible and near-infrared range, with very little thermal radiation in the mid-infrared range. Our device can significantly contribute to the realization of cost-effective, large-area, broadband absorbers, which have important applications in fields such as concentrating solar power and thermal imaging technology.

Funding

National Natural Science Foundation of China (NSFC) (61575132, 61107016, 61575135, 61505131); Key University Science Research Project of Jiangsu Province (14KJA510006); NFSC Major Research Program on Nanomanufacturing (91323303); Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions; BZ2016008.

Acknowledgments

We thank the College of Physics and Optoelectronics of Soochow University for experimental support.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016). [CrossRef]   [PubMed]  

2. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

3. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010). [CrossRef]   [PubMed]  

4. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012). [CrossRef]  

5. H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017). [CrossRef]   [PubMed]  

6. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016). [CrossRef]   [PubMed]  

7. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015). [CrossRef]   [PubMed]  

8. Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017). [CrossRef]  

9. Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017). [CrossRef]   [PubMed]  

10. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016). [CrossRef]  

11. T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000). [CrossRef]  

12. S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998). [CrossRef]  

13. Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005). [CrossRef]  

14. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017). [CrossRef]   [PubMed]  

15. K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016). [CrossRef]  

16. J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016). [CrossRef]   [PubMed]  

17. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016). [CrossRef]   [PubMed]  

18. K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016). [CrossRef]  

19. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011). [CrossRef]  

20. Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018). [CrossRef]   [PubMed]  

21. Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017). [CrossRef]  

22. J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016). [CrossRef]  

23. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010). [CrossRef]  

24. J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017). [CrossRef]  

25. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016). [CrossRef]  

26. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012). [CrossRef]  

27. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017). [CrossRef]   [PubMed]  

28. C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016). [CrossRef]  

29. B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017). [CrossRef]  

30. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014). [CrossRef]  

31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

32. K Yee, IEEE Antennas and Propagation Society, (1966).

33. Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017). [CrossRef]   [PubMed]  

34. W. Qiao, M. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano–grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016). [CrossRef]   [PubMed]  

35. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons (Cambridge University, Cambridge, 2010).

36. G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012). [CrossRef]  

37. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018). [CrossRef]   [PubMed]  

38. K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  2. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).
  3. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  4. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  5. H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
    [Crossref] [PubMed]
  6. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  7. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
    [Crossref] [PubMed]
  8. Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
    [Crossref]
  9. Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
    [Crossref] [PubMed]
  10. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
    [Crossref]
  11. T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
    [Crossref]
  12. S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
    [Crossref]
  13. Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
    [Crossref]
  14. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [Crossref] [PubMed]
  15. K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
    [Crossref]
  16. J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
    [Crossref] [PubMed]
  17. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  18. K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
    [Crossref]
  19. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  20. Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
    [Crossref] [PubMed]
  21. Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
    [Crossref]
  22. J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
    [Crossref]
  23. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  24. J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
    [Crossref]
  25. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
    [Crossref]
  26. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  27. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  28. C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
    [Crossref]
  29. B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
    [Crossref]
  30. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
    [Crossref]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. K Yee, IEEE Antennas and Propagation Society, (1966).
  33. Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
    [Crossref] [PubMed]
  34. W. Qiao, M. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano–grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
    [Crossref] [PubMed]
  35. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons (Cambridge University, Cambridge, 2010).
  36. G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  37. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
    [Crossref] [PubMed]
  38. K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
    [Crossref]

2018 (2)

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

2017 (11)

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
[Crossref] [PubMed]

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

2016 (11)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

W. Qiao, M. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano–grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

2015 (1)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

2014 (1)

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

2012 (3)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

G. V. Naik, J. L. Schroeder, X. J. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (1)

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

2005 (1)

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

2000 (1)

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

1998 (1)

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

AlGhaferi, A.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Alketbi, A. S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Atwater, H. A.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Bahauddin, S. M.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Bardou, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Bent, S. F.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Boltasseva, A.

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Bukowsky, C. R.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Capasso, F.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, B.-Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Chen, G.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Chen, H.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Chen, L.

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Chen, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Cheng, W. H.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Collin, S.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Cui, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Dai, P.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Dereshgi, S. A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Duan, H.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Duan, X.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Dupuis, C.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Fabreguette, F. H.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Fang, B.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Fang, N. X.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fang, Z.

Fountaine, K. T.

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

George, S. M.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Guillemoles, J. F.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Guo, L. J.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Guo, W.

Hägglund, C.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Han, T.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

He, S.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Heintz, O.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Huang, M.

Huang, Y.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Huang, Z.

Hung Fung, K.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Ji, C.

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Jin, Y.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Johnson, D. C.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Kadirgan, F.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Kumar, A.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Lee, K.-T.

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

Lee, Y.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Lee, Y. E.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Lemaître, A.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Li, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Lin, K.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Liu, L.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Liu, N.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Liu, X.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

Lu, J. Y.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Luo, M.

Luo, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Ma, X.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Martin, O. J. F.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Massiot, I.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Matuschek, M.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Naik, G. V.

Nam, S. H.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Neubrech, F.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Ni, X. J.

Noorulla, S.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Pang, C. L.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Phung, T. M.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Pu, D.

Pu, M.

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Qian, Q.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Qiao, W.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Raza, A.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Robatjazi, H.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Roelofs, K. E.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Ruiz, R.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Sands, T. D.

Santschi, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Schroeder, J. L.

Sechrist, Z. A.

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shen, S.

Shen, W. D.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Söhmen, H. M.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Su, P.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Sun, T.

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Süzer, S.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tesfamichael, T.

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Thomann, I.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Türe, I. E.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Vandamme, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Wäckelgård, E.

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Wang, C.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Wang, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, X.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Wang, Y.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Wangperawong, A.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Wei, G.

Wetherilt, A. J.

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Wilke, K.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Wu, S.

Xu, F.

Xu, J.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xu, Y.

Yan, C.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Yan, Y.

Q. Qian, Y. Yan, and C. Wang, “Flexible metasurface black nickel with stepped nanopillars,” Opt. Lett. 43(6), 1231–1234 (2018).
[Crossref] [PubMed]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

Yang, C. Y.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Ye, Y.

Yen, Y.-T.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Yu, C.

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Yuan, W. J.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zeltzer, G.

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

Zhang, J.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Zhang, T. J.

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

Zhang, X.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Y. G.

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

Zhang, Z.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhao, H.

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, Y.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, M.

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Zhu, X.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

ACS Nano (1)

H. Wang, X. Wang, C. Yan, H. Zhao, J. Zhang, C. Santschi, and O. J. F. Martin, “Full color generation using silver tandem nanodisks,” ACS Nano 11(5), 4419–4427 (2017).
[Crossref] [PubMed]

ACS Photonics (4)

K. T. Fountaine, W. H. Cheng, C. R. Bukowsky, and H. A. Atwater, “Near-unity unselective absorption in sparse InP nanowire arrays,” ACS Photonics 3(10), 1826–1832 (2016).
[Crossref]

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, and S. F. Bent, “Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics,” ACS Photonics 3(3), 456–463 (2016).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J. F. Guillemoles, and S. Collin, “Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Adv. Mater. (1)

J. Zhou, X. Chen, and L. J. Guo, “Efficient thermal-light interconversions based on optical topological transition in the metal–dielectric multilayered metamaterials,” Adv. Mater. 28(15), 3017–3023 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Adv. Optical Mater. (4)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber,” Adv. Optical Mater. 4(8), 1196–1202 (2016).
[Crossref]

Q. Qian, T. Sun, Y. Yan, and C. Wang, “Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances,” Adv. Optical Mater. 5(13), 1700064 (2017).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. J. Zhang, “Localized surface plasmon-enhanced ultrathin film broadband nanoporous absorbers,” Adv. Optical Mater. 4(8), 1255–1264 (2016).
[Crossref]

J. Y. Lu, A. Raza, S. Noorulla, A. S. Alketbi, N. X. Fang, G. Chen, and T. J. Zhang, “Near-perfect ultrathin nanocomposite absorber with self-formed topping plasmonic nanoparticles,” Adv. Optical Mater. 5(18), 1700222 (2017).
[Crossref]

Appl. Phys. Lett. (5)

K.-T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108(3), 031107 (2016).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

B. Fang, C. Y. Yang, C. L. Pang, W. D. Shen, X. Zhang, Y. G. Zhang, W. J. Yuan, and X. Liu, “Broadband light absorber based on porous alumina structure covered with ultrathin iridium film,” Appl. Phys. Lett. 110(14), 141103 (2017).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Chem. Mater. (1)

Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, “Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques,” Chem. Mater. 17(13), 3475–3485 (2005).
[Crossref]

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nano Energy (1)

K. Lin, H. Chen, Y. Lai, C. Yu, Y. Lee, P. Su, Y.-T. Yen, and B.-Y. Chen, “Loading effect-induced broadband perfect absorber based on single–layer structured metal film,” Nano Energy 37, 61–73 (2017).
[Crossref]

Nano Lett. (2)

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic color displays using stepwise cavity resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap–plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, and X. Luo, “A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum,” Nanoscale 10(17), 8298–8303 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (2)

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[Crossref] [PubMed]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6377), eaam8100 (2017).

Sol. Energy (1)

T. Tesfamichael and E. Wäckelgård, “Angular solar absorptance and incident angle modifier of selective absorbers for solar thermal collectors,” Sol. Energy 68(4), 335–341 (2000).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. Süzer, F. Kadirgan, H. M. Söhmen, A. J. Wetherilt, and İ. E. Türe, “Spectroscopic characterization of Al2O3-Ni selective absorbers for solar collectors,” Sol. Energy Mater. Sol. Cells 52(1–2), 55–60 (1998).
[Crossref]

Other (3)

D. Sarid and W. Challener, Modern Introduction to Surface Plasmons (Cambridge University, Cambridge, 2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

K Yee, IEEE Antennas and Propagation Society, (1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of proposed broadband omnidirectional absorber.
Fig. 2
Fig. 2 (a) Schematic of fabrication processes. (b) Scanning electron microscope (SEM) image of proposed absorber.
Fig. 3
Fig. 3 (a) Calculated and (b) measured absorption spectra of proposed absorber at normal incidence.
Fig. 4
Fig. 4 (a) Calculated and (b) measured incident angle–resolved spectra of proposed absorber. (c) Calculated and measured average absorptions of absorber. (d) Optical images of fabricated absorber acquired at different incident angles.
Fig. 5
Fig. 5 Comparison between (a) calculated and (b) measured absorption spectra corresponding to each step of fabrication process.
Fig. 6
Fig. 6 Intensity maps of magnetic field for λ = 400, 600, and 938 nm. (a)–(c) Without SiNx coating. (d)–(f) With SiNx coating. (g)–(i) Without grating arrays.
Fig. 7
Fig. 7 (a) Calculated absorption spectrum for different grating shapes. (b) Calculated absorption spectra for different constituent materials.
Fig. 8
Fig. 8 (a) Calculated absorption spectrum of proposed device overlapped with AM1.5 solar spectrum (300–2000 nm). (b) Calculated absorption spectrum of device in mid-infrared range.

Tables (1)

Tables Icon

Table 1 The comparison between this structure with other absorption structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x = 2π λ sin θ i + 2π P = w c ϵ d ϵ m ε d + ϵ m ,

Metrics