Abstract

A mechanism for high energy γ-photon generation based on laser-plasma accelerator is proposed. The laser pulse with a peak intensity of 1022W/cm2 accelerates the electron beam to GeV by the laser wakefield effect. A solid Aluminium target serves as a plasma mirror which is located at the rear side of a gas jet and reflects the laser pulse. High order harmonics are generated due to the Doppler effect experienced by the incident laser. The collisions of the reflected attosecond pulses and the energetic electron beam provide a large cross section for nonlinear Compton scattering and produce a collimated γ-photon flux. The mechanism generates GeV photons with a pulse duration given by the duration of the electron beam.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High energy γ-rays have wide applications. Photons with MeV range can be used in manipulating nucleus materials [1,2]. In radiosurgery of oncology, bremsstrahlung γ-ray with the energy of ∼ 10MeV is the standard tool for for tumor treatment known as ’Gamma Knife’ [3]. For the studies in astrophysics and other fundamental science, one requires well collimated γ-ray beams with higher energy [4]. In relativistic laser-plasma interaction, photons are mainly emitted via the nonlinear Compton scattering regime when the energetic electrons are interacting with the strong laser pulse [5–7]. It requires both electron energy and the laser intensity to be sufficiently high. With the development of the laser facilities, multi-PW laser is available nowadays [8,9] which provides a unique possibility to realize the nonlinear Compton scattering photon emission. Various regimes have been proposed in recent years [10–13,15–23].In the pioneering experiment, hundreds keV X-ray radiation has been obtained with the total photon number of 108 by the head- on collision between the back-reflected laser pulse and the wakefield accelerated electrons [13]. At the Texas PW Laser, Compton γ-ray with a tunable peak energy from 5 to 85 MeV is obtained [14]. Here we propose a self-organizing for high energy γ-photons emission by the collision between the relativistic electron beam and the high order harmonics attosecond pulse. The electrons are accelerated by the laser-wakefield and the high order harmonics are generated via the relativistic oscillating plasma mirror. The results are based on the kinetic simulations by the relativistic electromagnetic Particle-in-Cell code EPOCH [24,25]. The laser parameters employed here are achievable nowadays and the setup is simple for experiments.

2. Description of the interaction processes

The probability of photon emission via Compton scattering is characterised by the relativistic and gauge invariant parameter χe=(Fμνpν)2/(Esmec) [26], here Fμν = μAννAμ is the 4-tensor of the electromagnetic wave, pν is the electron 4-momentum and Es=me2c3/e is the critical quantum electrodynamics (QED) electric field [27]. In the case of a plane electromagnetic (EM) wave propagating along x–direction, χe = (E/Es)(γpx/mec). In the ultra-relativistic limit, γ >> 1, the photon emission probability is maximized if the electrons and the laser pulse are counter-propagating, χe2γ(E/Es). It is dramatically reduced to χe(2γ)1(E/Es) in the co-propagating case. Several configurations have been proposed based on multi-pulses interaction to satisfy the laser-electron counter-propagating condition. Here we add a solid density Aluminium target at the end of the hydrogen gas jet to reflect the laser pulse. When the laser propagates in the underdense hydrogen plasma, it induce a strong wakefield to trap and accelerate the electrons according to the typical laser-wakefield model (LWFA). The laser is also self-focused while propagating since the self-focusing threshold [28], P > Pcnc/n0 (Pc=2me2c5/e2=17GW), is satisfied. The laser is reflected from the solid target before deletion becomes important. Since the high density of the aluminium layer provides a large charge separation field, the expelled electrons are pulled back to the ion layer by the restoring force. The interface of the critical electron density moves back and forth, which makes the solid target mirror becoming an oscillating mirror [29]. Due to the Doppler effect experienced by the incident laser, the frequency spectrum of the reflected laser field extends into the high frequency range and the wave breaks up into short wave packets. The schematic is shown in Fig. 1. The subsequent energetic LWFA electrons then collide with the high order harmonic fields, which provides a large probability for γ-ray emission.

 figure: Fig. 1

Fig. 1 Schematic of the simulation setup.

Download Full Size | PPT Slide | PDF

The maximum electron energy obtained by wakefield acceleration is estimated as W0.22(cτ/λ)P(GW)mec2 [30], therefore the corresponding electron Lorentz factor is γe0.22(cτ/λ)P(GW). Due to the head-on collision geometry of the relativistic electrons and the laser field, the obtained maximal quantum invariant is

χe,max2γe(E/Es)=0.44(cτ/λ)P(GW)(E/Es).

The average χe can be evaluated as <χe >≃ 2(ħωL/mec2) <af>2, here <af> is the mean amplitude of the electric field [24]. In the case of Compton scattering, the emitted γ photon energy scales as εkγ=4γe2ωL, here ωL is the frequency of the EM field and ħ is the reduced Planck constant. Then the maximum photon energy is obtained as

εkγ=0.2(cτλ)2P(GW)ωL.

The photon energy is proportional to the incident laser power and the frequency of the EM field colliding with the electrons. In the Compton scattering regime with ω0 laser and a GeV electron, one get the maximum photon energy about 16 MeV. However, in the case of a0 >> 1, the nonlinear Compton scattering should be taken into account, in which the photon energy scales as εkγ=4γe2ωLa0 [31]. Then the corresponding maximum photon energy becomes

εkγ=0.2(cτλ)2P(GW)ωLa0.

The characteristic photon energy can be written as

<εγ>=0.44<χe>γemec20.1(cτλ)P(GW)mec2.

Based on the above model and estimate, a bunch of GeV electrons accelerated by the laser wakefield is expected by using a PW class laser with the intensity of 1022 W/cm2. With collisions of the GeV electrons and the reflected laser field, the emitted photon energy also reaches to the GeV order of magnitude. The characteristic photon energy is about 13.5 MeV. The simulations results in the next section show the well agreements with the estimate. The reflected EM field passes through the whole LWFA electron beam so that the emitted photon bunch has almost the same length of the LWFA electron beam. Therefore the photon beam length is also controllable by the LWFA electron adjusting methods such as [32]. Furthermore, the γ-ray flux is well collimated due to the directional electron beam.

3. PIC simulation results

In this section, we will show the results from the 2D kinetic simulations. A linear-polarized Gaussian pulse with the peak intensity of 1022 W/cm2 propagates along the x-axis. The normalized amplitude is a0 = eE0/meω0c ≈ 85.7, where E0=8πI0/c and ω0 are the laser electric field strength and frequency, e and me are the electron charge and mass, respectively; and c is the speed of light in vacuum. The pulse duration is τ = 15 fs and the spot size (FWHM) is about r0 = 5 λ. The laser wavelength is λ = 1 μm. The gas jet of hydrogen plasma has the peak density of n0 = 0.3 nc, where nc = meω2/4πe2 is the plasma critical density. The simulation box has the size of 200 λ and 40 λ in the x and y direction. The longitudinal density profile exponentially increases from 10−3 nc to 0.3 nc for 10 λ < x < 110 λ, then remains constant for 85 λ. At the end of the hydrogen plasma target, a warm expanded Aluminium plasma layer [33] is attached with the density of 50 nc and the thickness of 1 λ. The solid density layer assumed to be pre-ionized as Al13+. The mesh size for the 2D simulation is δx = δy = λ/60. Ion motion is included in the simulations. All the quasiparticles (64 per cell) are initially at rest. Nonlinear Compton scattering process is included in the simulations [24,25]. The Bremsstrahlung radiation effect is ignored. A Monte-Carlo algorithm is implemented in the code for modeling the photon emission process. An optical depth is given to each electron. The photon is emitted when the optical depth reaches an extracted value from random-number-generator between 0 and 1. The local constant field approximation is used to treat the external electromagnetic field as a plane wave in the instantaneous rest frame of the charge. It is valid in describing the strong-field QED processes and the hundreds MeV photon emission in our case.

When the laser propagates in the underdense plasma, the ponderomotive force expels the electrons and leaves an ion background. Then the electron bubble and the wakefield structure are formed, which have been thoroughly discussed in [34–36] and the references quoted there. With the accumulating of the electrons in the tail of the bubble, the wave breaking condition is satisfied [37]. A bunch of electrons are injected into the wakefield being captured and accelerated with the strength on the order of 100 GV/cm as seen in Fig. 2(a) at t = 164 T0. The electron density distribution of the bubble structure is shown in the (x,y) plane, in which the black line is the laser intensity profile (normalized to 0.1 × I0) along y = 0 and the red line is the longitudinal electric field (normalized to 30GV/cm) profile. The injected electrons locate in the acceleration phase of the wakefield and experience stable acceleration. The energy spectra of the total electrons at 144 T0, 164 T0, 184 T0 and 204 T0 are plotted in the (y,z) plane. The maximum energy increases from 0.5 GeV to 1.1 GeV within about 60 μm. The corresponding energy spectra of the injected electrons, which means the electrons trapped and accelerated by the wakefield, are presented in the (x,z) plane. The injected electrons are quasi-mononenergetic with the peak energy increasing from 100 MeV to 700 MeV. Furthermore, the accelerated electrons are well collimated as shown in Fig. 2(b), which is the energy angular distribution of the electrons at t = 204 T0. The energy and beam quality of the accelerated electrons will affect the emitted γ-photons.

 figure: Fig. 2

Fig. 2 (a) The electron distributions at 164 T0 is presented in the (x,y) plane. The black and red line represent the profiles of the laser intensity and longitudinal electric field on the laser axis (y = 0). The energy spectra of the total electrons at 144 T0 (green), 164 T0 (blue), 184 T0 (yellow) and 204 T0 (purple) are in the (y,z) plane. The corresponding spectra for the injected electrons are shown in the (x,z) plane. (b) The energy angular distribution of the injected electrons at t = 204 T0. The colorbar represents the number of the particles on logarithm scale.

Download Full Size | PPT Slide | PDF

The laser pulse is reflected from the solid density Aluminium at the end of the hydrogen plasma. The electrons on the solid surface are pushed inward. The heavier ions, Al13+, do not respond on the same time scale. A double-layer is formed which is similar to the laser piston model [38]. The corresponding piston velocity can be estimated by balancing the momentum flux of the radiation and those of the charged particles. One obtains I/[(mi/Zi+me)nec3](1βf)/(1+βf)=γf2βf2. Here Zi is the ion charge state, βf is the piston velocity normalized to c, and γf=(1βf2)1/2 is the corresponding Lorentz factor. The piston velocity is ∼ 0.12c in our case. It takes about 27fs to burnt out the target with the thickness of 1 μm. Therefore the pulse is completely reflected before the destroying of the mirror. The high density of the solid target provides a large charge separation field, which pulls the electrons back to the ion layer as a restoring force. The oscillations of the electrons and the ions are shown in the density evolution in Figs. 3(a) and (b). The critical density surface is moving back and forth which reflects the incident laser pulse serving as a relativistic oscillating plasma mirror (ROM). The ROM model and high order harmonics generation have been proposed in [29]. The reflected laser field contains high frequency components and the wave breaks up into packets due to the Doppler effect and the mirror movement [39]. In Fig. 3(c), we present the frequency spectrum of the incident (at 20 T0) and reflected (at 203 T0) laser field (analyzed along y = 0 profile). The intensity of the high order harmonics decrease based on the power law Iωω−5/2 according to the predictions from [40]. However, due to the focusing and compression effect, the intensity decrease is partially balanced and the high frequency components have the intensities comparable to the incident laser pulse. The maximum resolvable harmonics based on our mesh size is 30ω0, which corresponds to the wavelength of λ/30. The formation length can be estimated as lfλ/a0 [41], which means the local constant field approximation is generally applicable in the ultra-intense laser cases as a01 for the fundamental frequency ω0. However, the intensity of the high order of harmonics decreases with the frequency. As shown in Fig. 3(c), the intensity drops three order of magnitude within 10ω0, which means the components with higher frequency have very low probability for gamma-ray emission. The cutoff wavelength of 10ω0 is much larger than the formation length, implying the local constant field approximation is still valid in our case.

 figure: Fig. 3

Fig. 3 (a) and (b) are the electron and ion (Al13+) density evolution of the solid density target. (c) is the frequency power spectrum of the incident and reflected laser field at 20 T0 (black) and 203 T0 (red), respectively.

Download Full Size | PPT Slide | PDF

As mentioned in the theoretical model part, the probability for γ-ray emission depends on the relative motion of the electrons and the laser field, which is maximized in the counter-propagating case. Therefore, the reflected high order harmonics provide the optimal conditions for the process of Compton scattering. In Fig. 4(a), the reflected laser field intensity (at 206 T0) is shown by the black line on the (x,z) plane. One finds that intensities of the wave packets are higher than that of the incident intensity due to the focusing and compression effects. At this moment, the reflected laser starts colliding with the LWFA electrons, which is shown by the corresponding density distribution in the (x,y) plane. A large number of γ-photons are produced as seen in the photon density profile (along the laser axis) on the (x,z) plane. The γ-photon density, reaching 23 nc (corresponding to the initial laser wavelength), is well consistent with the electron density profile (red). In this case, the pulse length of the γ-photons can be controlled by adjusting the LWFA electrons [32]. The energy spectrum evolution of the γ-photons are presented on the (y,z) plane. Before the collisions of the laser field and the LWFA electrons, the number and the energy of the photons are relatively low as shown by the lines represented for 186 T0 (blue) and 204 T0 (purple). Significant increase starts after the collisions as shown in the line for 206 T0(cyan). The yellow line (at 212 T0) is the final state of the γ-ray when the reflected laser has passed through the whole LWFA electron beam. The maximum energy reaches εkγ ∼ 0.97GeV. The corresponding energy angular distribution of the γ-photons is presented in Fig. 4(b). The γ-ray flux is well collimated with the opening angle of ∼ 18° and the transverse emittance as 3.18mm × mrad with the total photon number (εkγ > 1MeV) as 1.1 × 1011/μm. The energy of the γ-ray flux is about 0.435J/μm, which is about 3.72% of the incident laser energy.

 figure: Fig. 4

Fig. 4 (a) The electron density distribution at t = 206 T0 is projected on the (x,y) plane. The corresponding density profiles (on the laser axis) of the electron and γ-photons (normalized to 10 nc) are plotted on the (x,z) plane with red and green lines, respectively. The laser intensity profile is shown with the black line normalized to I0. The negative value indicates that the laser field is reflected and propagating backwards. The energy spectrum evolutions of the γ-photons at 186 T0 (blue), 204 T0 (purple), 206 T0 (cyan), and 212 T0 (yellow) are displayed on the (y,z) plane. (b) The energy angular distribution of the emitted γ-photons at 206 T0. The colorbar represents the number of the photons on logarithm scale.

Download Full Size | PPT Slide | PDF

4. Conclusion

A high energy γ-ray flux is generated by the reflected high order harmonic fields via nonlinear Compton scattering. The laser parameters proposed here are available nowadays and the setup relies only on a single laser beam. This mechanism can be a potential experiment on 10PW-class laser facilities for the research of radiation effect and bright γ-ray production.

Funding

Extreme Light Infrastructure Tools for Advanced Simulation (ELI-TAS) (CZ.02.1.01/0.0/0.0/16_013/0001793); High Field Initiative (HiFI) (CZ.02.1.01/0.0/0.0/15_003/0000449); Project ADONIS (CZ.02.1.01/0.0/0.0/16_019/0000789).

Acknowledgments

Computational resources were provided by the MetaCentrum under the program LM2010005, IT4Innovations Centre of Excellence under projects CZ.1.05/1.1.00/02.0070 and LM2011033 and by ECLIPSE cluster of ELI-Beamlines. The EPOCH code was developed as part of the UK EPSRC funded projects EP/G054940/1.

References and links

1. N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71(2), S283 (1999). [CrossRef]  

2. Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999). [CrossRef]  

3. J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004). [CrossRef]   [PubMed]  

4. T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006). [CrossRef]  

5. C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996). [CrossRef]   [PubMed]  

6. T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001). [CrossRef]  

7. A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010). [CrossRef]  

8. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008). [CrossRef]   [PubMed]  

9. A. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, “Approaching the diffraction-limited, bandwidth-limited Petawatt,” Opt. Express 25, 20486 (2017). [CrossRef]   [PubMed]  

10. A. Bell, Kirk, and J. G., “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008). [CrossRef]   [PubMed]  

11. I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010). [CrossRef]  

12. S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010). [CrossRef]  

13. K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012). [CrossRef]  

14. J. M. Shaw et al., “Bright 5 – 85 MeV Compton gamma-ray pulses from GeV laser-plasma accelerator and plasma mirror,” arXiv:1705.08637 [physics.acc-ph].

15. C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012). [CrossRef]  

16. L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014). [CrossRef]   [PubMed]  

17. T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014). [CrossRef]   [PubMed]  

18. X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015). [CrossRef]  

19. X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016). [CrossRef]  

20. Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016). [CrossRef]  

21. H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017). [CrossRef]  

22. H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017). [CrossRef]   [PubMed]  

23. X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016). [CrossRef]   [PubMed]  

24. C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014). [CrossRef]  

25. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015). [CrossRef]  

26. A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970). [CrossRef]  

27. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951). [CrossRef]  

28. C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974). [CrossRef]  

29. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994). [CrossRef]  

30. S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005). [CrossRef]  

31. G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014). [CrossRef]  

32. R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016). [CrossRef]  

33. V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003). [CrossRef]  

34. A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002). [CrossRef]  

35. I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004). [CrossRef]  

36. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009). [CrossRef]  

37. S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997). [CrossRef]  

38. T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009). [CrossRef]  

39. N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004). [CrossRef]  

40. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004). [CrossRef]   [PubMed]  

41. A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71(2), S283 (1999).
    [Crossref]
  2. Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
    [Crossref]
  3. J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
    [Crossref] [PubMed]
  4. T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
    [Crossref]
  5. C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
    [Crossref] [PubMed]
  6. T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
    [Crossref]
  7. A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
    [Crossref]
  8. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).
    [Crossref] [PubMed]
  9. A. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, “Approaching the diffraction-limited, bandwidth-limited Petawatt,” Opt. Express 25, 20486 (2017).
    [Crossref] [PubMed]
  10. A. Bell, Kirk, and J. G., “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
    [Crossref] [PubMed]
  11. I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
    [Crossref]
  12. S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
    [Crossref]
  13. K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
    [Crossref]
  14. J. M. Shaw and et al., “Bright 5 – 85 MeV Compton gamma-ray pulses from GeV laser-plasma accelerator and plasma mirror,” arXiv:1705.08637 [physics.acc-ph].
  15. C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
    [Crossref]
  16. L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
    [Crossref] [PubMed]
  17. T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
    [Crossref] [PubMed]
  18. X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
    [Crossref]
  19. X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
    [Crossref]
  20. Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
    [Crossref]
  21. H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
    [Crossref]
  22. H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
    [Crossref] [PubMed]
  23. X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
    [Crossref] [PubMed]
  24. C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
    [Crossref]
  25. T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
    [Crossref]
  26. A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970).
    [Crossref]
  27. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
    [Crossref]
  28. C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
    [Crossref]
  29. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
    [Crossref]
  30. S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005).
    [Crossref]
  31. G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
    [Crossref]
  32. R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
    [Crossref]
  33. V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
    [Crossref]
  34. A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).
    [Crossref]
  35. I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
    [Crossref]
  36. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
    [Crossref]
  37. S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
    [Crossref]
  38. T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
    [Crossref]
  39. N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
    [Crossref]
  40. S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
    [Crossref] [PubMed]
  41. A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
    [Crossref] [PubMed]

2017 (3)

A. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. Dover, K. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, “Approaching the diffraction-limited, bandwidth-limited Petawatt,” Opt. Express 25, 20486 (2017).
[Crossref] [PubMed]

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

2016 (4)

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

2015 (2)

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

2014 (4)

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

2012 (2)

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

2010 (4)

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
[Crossref]

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

2009 (2)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
[Crossref]

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

2008 (2)

2006 (1)

T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
[Crossref]

2005 (1)

S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005).
[Crossref]

2004 (4)

I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
[Crossref]

J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
[Crossref] [PubMed]

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

2003 (1)

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

2002 (1)

A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).
[Crossref]

2001 (1)

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

1999 (2)

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71(2), S283 (1999).
[Crossref]

Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
[Crossref]

1997 (1)

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

1996 (1)

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

1994 (1)

S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
[Crossref]

1974 (1)

C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
[Crossref]

1970 (1)

A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970).
[Crossref]

1951 (1)

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Ahmed, H.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Ahn, J.K.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Akimune, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Akli, K.

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

Arber, T.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

Arber, T. D.

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Arons, J.

C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
[Crossref]

Asano, Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Baeva, T.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

Bamber, C.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Bell, A.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

A. Bell, Kirk, and J. G., “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
[Crossref] [PubMed]

Bell, A. R.

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Bennett, K.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Bernier, J.

J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
[Crossref] [PubMed]

Berridge, S.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Bhang, H.C.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Blackburn, T.

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

Blackburn, T. G.

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

Bloembergen, N.

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71(2), S283 (1999).
[Crossref]

Boege, S.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Brady, C.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

Brady, C. S.

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Bugg, W.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Bula, C.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Bulanov, S. S.

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

Bulanov, S. V.

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
[Crossref]

Burke, D.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Capdessus, R.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

Chang, H. X.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Chang, W.C.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Chen, C.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Cheriaux, G.

Chvykov, V.

Clerouin, J.

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Cole, J.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Corde, S.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Corvan, D.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

d’Humières, E.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Date, S.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Di Piazza, A.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
[Crossref]

Dover, N.

Duclous, R.

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Eisen, Y.

Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
[Crossref]

Esarey, E.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
[Crossref]

Evans, R.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Fedotov, A.

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

Field, R.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Fujiwara, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Fukuda, Y.

Ge, Z. Y.

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Gerber, G.

T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
[Crossref]

Giaccia, A.

J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
[Crossref] [PubMed]

Gillies, P.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Goddet, J.P.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Gordienko, S.

S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

Gu, Y. J.

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

Gu, Y. Q.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Hall, E.

J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
[Crossref] [PubMed]

Harvey, C.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Hatsagortsyan, K. Z.

A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
[Crossref]

He, X. T.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Hicks, K.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Horton-Smith, G.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Hotta, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Hou, B.

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

Hu, R.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Huang, K.

Huang, T. W.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Imai, K.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Ishikawa, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Iwata, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Jansen, O.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Jequier, S.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Ji, L. L.

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

Kalinchenko, G.

Kanasaki, M.

Kando, M.

Kawai, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Keitel, C. H.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
[Crossref]

Kim, Z.Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Kiriyama, H.

Kirk,

A. Bell, Kirk, and J. G., “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
[Crossref] [PubMed]

Kirk, J.

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

Kirk, J. G.

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Kiselev, S.

I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
[Crossref]

Kishimoto, M.

Klimo, O.

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

Kohri, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Kondo, K.

Korn, G.

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

Kostyukov, I.

I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
[Crossref]

Kostyukov, I. Y.

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

Kotseroglou, T.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Krushelnick, K.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).
[Crossref] [PubMed]

Kumagai, N.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Labaune, C.

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

Langdon, A. B.

C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
[Crossref]

Lawrence-Douglas, A.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Leemans, W. P.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
[Crossref]

Li, H. Z.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

Lin, L.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Liu, J. J.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Lobet, M.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Lu, H.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Makino, S.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Maksimchuk, A.

Malka, V.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Mangles, S. P. D.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Mardor, I.

Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
[Crossref]

Matsumura, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Matsuoka, N.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Matsuoka, T.

Max, C.

C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
[Crossref]

McDonald, K.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

McKenna, P.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

Melissinos, A.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Meyerhofer, D.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Meyer-ter Vehn, J.

A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).
[Crossref]

Mibe, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Miyabe, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Miyachi, Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Mori, M.

Mourou, G.

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).
[Crossref] [PubMed]

Mourou, G. A.

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

Mur, V. D.

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

Muramatsu, N.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Najmudin, Z.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Nakanii, N.

Nakano, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Narozhny, N. B.

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

Naumova, N.

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

Naumova, N. M.

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
[Crossref]

Nees, J.

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).
[Crossref] [PubMed]

Nees, J. A.

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

Nikishov, A.

A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970).
[Crossref]

Nishiuchi, M.

Noiret, P.

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Nomachi, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Odian, A.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Ogura, K.

Ohashi, Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Ohkuma, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Ooba, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Pegoraro, F.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
[Crossref]

Pfeifer, T.

T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
[Crossref]

Pirozhkov, A.

Planchon, T.

Popov, V. S.

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

Prebys, E.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Pukhov, A.

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005).
[Crossref]

I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).
[Crossref]

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

Qiao, B.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Ragg, W.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Ramsay, M.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Rangacharyulu, C.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Recoules, V.

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Renaudin, P.

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Ribeyre, X.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Ridgers, C.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

Ridgers, C. P.

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Ritus, V.

A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970).
[Crossref]

Robinson, A. P. L.

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

Rousse, A.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Rousseau, P.

Sagisaka, A.

Sakaguchi, A.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Sakaki, H.

Sakharov, A. S.

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

Sarri, G.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Sasaki, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Schlegel, T.

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

Schmitz, H.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Schroeder, C. B.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
[Crossref]

Schumaker, W.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Schwinger, J.

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Sebban, S.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Shah, R.C.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Shao, F. Q.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Shaw, J. M.

J. M. Shaw and et al., “Bright 5 – 85 MeV Compton gamma-ray pulses from GeV laser-plasma accelerator and plasma mirror,” arXiv:1705.08637 [physics.acc-ph].

Shen, B. F.

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

Sheng, Z. M.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

Shiino, Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Shimizu, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Shmakov, K.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Shor, A.

Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
[Crossref]

Shorokhov, O.

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

Shou, Y.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Sircombe, N.

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Sokolov, I.

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

Sokolov, I. V.

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

Spencer, J.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Spielmann, C.

T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
[Crossref]

Sugaya, Y.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Sumihama, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Symes, D.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Ta Phuoc, K.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Tafzi, A.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Thaury, C.

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Thomas, A.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Tikhonchuk, V. T.

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

Toyokawa, H.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Turcu, I. C. E.

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

Wada, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Wakai, A.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Walz, D.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Wang, C.W.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Wang, S.C.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Wang, W. Q.

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Weber, S.

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

Weidemann, A.

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

Xu, Z.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Yan, X. Q.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Yanovsky, V.

Yeung, M.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Yin, L.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

Yin, Y.

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Yonehara, K.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Yorita, T.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Yosoi, M.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Yu, T. P.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Zegers, R.

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Zepf, M.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Zerah, G.

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Zhao, Z.

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

Zhou, C. T.

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Zhu, X. L.

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Zhuo, H.

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Appl. Phys. B (1)

A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355 (2002).
[Crossref]

J. Comput. Phys. (1)

C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, K. Bennett, T. Arber, and A. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions,” J. Comput. Phys. 260, 273 (2014).
[Crossref]

J. Phys. A:Math. Gen. (1)

V. Recoules, J. Clerouin, P. Renaudin, P. Noiret, and G. Zerah, “Electrical conductivity of a strongly correlated aluminium plasma,” J. Phys. A:Math. Gen. 36, 6033 (2003).
[Crossref]

Nat. Commun. (1)

X. L. Zhu, T. P. Yu, Z. M. Sheng, L. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).
[Crossref]

Nat. Rev. Cancer (1)

J. Bernier, E. Hall, and A. Giaccia, “Timeline - radiation oncology: a century of achievements,” Nat. Rev. Cancer 4, 737 (2004).
[Crossref] [PubMed]

New J. Phys. (2)

X. L. Zhu, Y. Yin, T. P. Yu, F. Q. Shao, Z. Y. Ge, W. Q. Wang, and J. J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).
[Crossref]

Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).
[Crossref]

Nucl. Instr. Meth. Phys. Res. A (1)

Y. Eisen, A. Shor, and I. Mardor, “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems,” Nucl. Instr. Meth. Phys. Res. A 428, 158 (1999).
[Crossref]

Nucl. Phys. A (1)

T. Nakano, J.K. Ahn, M. Fujiwara, H. Kohri, N. Matsuoka, T. Mibe, N. Muramatsu, M. Nomachi, H. Shimizu, K. Yonehara, M. Yosoi, T. Yorita, W.C. Chang, C.W. Wang, S.C. Wang, Y. Asano, T. Hotta, Y. Sugaya, R. Zegers, S. Date, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Iwata, M. Miyabe, Y. Miyachi, A. Wakai, K. Imai, T. Ishikawa, M. Miyabe, T. Sasaki, H. Kawai, T. Ooba, Y. Shiino, M. Wada, H.C. Bhang, Z.Y. Kim, A. Sakaguchi, M. Sumihama, K. Hicks, H. Akimune, T. Matsumura, C. Rangacharyulu, and S. Makino, “Multi-GeV laser-electron photon project at SPring-8,” Nucl. Phys. A 684, 71 (2001).
[Crossref]

Opt. Express (2)

Phys. Plasmas (4)

S. V. Bulanov, N. M. Naumova, and F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745 (1994).
[Crossref]

S. Gordienko and A. Pukhov, “Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons,” Phys. Plasmas 12, 043109 (2005).
[Crossref]

T. Schlegel, N. Naumova, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, “Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses,” Phys. Plasmas 16, 083103 (2009).
[Crossref]

I. Kostyukov, A. Pukhov, and S. Kiselev, “Phenomenological theory of laser-plasma interaction in bubble regime,” Phys. Plasmas 11, 5256 (2004).
[Crossref]

Phys. Rev. (1)

J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951).
[Crossref]

Phys. Rev. Accel. Beams (1)

R. Hu, H. Lu, Y. Shou, L. Lin, H. Zhuo, C. Chen, and X. Q. Yan, “Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator,” Phys. Rev. Accel. Beams 19, 091301 (2016).
[Crossref]

Phys. Rev. E (1)

X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).
[Crossref]

Phys. Rev. Lett. (14)

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).
[Crossref]

L. L. Ji, A. Pukhov, I. Y. Kostyukov, B. F. Shen, and K. Akli, “Radiation-reaction trapping of electrons in extreme laser fields,” Phys. Rev. Lett. 112, 145003 (2014).
[Crossref] [PubMed]

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, “Quantum radiation reaction in laser-electron-beam collisions,” Phys. Rev. Lett. 112, 015001 (2014).
[Crossref] [PubMed]

A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, “Quantum radiation reaction effects in multiphoton Compton scattering,” Phys. Rev. Lett. 105, 220403 (2010).
[Crossref]

A. Bell, Kirk, and J. G., “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).
[Crossref] [PubMed]

I. Sokolov, N. Naumova, J. Nees, and G. Mourou, “Pair creation in QED-strong pulsed laser fields interacting with electron beams,” Phys. Rev. Lett. 105, 195005 (2010).
[Crossref]

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, and V. S. Popov, “Multiple colliding electromagnetic pulses: a way to lower the threshold of e+e− pair production from vacuum,” Phys. Rev. Lett. 104, 220404 (2010).
[Crossref]

G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. Thomas, M. Yeung, Z. Zhao, and M. Zepf, “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).
[Crossref]

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, “Relativistic generation of isolated attosecond pulses in a λ3 focal volume,” Phys. Rev. Lett. 92, 063902 (2004).
[Crossref]

S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva, “Relativistic Doppler effect: universal spectra and zeptosecond pulses,” Phys. Rev. Lett. 93, 115002 (2004).
[Crossref] [PubMed]

A. Fedotov, N. B. Narozhny, G. Mourou, and G. Korn, “Limitations on the attainable intensity of high power lasers,” Phys. Rev. Lett. 105, 080402 (2010).
[Crossref] [PubMed]

C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett. 33, 209 (1974).
[Crossref]

C. Bula, K. McDonald, E. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. Melissinos, D. Meyerhofer, W. Ragg, D. Burke, R. Field, G. Horton-Smith, A. Odian, J. Spencer, D. Walz, S. Berridge, W. Bugg, K. Shmakov, and A. Weidemann, “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).
[Crossref] [PubMed]

S. V. Bulanov, F. Pegoraro, A. Pukhov, and A. S. Sakharov, “Transverse-wake wave breaking,” Phys. Rev. Lett. 78, 4205 (1997).
[Crossref]

Plasma Phys. Controlled Fusion (1)

T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).
[Crossref]

Rep. Prog. Phys. (1)

T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443 (2006).
[Crossref]

Rev. Mod. Phys. (2)

N. Bloembergen, “From nanosecond to femtosecond science,” Rev. Mod. Phys. 71(2), S283 (1999).
[Crossref]

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229 (2009).
[Crossref]

Sci. Rep. (2)

H. Z. Li, T. P. Yu, J. J. Liu, L. Yin, X. L. Zhu, R. Capdessus, F. Pegoraro, Z. M. Sheng, P. McKenna, and F. Q. Shao, “Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).
[Crossref]

H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).
[Crossref] [PubMed]

Sov. Phys. Uspekhi (1)

A. Nikishov and V. Ritus, “Interaction of electrons and photons with a very strong electromagnetic field,” Sov. Phys. Uspekhi 13, 303 (1970).
[Crossref]

Other (1)

J. M. Shaw and et al., “Bright 5 – 85 MeV Compton gamma-ray pulses from GeV laser-plasma accelerator and plasma mirror,” arXiv:1705.08637 [physics.acc-ph].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the simulation setup.
Fig. 2
Fig. 2 (a) The electron distributions at 164 T0 is presented in the (x,y) plane. The black and red line represent the profiles of the laser intensity and longitudinal electric field on the laser axis (y = 0). The energy spectra of the total electrons at 144 T0 (green), 164 T0 (blue), 184 T0 (yellow) and 204 T0 (purple) are in the (y,z) plane. The corresponding spectra for the injected electrons are shown in the (x,z) plane. (b) The energy angular distribution of the injected electrons at t = 204 T0. The colorbar represents the number of the particles on logarithm scale.
Fig. 3
Fig. 3 (a) and (b) are the electron and ion (Al13+) density evolution of the solid density target. (c) is the frequency power spectrum of the incident and reflected laser field at 20 T0 (black) and 203 T0 (red), respectively.
Fig. 4
Fig. 4 (a) The electron density distribution at t = 206 T0 is projected on the (x,y) plane. The corresponding density profiles (on the laser axis) of the electron and γ-photons (normalized to 10 nc) are plotted on the (x,z) plane with red and green lines, respectively. The laser intensity profile is shown with the black line normalized to I0. The negative value indicates that the laser field is reflected and propagating backwards. The energy spectrum evolutions of the γ-photons at 186 T0 (blue), 204 T0 (purple), 206 T0 (cyan), and 212 T0 (yellow) are displayed on the (y,z) plane. (b) The energy angular distribution of the emitted γ-photons at 206 T0. The colorbar represents the number of the photons on logarithm scale.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ e , max 2 γ e ( E / E s ) = 0.44 ( c τ / λ ) P ( GW ) ( E / E s ) .
ε k γ = 0.2 ( c τ λ ) 2 P ( GW ) ω L .
ε k γ = 0.2 ( c τ λ ) 2 P ( GW ) ω L a 0 .
< ε γ > = 0.44 < χ e > γ e m e c 2 0.1 ( c τ λ ) P ( GW ) m e c 2 .

Metrics