Abstract

We report the first experimental demonstration of germanium-tin (GeSn) lateral p-i-n photodetector on a novel GeSn-on-insulator (GeSnOI) substrate. The GeSnOI is formed by direct wafer bonding and layer transfer technique, which is promising for large-scale integration of nano-electronics and photonics devices. The fabricated GeSnOI photodetector shows well-behaved diode characteristics with high Ion/Ioff ratio of ~4 orders of magnitude (at ± 1 V) at room temperature. A cutoff detection beyond 2 µm with photo responsivity (Rop) of 0.016 A/W was achieved at the wavelength (λ) of 2004 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Germanium-tin alloy (GeSn) has recently received increasing attention due to its tunable direct bandgap and enhanced carrier mobilities as compared to Si, SiGe, and Ge [1–4]. Despite the large lattice mismatch of 14.7% between α-Sn and Ge and low solubility (~1%) of Sn in Ge [5,6], high quality GeSn could be grown on Si, Ge-buffered Si, or III-V substrate using molecular beam epitaxy (MBE) or chemical vapor deposition (CVD) [7–13].

The significant progress in growth of high-quality GeSn material has enabled the realization of various GeSn-based nano-electronic and photonic devices with good electrical and optical performance [14–21]. While most of these devices were fabricated using substrates with GeSn layers epitaxially grown on bulk Ge or Si, the GeSn-on-insulator (GeSnOI) platform is very attractive for monolithic three-dimensional (3D) stacked opto-electronic integrated circuits [22]. GeSnOI has recently been realized using various methods, such as liquid phase crystallization, self-organized seeding lateral growth, and segregation controlled rapid-melting growth [23–25]. These methods either require a seed for crystallization or have difficulties in forming large-scale GeSnOI substrate. The GeSnOI substrate used in this work was formed by a direct wafer bonding (DWB) technique, which enables the large size GeSn film on the insulating substrate with high material quality [26]. GeSn p-channel fin field-effect transistor (p-FinFET) has been demonstrated with excellent electrical performance on the GeSnOI substrate [27]. However, there is very limited experimental report of photodetectors on the GeSnOI platform.

In this work, GeSn photodetector with a lateral p-i-n structure was demonstrated on the novel GeSnOI substrate for the first time. The fabricated device shows well-behaved rectifying characteristics with a low dark current (Idark) of 1.4 µA at a reverse bias of −1 V. The detection window was extended beyond two-micron-wavelength with Rop of 0.016 A/W at λ = 2004 nm, where many unique applications could be enabled, such as biomedical sensing, light detection and ranging (LiDAR), and fiber-optical telecommunications [28–32].

2. Device fabrication and characterization

A GeSn film with a thickness of ~85 nm was grown on a 300 mm (001)-oriented Si donor wafer by CVD, using a ~1 µm-thick strain-relaxed Ge as a buffer layer. Figure 1(a) shows the cross-sectional transmission electron microscopy (XTEM) image of the complete layer stack of the as-grown sample. The misfit dislocations are well confined near the Ge/Si interface. High-resolution x-ray diffraction (HRXRD) ω- rocking curve of the GeSn/Ge/Si sample at (004) orientation is shown in Fig. 1(b). The three peaks (from left to right) correspond to the GeSn epitaxial layer, Ge buffer, and Si substrate, respectively. HRXRD reciprocal space mapping (RSM) was also performed to calculate the Sn composition and strain of the GeSn layer. Figure 1(c) shows the (224) RSM of the as-grown sample. The vertical dash line indicates that the GeSn film is fully strained to the Ge buffer under a biaxial compressive strain of ~-0.8%. The substitutional Sn composition is calculated to be ~7% using Vegard’s law [33].

 

Fig. 1 (a) XTEM image of the CVD-grown GeSn on the Si substrate. (b) HRXRD rocking curve of the GeSn/Ge/Si sample at (004) orientation, showing very good crystalline quality of GeSn layer. (c) (224) RSM of the as-grown sample indicates the substitutional Sn composition is ~7% with compressive strain of ~-0.8%.

Download Full Size | PPT Slide | PDF

GeSnOI is formed by low temperature direct wafer bonding (DWB) technique [26]. Figure 2 shows the process for forming the GeSnOI substrate. A SiO2 layer was first deposited by plasma enhanced CVD (PECVD) at 250 °C and was smoothened by chemical mechanical polishing (CMP). This SiO2 layer became the buried oxide (BOX) layer after bonding. The root-mean-square (RMS) roughness of the smoothened SiO2 surface was reduced to be less than 0.2 nm. Thermal anneal in N2 ambient at 350 °C using furnace was carried out to densify the surface oxide. O2 plasma treatment was then used to enhance the surface hydrophilicity before bonding to a Si handle wafer. The bonding was conducted at room temperature. Post-bond anneal in N2 ambient at 300 °C for 4 hours was introduced to further enhance the bonding strength between PECVD SiO2 and Si handle wafer. After that, the backside donor Si was selectively removed by wet etching. Ge buffer was then thinned down to ~150 nm using F-based inductively coupled plasma (ICP). ~150-nm-thick Ge layer was intentionally left on the GeSn surface to enhance the light absorption within 1.55 µm. The GeSn material quality can be well maintained after bonding, as revealed by Raman and XRD measurement in our previous study [27]. The threading dislocation density (TDD) of the GeSn layer is in the range of 107 to 5 × 107 cm−2 for both before and after the wafer bonding. The background doping for Ge and GeSn layers is in the order of 1017 cm−3.

 

Fig. 2 A simplified schematic illustrating the process for forming the GeSnOI substrate. The highest temperature used in the entire process is 350 °C.

Download Full Size | PPT Slide | PDF

The key process steps for fabricating the photodiode are listed in Fig. 3(a). A lateral p-i-n device structure was employed. Compared with the vertical p-i-n structure, the lateral geometry is favorable for a planar contact scheme and can be formed simultaneously with the source/drain implant for transistors, enabling simplicity in integration. Meanwhile, p-i-n structure avoids the reliability issue of metal-semiconductor interface in metal-semiconductor-metal (MSM) photodetector and presents an ultra-low noise level when operating at photovoltaic mode. The p- and n-type regions were defined by electron beam lithography (EBL) and formed by boron and phosphorus ion implants, respectively. Figure 3(b) shows the simulated as-implanted dopant concentration as a function of the depth from the surface. The implant energy and dose were optimized to push the junction close to the underlying Ge/GeSn interface to enhance the collection efficiency of the photogenerated carriers in the GeSn film. A thin SiO2 layer was deposited to prevent the dopant out-diffusion during the subsequent rapid thermal anneal (RTA) in N2 ambient at 450 °C for 3 minutes. This layer also functions as the isolation layer for the formation of electrode pads. It should be noted that the thermal stability of the GeSn degrades with increasing Sn composition [34]. It is important to properly select an activation temperature that achieves sufficient activation of dopants without degrading the GeSn quality. A temperature of 450 °C was selected for dopant activation considering the thermal stability issue of GeSn [34–36]. This is also the highest temperature in the entire process. It should be noted that Ge was used in this work to form the n and p-contact with the metal. One possible way to address such issue is to use GeSn instead of Ge as the contact. It was reported that decent activation can be achieved at 400 °C for both n and p-type dopants in GeSn [16,37,38]. Figure 3(c) plots the Raman spectra of the implanted and unimplanted regions of the Ge/GeSn/BOX/Si sample after dopant activation. Clear Ge-Ge longitudinal optical (LO) Raman peaks were observed, indicating the recrystallization of the doped Ge after RTA. The down-shift and asymmetric broadening toward lower wavenumber of the boron-doped Ge is attributed to the Fano interference, originating from the coupling between discrete optical phonons and continuum of interband hole excitations in degenerated doped p-type Ge [39,40].

 

Fig. 3 (a) Key process steps for fabricating the GeSnOI lateral p-i-n photodiode. (b) Simulated as-implant doping concentrations of phosphorus and boron as a function of the depth from the surface. The implanted energy and dose are indicated in (a), and the ion implant was conducted at a tilted angle of 7°. (c) Raman spectra of the Ge/GeSn/BOX/Si in phosphorus-implanted, boron-implanted, and unimplant region after 450 °C anneal. 532 nm green laser beam was utilized for the Raman measurement. The well-defined Ge-Ge LO Raman peak confirms the solid-phase epitaxial regrowth of implanted amorphous Ge during anneal.

Download Full Size | PPT Slide | PDF

The contact region was then patterned and opened by dry etching followed by wet etching using diluted hydrogen fluoride (DHF) solution. The interdigital electrode fingers were arranged to follow the lateral alternating p-i-n geometry and realized by a lift-off process. A three-dimensional (3D) schematic of the vertical-illuminated GeSn lateral p-i-n photodiode is shown in Fig. 4(a). The photodiode region is indicated in the black dashed box. Figure 4(b) shows the cross-sectional schematic of the photodiode along dashed line A-A’. Clear alternating doped p- and n-Ge for metal contacts were illustrated. No specific anti-reflection coating was implemented here. Figure 4(c) shows the top-view scanning electron microscopy (SEM) image of the GeSnOI photodiode with three pairs of interdigital electrode fingers.

 

Fig. 4 (a) Three-dimensional (3D) schematic of the GeSnOI lateral p-i-n photodiode. (b) Cross-sectional schematic of the photodiode along the dashed line A-A’, showing the alternating p- and n-type doped regions. There are three pairs of p- and n-doped regions in this design. Both drawings of (a) and (b) are not to scale. (c) Top-view SEM image of the fabricated GeSnOI photodiode.

Download Full Size | PPT Slide | PDF

TEM was performed on the GeSnOI photodetector to examine the crystalline quality of semiconductor layer after device fabrication. Figure 5(a) shows the XTEM of a fabricated GeSnOI photodiode with focused ion beam (FIB) across two adjacent interdigital finger electrodes. The intrinsic region is in the center between the two finger electrodes [Fig. 5(a)] and the separation between p and n regions is 500 nm as defined by EBL. The actual intrinsic width is even smaller as dopants diffuse during anneal. Zoom-in view in the intrinsic region of the lateral p-i-n photodiode is shown in Fig. 5(b). No obvious defects were observed in the Ge/GeSn layers. Clear lattice fringes can be observed at the Ge/GeSn interface and the GeSn/BOX interface from high-resolution TEM (HRTEM) images, as revealed in Figs. 5(c) and 5(d).

 

Fig. 5 Cross-sectional TEM images of a GeSn lateral p-i-n photodetector (a) along and (b) between two adjacent interdigital finger electrodes. HRTEM images of (c) Ge/GeSn interface and (d) GeSn/SiO2(BOX) interface. Platinum (Pt) is deposited as a protection layer during the focus ion beam (FIB) preparation of the sample for TEM inspection.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 6 shows the dark current-bias voltage (Idark-Vbias) characteristics of the fabricated GeSnOI photodiode at room temperature. A high Ion/Ioff ratio (measured at Vbias of ± 1 V) of around four orders of magnitude is observed, which is comparable or even higher than reported values [17, 19]. The measured dark current at −1 V is ~1.4 µA, which is comparably low considering the large device surface area of 38.5 × 30 µm2 (including the area of finger electrodes). The dark current could be further improved with scaled device dimension, optimized implant and dopant activation, and isolated device mesa.

 

Fig. 6 Idark-Vbias characteristics of the GeSnOI photodiode with intrinsic width of 500 nm measured at room-temperature.

Download Full Size | PPT Slide | PDF

In order to further investigate the leakage mechanism, the dark current of this GeSn lateral p-i-n photodiode was characterized at various measurement temperatures (T) ranging from 270 to 330 K, as plotted in Fig. 7(a). The Idark can be modeled using the following expression

Idark=BT3/2eEa/kT(eqVa/2kT1),
where B is a constant, T is the temperature, k is the Boltzmann constant, Va is the applied bias voltage, and Ea is the activation energy [41, 42]. Figure 7(b) shows a semi-log plot of Idark/T3/2 as a function of 1/kT. The linear fitting using weighted least-square method yields a straight line with a gradient corresponding to Ea. The extracted Ea values at Va of −0.2, −0.4, −0.6, −0.8, and −1 V are 0.19, 0.17, 0.15, 0.13, and 0.1 eV, respectively, which are much smaller than half of the Ge bandgap. It should be noted that the GeSnOI photodiode contains two photodiodes (p+-Ge/Ge/n+-Ge and p+-Ge/GeSn/n+-Ge) in parallel. The extracted Ea is an overall activation energy for both. The observation that Ea is less than Eg/2 (Eg is 0.66 eV for Ge and 0.54 eV for GeSn [43]) suggests that the leakage current is dominated by trap-assisted tunneling current [44]. The trap-assisted tunneling current could be possibly due to the energy levels in the GeSn bandgap resulting from the trap states at the SiO2/Ge or GeSn/BOX interface. This indicates that introduction of proper surface passivation technique could effectively suppress the leakage current [45–47]. In addition, further post-fabrication anneal may also help to annihilate those defects and improve the device performance. The other main possible source is the defects-assisted tunneling at the i-GeSn/n+-Ge junction. The electrical field in this junction is high and phosphorus ion implantation introduces certain number of defects which are difficult to be completely removed with thermal annealing [48]. A decreasing trend of Ea with increasing reverse bias voltage Vre was also found, as illustrated in Fig. 7(c). This is predictable because increasing reverse bias enlarges the band-bending of the intrinsic region which leads to enhanced electrons and holes tunneling from those shallow-level traps into respective conduction and valence bands, contributing to the reduction of effective Ea.

 

Fig. 7 (a) Temperature-dependent dark I-V characteristics of the GeSnOI photodetector. The temperature ranges from 270 to 330 K with an increasing step of 10 K. (b) Plot of ln(Idark/T3/2) as a function of 1/kT for the photodiode at various reverse bias voltages Vre. (c) Extracted activation energy from the linear fitting in (B) vs.Vre.

Download Full Size | PPT Slide | PDF

Two discrete mode Fabry-Perot laser diodes (Eblana's EP1877-0-DM and EP2004-0-DM) with emission wavelengths of 1877 and 2004 nm were utilized for the optical characterization of the GeSnOI photodiode. Light was coupled into a single-mode (SM) fiber (Thorlabs SM2000) and illuminated vertically on the photodetector surface. Figures 8(a) and 8(b) show obvious photoresponse under various fiber output powers at illumination wavelength of 1877 and 2004 nm, respectively. The photodiode was biased at −1 V. The fiber output power was calibrated through a commercial available InGaAs detector-based power meter (Thorlabs S148C) from the fiber tip. The laser was modulated (on/off) through a function generator at a frequency of 1 Hz. The laser beam size arriving at the sample surface in the measurement is much larger than the effective area (considering the shadowing effect of the interdigital electrode) of the GeSnOI photodiode.

 

Fig. 8 Temporal photoresponse of the GeSnOI photodiode under various fiber output power at illumination wavelength of (a) 1877 and (b) 2004 nm. The laser was modulated through a function generator at a frequency of 1 Hz.

Download Full Size | PPT Slide | PDF

The actual power illuminating on the effective region of the photodiode was calculated before the extraction of the photoresponsivity, assuming a circular beam size with uniform spatial-distributed power. The light intensity from the fiber was calibrated using a power meter. Figure 9(a) shows the photocurrent of the GeSnOI photodiode as a function of the actual illuminated power. An almost linear photoresponse was observed when the illumination power is increased. The wavelength-dependent responsivity of the photodiode at −1 V was plotted in Fig. 9(b). Responsivities of 0.027 and 0.016 A/W can be achieved at wavelength of 1877 and 2004 nm, respectively. Figure 9(c) shows the photoresponsivity-voltage characteristics of the photodetector at these two single wavelengths. At reverse bias, the photodetector shows a quite constant responsivity from 0 to −1 V, for both wavelengths. This indicates that the photogenerated carriers could be efficiently collected even under zero bias. As compared to pure Ge-based photodiodes, this device shows significant extended photoresponse far beyond traditional tele-communication bands (O to U-band) [49]. Implementation of a GeSn/Ge multi-quantum-well (MQW) structure (higher critical thickness is expected [50]) or insertion of a resonant cavity [51] could further enhance the responsivity.

 

Fig. 9 (a) Photocurrent Iph of the GeSnOI photodetector as a function of actual illuminated power Pin at wavelength of 1877 and 2004 nm. (b) Wavelength-dependent photoresponsivity of the GeSnOI photodetector. (c) Responsivity-voltage Rop-Vbias characteristics of the photodetector. The photoresponsivity is almost constant for reverse bias voltage ranging from 0 to −1.0 V.

Download Full Size | PPT Slide | PDF

4. Conclusion

GeSn photodiode with a lateral p-i-n geometry was realized on an advanced GeSnOI platform for the first time. The resulting photodiode shows a high Ion/Ioff ratio of ~4 orders of magnitude and a low dark current of 1.4 µA at room temperature. Obvious photo-response up to 2004-nm wavelength was observed. Responsivity of 0.027 and 0.016 A/W at −1 V were achieved for 1877 and 2004 nm illumination. Even under zero bias, responsivity of 0.024 and 0.013 A/W can still be obtained. This work paves way for the high performance optical receivers operating at mid-infrared and for potential monolithic integration with GeSn-based electronic devices on common insulator substrates for image sensing applications.

Funding

National University of Singapore Trailblazer (R-263-000-B43-733); Ministry of Education (MOE) Academic Research Fund (R-263-000-B50-112).

Acknowledgment

The authors acknowledge Ms. Li Huang at National University of Singapore for her assistance with the optical measurement of the photodiode and valuable technical discussions.

References and links

1. K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012). [CrossRef]  

2. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011). [CrossRef]  

3. S. Gupta, B. Vincent, D. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: Material potential and technological outlook,” in IEEE Symp. VLSI Tech. Dig., 2012, pp. 95–96. [CrossRef]  

4. X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013). [CrossRef]  

5. F. Trumbore, “Solid solubilities and electrical properties of tin in germanium single crystals,” J. Electrochem. Soc. 103(11), 597–600 (1956). [CrossRef]  

6. W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990). [CrossRef]  

7. S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011). [CrossRef]  

8. G. He and H. A. Atwater, “Synthesis of epitaxial SnxGe1–x alloy films by ion-assisted molecular beam epitaxy,” in Ion Beam Modification of Materials, J. S. Williams, R. G. Elliman, and M. C. Ridgway, ed. (Elsevier, 1996).

9. O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998). [CrossRef]  

10. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008). [CrossRef]  

11. F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012). [CrossRef]  

12. M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002). [CrossRef]  

13. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011). [CrossRef]  

14. G. Han, S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, “High-mobility germanium-tin (GeSn) p-channel MOSFETs featuring metallic source/drain and sub-370 C process modules,” in IEEE IEDM Tech. Dig. 2011, pp. 16.17. 11–16.17. 13.

15. G. Han, S. Su, L. Wang, W. Wang, X. Gong, Y. Yang, P. Guo, C. Guo, G. Zhang, J. Pan, Z. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo “Strained germanium-tin (GeSn) N-channel MOSFETs featuring low temperature N+/P junction formation and GeSnO2 interfacial layer,” in IEEE VLSI Tech. Dig. 2012, pp. 97–98.

16. S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoester, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in IEEE IEDM Tech. Dig. 2012, pp. 16.12. 11–16.12. 14.

17. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011). [CrossRef]   [PubMed]  

18. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012). [CrossRef]   [PubMed]  

19. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012). [CrossRef]  

20. S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015). [CrossRef]  

21. D. Buca, N. von den Driesch, D. Stange, S. Wirths, R. Geiger, C. S. Braucks, S. Mantl, J. Hartmann, Z. Ikonic, J. Witzens, H. Sigg, and D. Grützmacher, “GeSn lasers for CMOS integration,” in IEEE IEDM Tech. Dig. 2016, pp. 22.23. 21–22.23. 24.

22. J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in IEEE VLSI Tech. Dig. 2013, pp. T32–T33.

23. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014). [CrossRef]  

24. K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015). [CrossRef]  

25. H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014). [CrossRef]  

26. D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016). [CrossRef]  

27. D. Lei, K. H. Lee, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, and S. Xu, Y. Wu, Y.-C. Huang, H. Chung, S. S. Chu, S. Kuppurao, C. S. Tan, X. Gong, and Y.-C. Yeo “The first GeSn FinFET on a novel GeSnOI substrate achieving lowest S of 79 mV/decade and record high Gm, int of 807 μS/μm for GeSn P-FETs,” in IEEE VLSI Tech. Dig., 2017, pp. T198–T199.

28. C. Chang, H. Li, C.-T. Ku, S.-G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016). [CrossRef]   [PubMed]  

29. H. Oka, K. Inoue, T. T. Nguyen, S. Kuroki, T. Hosoi, T. Shimura, and H. Watanable, “Back-side illuminated GeSn photodiode array on quartz substrate fabricated by laser-induced liquid-phase crystallization for monolithically-integrated NIR imager chip,” in IEEE IEDM Tech. Dig., 2017, pp. 393–396.

30. P. F. Ambrico, A. Amodeo, P. Di Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39(36), 6847–6865 (2000). [CrossRef]   [PubMed]  

31. P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc. 57(1), 28–36 (2003). [CrossRef]   [PubMed]  

32. K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition,” Opt. Express 25(4), 4528–4534 (2017). [CrossRef]   [PubMed]  

33. N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013). [CrossRef]  

34. W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014). [CrossRef]  

35. H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013). [CrossRef]  

36. R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013). [CrossRef]  

37. S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013). [CrossRef]  

38. L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012). [CrossRef]  

39. N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010). [CrossRef]   [PubMed]  

40. D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981). [CrossRef]  

41. K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009). [CrossRef]  

42. S. Koester, L. Schares, C. L. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers,” in IEEE Group IV Photonics, 2006, pp. 179–181.

43. J.-Z. Chen, H. Li, H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si (001) wafers,” Opt. Mater. Express 4(6), 1178–1185 (2014). [CrossRef]  

44. M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014). [CrossRef]  

45. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017). [CrossRef]  

46. J. Kang, R. Zhang, M. Takenaka, and S. Takagi, “Suppression of dark current in GeOx-passivated germanium metal-semiconductor-metal photodetector by plasma post-oxidation,” Opt. Express 23(13), 16967–16976 (2015). [CrossRef]   [PubMed]  

47. Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015). [CrossRef]   [PubMed]  

48. A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014). [CrossRef]  

49. J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015). [CrossRef]   [PubMed]  

50. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014). [CrossRef]   [PubMed]  

51. B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
    [Crossref]
  2. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
    [Crossref]
  3. S. Gupta, B. Vincent, D. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: Material potential and technological outlook,” in IEEE Symp. VLSI Tech. Dig., 2012, pp. 95–96.
    [Crossref]
  4. X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
    [Crossref]
  5. F. Trumbore, “Solid solubilities and electrical properties of tin in germanium single crystals,” J. Electrochem. Soc. 103(11), 597–600 (1956).
    [Crossref]
  6. W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
    [Crossref]
  7. S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
    [Crossref]
  8. G. He and H. A. Atwater, “Synthesis of epitaxial SnxGe1–x alloy films by ion-assisted molecular beam epitaxy,” in Ion Beam Modification of Materials, J. S. Williams, R. G. Elliman, and M. C. Ridgway, ed. (Elsevier, 1996).
  9. O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
    [Crossref]
  10. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
    [Crossref]
  11. F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
    [Crossref]
  12. M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
    [Crossref]
  13. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
    [Crossref]
  14. G. Han, S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, “High-mobility germanium-tin (GeSn) p-channel MOSFETs featuring metallic source/drain and sub-370 C process modules,” in IEEE IEDM Tech. Dig. 2011, pp. 16.17. 11–16.17. 13.
  15. G. Han, S. Su, L. Wang, W. Wang, X. Gong, Y. Yang, P. Guo, C. Guo, G. Zhang, J. Pan, Z. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo “Strained germanium-tin (GeSn) N-channel MOSFETs featuring low temperature N+/P junction formation and GeSnO2 interfacial layer,” in IEEE VLSI Tech. Dig. 2012, pp. 97–98.
  16. S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoester, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in IEEE IEDM Tech. Dig. 2012, pp. 16.12. 11–16.12. 14.
  17. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  18. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
    [Crossref] [PubMed]
  19. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
    [Crossref]
  20. S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  21. D. Buca, N. von den Driesch, D. Stange, S. Wirths, R. Geiger, C. S. Braucks, S. Mantl, J. Hartmann, Z. Ikonic, J. Witzens, H. Sigg, and D. Grützmacher, “GeSn lasers for CMOS integration,” in IEEE IEDM Tech. Dig. 2016, pp. 22.23. 21–22.23. 24.
  22. J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in IEEE VLSI Tech. Dig. 2013, pp. T32–T33.
  23. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
    [Crossref]
  24. K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
    [Crossref]
  25. H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
    [Crossref]
  26. D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
    [Crossref]
  27. D. Lei, K. H. Lee, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, and S. Xu, Y. Wu, Y.-C. Huang, H. Chung, S. S. Chu, S. Kuppurao, C. S. Tan, X. Gong, and Y.-C. Yeo “The first GeSn FinFET on a novel GeSnOI substrate achieving lowest S of 79 mV/decade and record high Gm, int of 807 μS/μm for GeSn P-FETs,” in IEEE VLSI Tech. Dig., 2017, pp. T198–T199.
  28. C. Chang, H. Li, C.-T. Ku, S.-G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
    [Crossref] [PubMed]
  29. H. Oka, K. Inoue, T. T. Nguyen, S. Kuroki, T. Hosoi, T. Shimura, and H. Watanable, “Back-side illuminated GeSn photodiode array on quartz substrate fabricated by laser-induced liquid-phase crystallization for monolithically-integrated NIR imager chip,” in IEEE IEDM Tech. Dig., 2017, pp. 393–396.
  30. P. F. Ambrico, A. Amodeo, P. Di Girolamo, and N. Spinelli, “Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region,” Appl. Opt. 39(36), 6847–6865 (2000).
    [Crossref] [PubMed]
  31. P. S. Jensen, J. Bak, and S. Andersson-Engels, “Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures,” Appl. Spectrosc. 57(1), 28–36 (2003).
    [Crossref] [PubMed]
  32. K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition,” Opt. Express 25(4), 4528–4534 (2017).
    [Crossref] [PubMed]
  33. N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
    [Crossref]
  34. W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
    [Crossref]
  35. H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
    [Crossref]
  36. R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
    [Crossref]
  37. S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
    [Crossref]
  38. L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
    [Crossref]
  39. N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
    [Crossref] [PubMed]
  40. D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981).
    [Crossref]
  41. K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
    [Crossref]
  42. S. Koester, L. Schares, C. L. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers,” in IEEE Group IV Photonics, 2006, pp. 179–181.
  43. J.-Z. Chen, H. Li, H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si (001) wafers,” Opt. Mater. Express 4(6), 1178–1185 (2014).
    [Crossref]
  44. M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
    [Crossref]
  45. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
    [Crossref]
  46. J. Kang, R. Zhang, M. Takenaka, and S. Takagi, “Suppression of dark current in GeOx-passivated germanium metal-semiconductor-metal photodetector by plasma post-oxidation,” Opt. Express 23(13), 16967–16976 (2015).
    [Crossref] [PubMed]
  47. Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
    [Crossref] [PubMed]
  48. A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014).
    [Crossref]
  49. J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
    [Crossref] [PubMed]
  50. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  51. B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

K. Xu, Q. Wu, Y. Xie, M. Tang, S. Fu, and D. Liu, “High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition,” Opt. Express 25(4), 4528–4534 (2017).
[Crossref] [PubMed]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

2016 (2)

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

C. Chang, H. Li, C.-T. Ku, S.-G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (7)

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J.-Z. Chen, H. Li, H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si (001) wafers,” Opt. Mater. Express 4(6), 1178–1185 (2014).
[Crossref]

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014).
[Crossref]

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

2013 (5)

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

2012 (5)

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

2011 (4)

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

2010 (1)

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

2009 (1)

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

2008 (1)

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

2003 (1)

2002 (1)

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

2000 (1)

1998 (1)

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

1990 (1)

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

1981 (1)

D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981).
[Crossref]

1956 (1)

F. Trumbore, “Solid solubilities and electrical properties of tin in germanium single crystals,” J. Electrochem. Soc. 103(11), 597–600 (1956).
[Crossref]

Abstreiter, G.

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

Afshinmanesh, F.

Ambrico, P. F.

Amodeo, A.

Andersson-Engels, S.

Ang, K.-W.

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

Antoniadis, D.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Bai, F.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Bak, J.

Bando, Y.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Bao, S.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Bauer, M.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Bechler, S.

Bender, H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Bhargava, N.

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Bracht, H.

A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014).
[Crossref]

Brendel, C. E.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Brongersma, M. L.

Buca, D.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Cao, Q.

Cardona, M.

D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981).
[Crossref]

Carlsson, J.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Caymax, M.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Chang, C.

Chang, G.-E.

Chen, H.

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

Chen, J.-Z.

Chen, R.

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Cheng, B.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, H.

J.-Z. Chen, H. Li, H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si (001) wafers,” Opt. Mater. Express 4(6), 1178–1185 (2014).
[Crossref]

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

Cheng, H. H.

Cheng, R.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Chikita, H.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chizmeshya, A.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Chroneos, A.

A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014).
[Crossref]

Chung, H.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Claeys, C.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Coppinger, M.

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Cui, Y.

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

De Jaeger, B.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Dekoster, J.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Desjardins, P.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Di Girolamo, P.

Dong, Y.

Douhard, B.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Eberl, K.

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

Eneman, G.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fan, W.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Fenrich, C. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Fu, S.

Fukata, N.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Gassenq, A.

Geiger, R.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gencarelli, F.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Gollhofer, M.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Gong, X.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Gonzalez, M.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Greene, J.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Guo, P.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Gupta, J. P.

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Gupta, S.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Gurdal, O.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Han, G.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Hansen, O.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Harris, J. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Hartmann, J.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hendrickson, J.

Henrichsen, H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Heyns, M.

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Hitzman, C.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Hong, J. I.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Hu, C.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Hu, W.

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Huang, B.-J.

Huang, Y.-C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Huo, Y.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Ikonic, Z.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Jensen, P. S.

Jung, W. S.

Kai, Y.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Kamins, T. I.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Kang, J.

Kaschel, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Kasper, E.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Kim, Y.

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Kirkham, M.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Kittler, M.

Koerner, R.

Kolodzey, J.

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Kostecki, K.

Kouvetakis, J.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Ku, C.-T.

Kwong, D.-L.

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

Lee, K. H.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Lee, S. Y.

Lei, D.

Li, C.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Li, H.

Li, L.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

Liang, G.

Lin, A. C.

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Lin, D.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Lin, H.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Lin, J.-H.

Liu, B.

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Liu, D.

Liu, Z.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Lo, G.-Q.

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

Loke, W. K.

Loo, R.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Low, K. L.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Magyari-Kope, B.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Matsumura, R.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Meersschaut, J.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Menczigar, U.

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

Menendez, J.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Merckling, C.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Mitome, M.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Miyao, M.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Morea, M.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Nakatsuka, O.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Nam, D.

Nam, J. H.

Narcy, G.

Ng, J. W.

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

Nishi, Y.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Oehme, M.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Ogawa, M.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Olego, D.

D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981).
[Crossref]

Oya, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Pan, J.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Petersen, D. H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Radamson, H.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Richard, O.

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

Roelkens, G.

Sadoh, T.

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

Saitoh, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Sakai, A.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Sanchez, E.

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

Saraswat, K. C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. H. Nam, F. Afshinmanesh, D. Nam, W. S. Jung, T. I. Kamins, M. L. Brongersma, and K. C. Saraswat, “Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon,” Opt. Express 23(12), 15816–15823 (2015).
[Crossref] [PubMed]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Sato, K.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Schmid, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Schulze, J.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Schwartz, B.

Sekiguchi, T.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Shimura, Y.

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Simoen, E.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Smith, D. J.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Snyder, R. L.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Soref, R. A.

Souriau, L.

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

Spinelli, N.

Stoica, T.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Su, S.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Suemasu, T.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Suh, J.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Sun, G.

Sundgren, J.-E.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Takagi, S.

Takenaka, M.

Takeuchi, S.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Tan, C. S.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Tang, M.

Taraci, J.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Taylor, N.

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Tok, E. S.

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Toko, K.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Tolle, J.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Tong, Y.

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Trumbore, F.

F. Trumbore, “Solid solubilities and electrical properties of tin in germanium single crystals,” J. Electrochem. Soc. 103(11), 597–600 (1956).
[Crossref]

Tseng, W.

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

Van Campenhout, J.

Vandervorst, W.

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Vincent, B.

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Von Den Driesch, N.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, B.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Wang, G.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Wang, L.

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Wang, Q.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

Wang, W.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, Z. L.

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Wegscheider, W.

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

Wen, J.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Widmann, D.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Wielunski, L.

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wu, K.

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

Wu, Q.

Xie, Y.

Xu, K.

Xue, C.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yang, S.-G.

Yang, Y.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Yeo, Y.-C.

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

Yoon, S.-F.

Yoshizawa, N.

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

Zaima, S.

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

Zang, K.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Zaumseil, P.

Zhang, D.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Zhang, G.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Zhang, R.

Zhang, X.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Zhang, Z.

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

Zhou, Q.

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

Zollner, S.

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

Zuo, Y.

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

ACS Nano (1)

N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, and R. L. Snyder, “Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires,” ACS Nano 4(7), 3807–3816 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (13)

N. Bhargava, M. Coppinger, J. P. Gupta, L. Wielunski, and J. Kolodzey, “Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 103(4), 041908 (2013).
[Crossref]

H. Li, Y. Cui, K. Wu, W. Tseng, H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102(25), 251907 (2013).
[Crossref]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu, “70° C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge,” Appl. Phys. Lett. 106(8), 082109 (2015).
[Crossref]

H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao, “Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding,” Appl. Phys. Lett. 105(20), 202112 (2014).
[Crossref]

D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, and Y.-C. Yeo, “GeSn-on-insulator substrate formed by direct wafer bonding,” Appl. Phys. Lett. 109(2), 022106 (2016).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1− xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties,” Appl. Phys. Lett. 57(9), 875–877 (1990).
[Crossref]

M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, “Ge–Sn semiconductors for band-gap and lattice engineering,” Appl. Phys. Lett. 81(16), 2992–2994 (2002).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, “Growth of highly strain-relaxed Ge 1− xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method,” Appl. Phys. Lett. 92(23), 231916 (2008).
[Crossref]

K.-W. Ang, J. W. Ng, G.-Q. Lo, and D.-L. Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector,” Appl. Phys. Lett. 94(22), 223515 (2009).
[Crossref]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Appl. Phys. Rev. (1)

A. Chroneos and H. Bracht, “Diffusion of n-type dopants in germanium,” Appl. Phys. Rev. 1(1), 011301 (2014).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

W. Wang, L. Li, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge (001) substrate,” Appl. Surf. Sci. 321, 240–244 (2014).
[Crossref]

ECS Trans. (1)

S. Gupta, R. Chen, B. Vincent, D. Lin, B. Magyari-Kope, M. Caymax, J. Dekoster, J. S. Harris, Y. Nishi, and K. C. Saraswat, “GeSn channel n and p MOSFETs,” ECS Trans. 50(9), 937–941 (2013).
[Crossref]

Electron Device Lett. (1)

L. Wang, S. Su, W. Wang, Y. Yang, Y. Tong, B. Liu, P. Guo, X. Gong, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, “Germanium–tin junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” Electron Device Lett. 33, 1529–1531 (2012).
[Crossref]

IEEE Electron Device Lett. (1)

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium–Tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with Sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34, 339–341 (2013).
[Crossref]

J. Appl. Phys. (2)

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112(10), 103715 (2012).
[Crossref]

O. Gurdal, P. Desjardins, J. Carlsson, N. Taylor, H. Radamson, J.-E. Sundgren, and J. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≤0.26) alloys on Ge (001) 2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

J. Cryst. Growth (2)

S. Su, W. Wang, B. Cheng, G. Zhang, W. Hu, C. Xue, Y. Zuo, and Q. Wang, “Epitaxial growth and thermal stability of Ge1− xSnx alloys on Ge-buffered Si (001) substrates,” J. Cryst. Growth 317(1), 43–46 (2011).
[Crossref]

R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, “Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing,” J. Cryst. Growth 365, 29–34 (2013).
[Crossref]

J. Electrochem. Soc. (1)

F. Trumbore, “Solid solubilities and electrical properties of tin in germanium single crystals,” J. Electrochem. Soc. 103(11), 597–600 (1956).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth,” J. Phys. D Appl. Phys. 48(44), 445103 (2014).
[Crossref]

Microelectron. Eng. (1)

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Nat. Photonics (1)

S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

D. Olego and M. Cardona, “Self-energy effects of the optical phonons of heavily doped p-GaAs and p-Ge,” Phys. Rev. B 23(12), 6592–6602 (1981).
[Crossref]

Thin Solid Films (1)

F. Gencarelli, B. Vincent, L. Souriau, O. Richard, W. Vandervorst, R. Loo, M. Caymax, and M. Heyns, “Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6,” Thin Solid Films 520(8), 3211–3215 (2012).
[Crossref]

Other (10)

G. Han, S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, “High-mobility germanium-tin (GeSn) p-channel MOSFETs featuring metallic source/drain and sub-370 C process modules,” in IEEE IEDM Tech. Dig. 2011, pp. 16.17. 11–16.17. 13.

G. Han, S. Su, L. Wang, W. Wang, X. Gong, Y. Yang, P. Guo, C. Guo, G. Zhang, J. Pan, Z. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo “Strained germanium-tin (GeSn) N-channel MOSFETs featuring low temperature N+/P junction formation and GeSnO2 interfacial layer,” in IEEE VLSI Tech. Dig. 2012, pp. 97–98.

S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoester, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in IEEE IEDM Tech. Dig. 2012, pp. 16.12. 11–16.12. 14.

S. Gupta, B. Vincent, D. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “GeSn channel nMOSFETs: Material potential and technological outlook,” in IEEE Symp. VLSI Tech. Dig., 2012, pp. 95–96.
[Crossref]

G. He and H. A. Atwater, “Synthesis of epitaxial SnxGe1–x alloy films by ion-assisted molecular beam epitaxy,” in Ion Beam Modification of Materials, J. S. Williams, R. G. Elliman, and M. C. Ridgway, ed. (Elsevier, 1996).

H. Oka, K. Inoue, T. T. Nguyen, S. Kuroki, T. Hosoi, T. Shimura, and H. Watanable, “Back-side illuminated GeSn photodiode array on quartz substrate fabricated by laser-induced liquid-phase crystallization for monolithically-integrated NIR imager chip,” in IEEE IEDM Tech. Dig., 2017, pp. 393–396.

D. Buca, N. von den Driesch, D. Stange, S. Wirths, R. Geiger, C. S. Braucks, S. Mantl, J. Hartmann, Z. Ikonic, J. Witzens, H. Sigg, and D. Grützmacher, “GeSn lasers for CMOS integration,” in IEEE IEDM Tech. Dig. 2016, pp. 22.23. 21–22.23. 24.

J.-Y. J. Lin, S. Gupta, Y.-C. Huang, Y. Kim, M. Jin, E. Sanchez, R. Chen, K. Balram, D. Miller, J. Harris, and K. Saraswat, “Fabrication of GeSn-on-insulator (GSOI) to enable monolithic 3D co-integration of logic and photonics,” in IEEE VLSI Tech. Dig. 2013, pp. T32–T33.

D. Lei, K. H. Lee, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, and S. Xu, Y. Wu, Y.-C. Huang, H. Chung, S. S. Chu, S. Kuppurao, C. S. Tan, X. Gong, and Y.-C. Yeo “The first GeSn FinFET on a novel GeSnOI substrate achieving lowest S of 79 mV/decade and record high Gm, int of 807 μS/μm for GeSn P-FETs,” in IEEE VLSI Tech. Dig., 2017, pp. T198–T199.

S. Koester, L. Schares, C. L. Schow, G. Dehlinger, and R. John, “Temperature-dependent analysis of Ge-on-SOI photodetectors and receivers,” in IEEE Group IV Photonics, 2006, pp. 179–181.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) XTEM image of the CVD-grown GeSn on the Si substrate. (b) HRXRD rocking curve of the GeSn/Ge/Si sample at (004) orientation, showing very good crystalline quality of GeSn layer. (c) (224) RSM of the as-grown sample indicates the substitutional Sn composition is ~7% with compressive strain of ~-0.8%.
Fig. 2
Fig. 2 A simplified schematic illustrating the process for forming the GeSnOI substrate. The highest temperature used in the entire process is 350 °C.
Fig. 3
Fig. 3 (a) Key process steps for fabricating the GeSnOI lateral p-i-n photodiode. (b) Simulated as-implant doping concentrations of phosphorus and boron as a function of the depth from the surface. The implanted energy and dose are indicated in (a), and the ion implant was conducted at a tilted angle of 7°. (c) Raman spectra of the Ge/GeSn/BOX/Si in phosphorus-implanted, boron-implanted, and unimplant region after 450 °C anneal. 532 nm green laser beam was utilized for the Raman measurement. The well-defined Ge-Ge LO Raman peak confirms the solid-phase epitaxial regrowth of implanted amorphous Ge during anneal.
Fig. 4
Fig. 4 (a) Three-dimensional (3D) schematic of the GeSnOI lateral p-i-n photodiode. (b) Cross-sectional schematic of the photodiode along the dashed line A-A’, showing the alternating p- and n-type doped regions. There are three pairs of p- and n-doped regions in this design. Both drawings of (a) and (b) are not to scale. (c) Top-view SEM image of the fabricated GeSnOI photodiode.
Fig. 5
Fig. 5 Cross-sectional TEM images of a GeSn lateral p-i-n photodetector (a) along and (b) between two adjacent interdigital finger electrodes. HRTEM images of (c) Ge/GeSn interface and (d) GeSn/SiO2(BOX) interface. Platinum (Pt) is deposited as a protection layer during the focus ion beam (FIB) preparation of the sample for TEM inspection.
Fig. 6
Fig. 6 Idark-Vbias characteristics of the GeSnOI photodiode with intrinsic width of 500 nm measured at room-temperature.
Fig. 7
Fig. 7 (a) Temperature-dependent dark I-V characteristics of the GeSnOI photodetector. The temperature ranges from 270 to 330 K with an increasing step of 10 K. (b) Plot of ln(Idark/T3/2) as a function of 1/kT for the photodiode at various reverse bias voltages Vre. (c) Extracted activation energy from the linear fitting in (B) vs.Vre.
Fig. 8
Fig. 8 Temporal photoresponse of the GeSnOI photodiode under various fiber output power at illumination wavelength of (a) 1877 and (b) 2004 nm. The laser was modulated through a function generator at a frequency of 1 Hz.
Fig. 9
Fig. 9 (a) Photocurrent Iph of the GeSnOI photodetector as a function of actual illuminated power Pin at wavelength of 1877 and 2004 nm. (b) Wavelength-dependent photoresponsivity of the GeSnOI photodetector. (c) Responsivity-voltage Rop-Vbias characteristics of the photodetector. The photoresponsivity is almost constant for reverse bias voltage ranging from 0 to −1.0 V.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I dark =B T 3/2 e E a /kT ( e q V a /2kT 1),

Metrics