Abstract

Metasurfaces provide an alternative way to design three-dimensional arbitrary-shaped carpet cloaks with ultrathin thicknesses. Nevertheless, the previous metasurface carpet cloaks work only at a single frequency. To overcome this challenge, we here propose a macroscopic metasurface carpet cloak. The cloak is designed with a metasurface of a few layers that exhibit a special spatial distribution of the conductance and inductance in the unit cell; therefore, it can fully control the reflection phases at several independent frequencies simultaneously. Because of this, the present metasurface cloak can work at dual frequencies based on multi-resonance principle. The proposed design methodology will be very useful in future broadband macroscopic cloaks design with low profiles, light weights, and easy access.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the past few years, invisibility cloaks have been scientific possibility thanks to the advent of metamaterials and transformation optics [1–16]. Many methods have been developed to design invisibility cloaks, mainly, scattering cancellation [17–23], and transformation optics (including conformal mapping method [24,25] and coordinate transformation method [26,27]). To get rid of the singularity of parameters in the omnidirectional cloak, the concept of carpet cloak is proposed based on quasi-conformal mapping method [28]. Many experimental demonstrations has confirmed this kind of carpet cloak from microwave to optical frequencies [1,2,5,6,8,9]. However, due to replacing the anisotropic parameters with isotropic ones, the quasi-conformal mapping based carpet cloaks suffer from the lateral shift of the reflection light [29]. Another way to design carpet cloaks is based on linear coordinate transformation [30]. The advantages of this method is that it requires only one homogeneous anisotropic material, facilitating the implementations [4,10,12,31,32]. By abandoning the impedance matching condition and adopting the natural materials, macroscopic carpet cloaks operational at optical frequencies have been realized [4,10].

Different from the above bulk metamaterials, metasurfaces [33–36] provide a simple way to build carpet cloaks [37–43], and several experiments have been carried out at different frequencies [37,44–46]. In this method, a compact series of subwavelength resonators are arranged to mold the reflected phase of metasurface. However, limited by the single-resonance metasurface, the previous metasurface cloaking method works only for a single wavelength [Fig. 1(a)].

 figure: Fig. 1

Fig. 1 (a) Single-frequency metasurface cloak. The metasurfaces can only restore the reflected light at a single frequency. The red and green arrows represent light with different wavelengths, respectively. (b) Schematic view of multi-resonance metasurface cloak. The orange, green, and red arrows represent light with different wavelengths, respectively. (c) Working principle of the multi-resonance metasurface cloak. The metasurfaces involve multiple resonances and can manipulate lights with different wavelengths simultaneously. The red and green arrows represent lights with different wavelengths, respectively.

Download Full Size | PPT Slide | PDF

To overcome the above challenge, here, we propose a multi-frequency metasurface carpet cloak based on multi-resonance metasurfaces [Figs. 1(b)-1(c)]. As a demonstration, we design a triangle multi-resonance metasurface cloak, which works at both C band and Ku band. Both simulated field distributions and reduced total radar cross section (RCS) manifest that our cloak can successfully hide the objects at different frequencies within the incidence angle from −10° to 10°. If involving with more resonances in the metasurfaces, the present metasurface cloaking method can work for more independent frequencies or in a broad band, which will be very useful in macroscopic broadband cloaking design.

2. Theories

Figure 1(b) shows the ultrathin invisibility skin cloak. It can wrap over arbitrarily shaped object and reconstruct the reflected phases of multi-resonance waves while amplitudes remain at unity. The working principle of the metasurface cloaking method is illustrated in Fig. 1(c). It is well known that when electromagnetic wave impinges onto a bare PEC bump, it renders unwanted reflection phase. However, after wrapped with a thin metasurface cloak that provides additional phase to compensate the distorted one, the bump seems invisible to the light as if the light impinged onto a flat mirror.

When a light beam with different frequencies (f1, f2, f3,…, fn) is incident onto the cloaked bump, the additional phases introduced by the metasurface cloak are

Δϕ1=π4πf1hcosθ/catfrequencyoff1,Δϕ2=π4πf2hcosθ/catfrequencyoff2,Δϕ3=π4πf3hcosθ/catfrequencyoff3,...Δϕn=π4πfnhcosθ/catfrequencyoffn,
where c is the speed of light in free space, h is the height of the unit cell, and θ is the incident angle relative to the surface normal of the ground plane [Fig. 1(c)]. The key to realize a multi-resonance metasurface cloak is to design a metasurface that can provide distinctive electromagnetic responses at different frequencies. The challenge is that the metasurface cloak can be arbitrary shape, which means the Δϕ1, Δϕ2, Δϕ3,…,Δϕn can be arbitrary values. In another word, the metasurface should provide phases that can cover the n-dimensional space of Δϕ1, Δϕ2,…,Δϕn, where Δϕ1, Δϕ2, Δϕ3, …,Δϕn varies from 0 to 2π. Such strict requirement makes it a big challenge to realize the multi-resonance metasurface cloaks.

3. Cloak design

In order to solve the above challenge, we design a multi-resonance metasurface constructed with a few layers. The metasurface is composed of double H-shaped resonators, as shown in Fig. 2(a). The golden structures are copper and the black areas are substrates with a relative dielectric permittivity of ε = 3.5; the size of the resonator is h = 12 mm by s = 5 mm, respectively; the thicknesses of the substrate and the copper layer are t2 = 1 mm and t1 = 0.5 mm; the width of the copper wire is w = 0.5 mm; the heights of the bottom and top H-shaped resonators are a1 = 8 mm, a2 = 6.5 mm, respectively; the gap along the x direction is d = 1.5 mm. The reflection phase of the double H-shaped resonators is plotted in Fig. 2(b), where the points indicate the resonance frequencies. Note that here we only consider the transverse magnetic (TM) wave with electric field in the xz plane and the magnetic field in the y direction. In Fig. 2(c), we show the distribution of the amplitude of the Ex field in the yz plane. One can clearly see that each resonance appears at different locations, which is due to the special spatial distribution of the induced conductance and inductance of the unit cell. When we change the geometry parameters of the resonator, e.g., a1, a2, and d, the resonance frequencies also change.

 figure: Fig. 2

Fig. 2 (a) Structure of the unit cell of the proposed metasurface. Each unit cell consists of two H-shaped metallic structures with respective size positioning on substrate with a permittivity of 3.5. The periods along x and y directions are s = 5 mm and h = 12 mm; the thickness of the substrate is 1.5 mm; the thickness of the copper layer is t2 = 0.5 mm and the width of the copper wire is w = 1 mm. Three of the parameters, i.e. H patch height a1, a2 and the distance between patch and margin of substrate d/2, are changed to accommodate the desired phase. (b) The phase of S11 for unit cell with the following parameters: a1 = 8 mm, a2 = 6.5 mm, and d = 1.5 mm. The three black dots with large slopes correspond to three resonances (f1 = 6.80 GHz, f2 = 8.75 GHz, and f3 = 15.2 GHz), respectively. (c) The Ex field distribution corresponds to the three resonant points in (b).

Download Full Size | PPT Slide | PDF

We then choose two different frequencies, i.e., fl = 7.8 GHz and fh = 12.3 GHz, and calculate the reflection phases at these frequencies by varying a1, a2, and d, as shown in Fig. 3(a), where each point represents a set of geometry parameters. Interestingly, one can see that the dots almost cover the whole phase diagram, which means that we can achieve almost arbitrary phase at fl = 7.8 GHz and fh = 12.3 GHz, by properly choosing geometry parameters a1, a2, and d. We should note that an arbitrary metasurface processing with multi-resonance may not simultaneously control reflection phases at different frequencies. For example, a single-layer H-shaped resonator also has many resonances at different frequencies. However, they are highly related, and if plotting a phase diagram like Fig. 3(a), the dots can only cover a certain region, rather than a whole map. As for the multi-layer case, there are more geometry freedoms and more weakly-related resonances, therefore, it may cover the required phase map. If involving more layers, the increasing geometry freedoms and resonances may lead to a coverage of a higher-dimension phase map, therefore achieving a multi-resonance or even broadband metasurface cloak. Besides, to design a multi-frequency metasurface cloak, one can also use the optimization method to get the geometry parameters for each set of required reflection phases. This optimization procedure is extensively used to design multi-frequency achromatic metasurface lens [47,48].

 figure: Fig. 3

Fig. 3 (a) Measured reflection phases when wave with different frequencies (fl = 7.8 GHz, fh = 12.3 GHz) are incident upon a unit cell in various sizes. Each blue hollow dot represents one size of H chip. If these blue dots are able to cover the entire 2π  area, it means that the proposed structure can manipulate lights at multiple frequencies perfectly. (b) The comparison between theoretical and simulation results for reflected phases of 20 evenly spaced discrete point, which is on behalf of the border line of our bump. Points on red line are the phase reflected by the ground without bump. Points on blue line are the closest points in (a) from the red line. (c) The corresponding a1, a2, and d for each unit cell of the triangle metasurface cloak. (d) The 3D scheme of simulation model constructed according to the sizes in (c). Here the bump is an isosceles triangle, whose waist length l is 100 mm and base angle α is 20 degree.

Download Full Size | PPT Slide | PDF

By utilizing the above metasurface, we can design a dual-frequency metasurface cloak. As an example, we design a triangle metasurface cloak with a tilt angle of 20° and a size of 100 mm by 5 mm. A full-wave simulations in the time-domain solver of the commercial software, CST Microwave Studio, is performed. According to the Eq. (1), we get the required reflection phases at fl = 7.8 GHz and fh = 12.3 GHz at each unit cell’s center, as shown in Fig. 3(b). By using the optimization procedure, we get the geometry parameters of each unit cell, which is highly matched with the theoretical ones for both targeted wavelengths. The detailed geometry parameters of each unit cell are shown in Fig. 3(c). With the geometry parameters of each unit cell, the whole dual-frequency metasurface cloak is designed, as shown in Fig. 3(d).

4. Result discussions

4.1 Normal incidence

To test the cloaking performance of the designed metasurface cloak, we perform the full-wave simulations of the whole cloak and compare it with the case without the cloak. The scattering is defined by

Hcloaked,scat=Hcloaked,tot-Hground,tot,Hbare,scat=Hbare,tot-Hground,tot,
where Hcloaked,tot,Hbare,tot, and Hground,tot are the total magnetic fields (all the incident waves are the same) for metasurface cloak, bare perfect electric conductor (PEC) bump and flat ground, respectively. When a TM polarized plane wave normally incident onto a bare PEC bump, the bump provides unwanted reflection phase. As shown in Figs. 4(a)-4(b), one can see that the total reflection phase becomes distorted and the scattering becomes significant, making the bump invisible at both 7.8 GHz and 12.3 GHz. However, after the metasurface cloak is applied, the near-field distribution of the reflected wave is restored to the original plane wave at these two frequencies. The scattering is significantly reduced [Figs. 4(c)-4(d)]. We therefore can hide a large object in the free space at dual frequencies simultaneously.

 figure: Fig. 4

Fig. 4 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave normally incident onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.

Download Full Size | PPT Slide | PDF

To quantitatively characterize the cloaking performance of the present cloak, we numerically calculate the normalized differential radar cross section (RCS) at 7.8 GHz and 12.3 GHz, and the total RCS in the bands around 7.8 GHz and 12.3 GHz, respectively. The differential RCS is defined by

σdiff=2πσ|Hscatter|2,
where σ=350 mm. We normalize the differential RCS by the maximum value of the bare bump case. The reduced total RCS is defined as
σreduced=σcloaked/σbare=Ω|Hcloaked,scat|2dΩ/Ω|Hbare,scat|2dΩ,
where we integrate the energy of the scattering field for the whole invisible angle. The calculated reduced total RCS, as a function of the frequency are shown in Figs. 5(a) and 5(c) for both frequencies, respectively. With the metasurface cloak, the total scattering dramatically decrease at around 7.8 GHz and 12.3 GHz. The 3 dB bandwidth of the metasurface cloak are about 21.6% around 7.8 GHz and 30.4% around 12.3 GHz. Figures. 5(b) and 5(d) show the normalized differential RCS at 7.8 GHz and 12.3 GHz for vertical incidence, respectively. One can clearly see that the metasurface cloak can significantly decrease the scatterings for almost all of the view angles.

 figure: Fig. 5

Fig. 5 Vertical incidence. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.

Download Full Size | PPT Slide | PDF

4.2 Oblique incidence

Though the metasurface cloak is designed for certain incidence angle, it can still work well when the incidence angle is slightly deviated from the target one, based on the equivalent theory [41,44]. As a demonstration, we change the incidence angle to 10°and keep other settings unchanged. Figure 6 shows the scattering magnetic field distribution on the xz plane with TM polarized wave obliquely incident onto a bare PEC bump and a cloaked bump, respectively. Figures 7(a) and 7(c) shows the calculated reduced total RCS as a function of the frequency for both frequencies, respectively. Figures 7(b) and 7(d) show the normalized differential RCS at 7.8 GHz and 12.3 GHz, respectively. Both the field distributions (Fig. 6) and the quantitative RCS (Fig. 7) shows a reduction of the scattering field for obliquely incident waves. Therefore, the multi-resonance cloaking performance of the present metasurface cloak can work well under the detection of phase-sensitive devices.

 figure: Fig. 6

Fig. 6 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave obliquely incident (with an incident angle of 10°) onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Oblique incidence with the incidence angle of 10°. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.

Download Full Size | PPT Slide | PDF

5. Conclusions

In summary, we propose a design of multi-layer metasurface carpet cloak to overcome the limitations of the conventional metasurface cloaks, i.e., working at a single frequency. Multi-resonance metasurfaces are proposed, which can fully control the reflection phases at multiple frequencies simultaneously. With the aid of these metasurfaces, we successfully verify hiding a large object at different frequencies utilizing a single metasurface cloak by numerical method. If involving with more resonances in the metasurfaces, the present method can work for more independent frequency bands. The proposed method will be very useful in future broadband macroscopic cloak design with low profiles, light weights, and easy access.

Funding

National Natural Science Foundation of China (NSFC) (61625502, 61574127, 61601408, 61775193, 61674128, 61731019, 11704332); Zhejiang Provincial Natural Science Foundation of China (ZJNSF) (LY17F010008); Top-Notch Young Talents Program of China; Fundamental Research Funds for the Central Universities; Innovation Joint Research Center for Cyber-Physical-Society System.

References and links

1. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef]   [PubMed]  

2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef]   [PubMed]  

3. S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015). [CrossRef]   [PubMed]  

4. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011). [CrossRef]   [PubMed]  

5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]  

6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef]   [PubMed]  

7. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013). [CrossRef]   [PubMed]  

8. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012). [CrossRef]   [PubMed]  

9. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010). [CrossRef]   [PubMed]  

10. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef]   [PubMed]  

11. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013). [CrossRef]   [PubMed]  

12. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012). [CrossRef]   [PubMed]  

13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef]   [PubMed]  

14. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]  

15. B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016). [CrossRef]  

16. F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013). [CrossRef]  

17. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef]   [PubMed]  

18. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009). [CrossRef]  

19. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012). [CrossRef]   [PubMed]  

20. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). [CrossRef]   [PubMed]  

21. D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006). [CrossRef]  

22. A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

23. G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017). [CrossRef]  

24. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef]   [PubMed]  

25. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef]   [PubMed]  

26. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]   [PubMed]  

27. J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015). [CrossRef]   [PubMed]  

28. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef]   [PubMed]  

29. B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010). [CrossRef]   [PubMed]  

30. S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009). [CrossRef]  

31. X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011). [CrossRef]  

32. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011). [CrossRef]   [PubMed]  

33. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016). [CrossRef]  

34. L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017). [CrossRef]  

35. X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. S. Chen, B. L. Zhang, J. D. Joannopoulos, and M. Soljaciˇcˇ, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. 201701830 (2017).

36. Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017). [CrossRef]  

37. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015). [CrossRef]   [PubMed]  

38. B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015). [CrossRef]  

39. N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014). [CrossRef]  

40. J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013). [CrossRef]  

41. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016). [CrossRef]   [PubMed]  

42. D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018). [CrossRef]  

43. L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015). [CrossRef]  

44. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016). [CrossRef]   [PubMed]  

45. B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017). [CrossRef]  

46. M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017). [CrossRef]   [PubMed]  

47. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015). [CrossRef]   [PubMed]  

48. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016). [CrossRef]   [PubMed]  

References

  • View by:

  1. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  3. S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
    [Crossref] [PubMed]
  4. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  7. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref] [PubMed]
  8. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
    [Crossref] [PubMed]
  9. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [Crossref] [PubMed]
  10. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  11. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
    [Crossref] [PubMed]
  12. D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
    [Crossref] [PubMed]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  14. W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  15. B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
    [Crossref]
  16. F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
    [Crossref]
  17. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [Crossref] [PubMed]
  18. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
    [Crossref]
  19. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [Crossref] [PubMed]
  20. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  21. D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
    [Crossref]
  22. A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).
  23. G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
    [Crossref]
  24. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [Crossref] [PubMed]
  25. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  26. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  27. J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
    [Crossref] [PubMed]
  28. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  29. B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
    [Crossref] [PubMed]
  30. S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
    [Crossref]
  31. X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
    [Crossref]
  32. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
    [Crossref] [PubMed]
  33. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  34. L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
    [Crossref]
  35. X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. S. Chen, B. L. Zhang, J. D. Joannopoulos, and M. Soljaciˇcˇ, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. 201701830 (2017).
  36. Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
    [Crossref]
  37. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  38. B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
    [Crossref]
  39. N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
    [Crossref]
  40. J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
    [Crossref]
  41. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
    [Crossref] [PubMed]
  42. D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
    [Crossref]
  43. L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
    [Crossref]
  44. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
    [Crossref] [PubMed]
  45. B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
    [Crossref]
  46. M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
    [Crossref] [PubMed]
  47. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  48. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]

2018 (1)

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

2017 (6)

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

2016 (5)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

2015 (6)

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

2014 (1)

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

2013 (4)

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

2012 (3)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

2011 (4)

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

2010 (3)

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

2009 (7)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

2008 (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

2007 (1)

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Alù, A.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Beruete, M.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Bilotti, F.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Chan, T.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

Chen, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chen, H. S.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Cui, T. J.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Deslandes, D.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Estakhri, N. M.

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

Fan, J. M.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Feng, Y. J.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Gao, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Gu, J.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Han, J.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Hao, R.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Hsu, L. Y.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Jiang, T.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Jiang, Y.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Jing, L.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Jing, L. Q.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Joannopoulos, J. D.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kante, B.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, K.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kong, J. A.

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Koschny, T.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Labate, G.

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Lepetit, T.

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Li, E.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Li, E. P.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Li, Y.

Liang, D.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, L.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Liu, Y. M.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Luo, Y.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Madni, H. A.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Matekovits, L.

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Maturi, R.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mohammadi Estakhri, N.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Mortensen, N. A.

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Orazbayev, B.

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Rajput, A.

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

Ramaccia, D.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shen, L.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Shen, N. H.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Shin, D.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Soljacic, M.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Srivastava, K. V.

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Sun, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Tobia, A.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Toscano, A.

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Urzhumov, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Wang, H.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Wang, H. P.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wang, Z. J.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Wei, M.

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, B. I.

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Wu, K.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Xiong, S.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Xu, H.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Xu, S.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, X. F.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, Z.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Yang, F.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Yang, Q.

Yang, Y.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Yang, Y. H.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yin, W.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Yin, W. Y.

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Yu, F.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, B.

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zhang, S.

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, “Homogeneous optical cloak constructed with uniform layered structures,” Opt. Express 19(9), 8625–8631 (2011).
[Crossref] [PubMed]

Zhang, W.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Zhang, W. R.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhang, X.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, X. M.

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Zhao, J. M.

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

Zhao, R.

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Zheludev, N. I.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zheng, B.

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zhong, L. M.

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (2)

D. Liang, J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

B. Orazbayev, N. Mohammadi Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhang, L. M. Zhong, W. R. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

X. F. Xu, Y. J. Feng, S. Xiong, J. M. Fan, J. M. Zhao, and T. Jiang, “Broad band invisibility cloak made of normal dielectric multilayer,” Appl. Phys. Lett. 99(15), 154104 (2011).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

A. Rajput and K. V. Srivastava, “Dual-Band Cloak Using Microstrip Patch With Embedded U-Shaped Slot,” IEEE Antennas Wirel. Propag. Lett. 16, 2848–2851 (2017).

N. M. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 13, 1775–1778 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

S. Xi, H. S. Chen, B. I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

D. Ramaccia, A. Tobia, A. Toscano, and F. Bilotti, “Antenna arrays emulate metamaterial-based carpet cloak over a wide angular and frequency bandwidth,” IEEE Trans. Antenn. Propag. 66(5), 2346–2353 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech. 54(6), 2516–2526 (2006).
[Crossref]

Laser Photonics Rev. (1)

L. Q. Jing, Z. J. Wang, R. Maturi, B. Zheng, H. P. Wang, Y. H. Yang, L. Shen, R. Hao, W. Y. Yin, E. P. Li, and H. S. Chen, “Gradient chiral metamirrors for spin-selective anomalous reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Light Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. M. Zhang, X. Liu, E. P. Li, and H. S. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref]

Nat. Commun. (4)

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

W. S. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

NPG Asia Mater. (1)

Y. H. Yang, L. Q. Jing, L. Shen, Z. J. Wang, B. Zheng, H. P. Wang, E. P. Li, N. H. Shen, T. Koschny, C. M. Soukoulis, and H. S. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

G. Labate, A. Alù, and L. Matekovits, “Surface-admittance equivalence principle for nonradiating and cloaking problems,” Phys. Rev. A 95(6), 063841 (2017).
[Crossref]

Phys. Rev. B (2)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009).
[Crossref]

B. Orazbayev, N. M. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B 91(19), 195444 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental Demonstration of a Free-Space Cylindrical Cloak without Superluminal Propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

B. Zhang, T. Chan, and B. I. Wu, “Lateral shift makes a ground-plane cloak detectable,” Phys. Rev. Lett. 104(23), 233903 (2010).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

F. Monticone and A. Alù, “Do cloaked objects really scatter less?” Phys. Rev. X 3(4), 041005 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Xu, H. Xu, H. Gao, Y. Jiang, F. Yu, J. D. Joannopoulos, M. Soljačić, H. Chen, H. Sun, and B. Zhang, “Broadband surface-wave transformation cloak,” Proc. Natl. Acad. Sci. U.S.A. 112(25), 7635–7638 (2015).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

L. Y. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Sci. Rep. (1)

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref] [PubMed]

Science (10)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, Y. Luo, and R. Zhao, “Transforming the optical landscape,” Science 348(6234), 521–524 (2015).
[Crossref] [PubMed]

Other (1)

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. S. Chen, B. L. Zhang, J. D. Joannopoulos, and M. Soljaciˇcˇ, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. 201701830 (2017).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Single-frequency metasurface cloak. The metasurfaces can only restore the reflected light at a single frequency. The red and green arrows represent light with different wavelengths, respectively. (b) Schematic view of multi-resonance metasurface cloak. The orange, green, and red arrows represent light with different wavelengths, respectively. (c) Working principle of the multi-resonance metasurface cloak. The metasurfaces involve multiple resonances and can manipulate lights with different wavelengths simultaneously. The red and green arrows represent lights with different wavelengths, respectively.
Fig. 2
Fig. 2 (a) Structure of the unit cell of the proposed metasurface. Each unit cell consists of two H-shaped metallic structures with respective size positioning on substrate with a permittivity of 3.5. The periods along x and y directions are s = 5 mm and h = 12 mm; the thickness of the substrate is 1.5 mm; the thickness of the copper layer is t2 = 0.5 mm and the width of the copper wire is w = 1 mm. Three of the parameters, i.e. H patch height a1, a2 and the distance between patch and margin of substrate d/2, are changed to accommodate the desired phase. (b) The phase of S11 for unit cell with the following parameters: a1 = 8 mm, a2 = 6.5 mm, and d = 1.5 mm. The three black dots with large slopes correspond to three resonances (f1 = 6.80 GHz, f2 = 8.75 GHz, and f3 = 15.2 GHz), respectively. (c) The Ex field distribution corresponds to the three resonant points in (b).
Fig. 3
Fig. 3 (a) Measured reflection phases when wave with different frequencies (fl = 7.8 GHz, fh = 12.3 GHz) are incident upon a unit cell in various sizes. Each blue hollow dot represents one size of H chip. If these blue dots are able to cover the entire 2 π  area, it means that the proposed structure can manipulate lights at multiple frequencies perfectly. (b) The comparison between theoretical and simulation results for reflected phases of 20 evenly spaced discrete point, which is on behalf of the border line of our bump. Points on red line are the phase reflected by the ground without bump. Points on blue line are the closest points in (a) from the red line. (c) The corresponding a1, a2, and d for each unit cell of the triangle metasurface cloak. (d) The 3D scheme of simulation model constructed according to the sizes in (c). Here the bump is an isosceles triangle, whose waist length l is 100 mm and base angle α is 20 degree.
Fig. 4
Fig. 4 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave normally incident onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.
Fig. 5
Fig. 5 Vertical incidence. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.
Fig. 6
Fig. 6 Scattering magnetic field (Hy) distribution on the xz plane with TM polarized wave obliquely incident (with an incident angle of 10°) onto (a) a bare PEC bump at 7.8 GHz. (b) a bare PEC bump at 12.3 GHz. (c) a cloaked bump at 7.8 GHz. (d) a cloaked bump at 12.3 GHz, respectively.
Fig. 7
Fig. 7 Oblique incidence with the incidence angle of 10°. (a) The reduced total scattering RCS of the cloaked bump around 7.8 GHz. (b) The normalized differential RCS of the cloaked bump and bared bump at 7.8 GHz, respectively. (c) The reduced total scattering RCS of the cloaked bump around 12.3 GHz. (d) The normalized differential RCS of the cloaked bump and bared bump at 12.3 GHz, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ 1 = π 4 π f 1 h cos θ / c at frequency of f 1 , Δ ϕ 2 = π 4 π f 2 h cos θ / c at frequency of f 2 , Δ ϕ 3 = π 4 π f 3 h cos θ / c at frequency of f 3 , ... Δ ϕ n = π 4 π f n h cos θ / c at frequency of f n ,
H c l o a k e d , s c a t = H c l o a k e d , t o t - H g r o u n d , t o t , H b a r e , s c a t = H b a r e , t o t - H g r o u n d , t o t ,
σ d i f f = 2 π σ | H s c a t t e r | 2 ,
σ r e d u c e d = σ c l o a k e d / σ b a r e = Ω | H c l o a k e d , s c a t | 2 d Ω / Ω | H b a r e , s c a t | 2 d Ω ,

Metrics