Abstract

We investigate the stimulated Brillouin scattering (SBS) effect in high-power thulium-doped fiber amplifier seeded with a narrow-linewidth fiber superfluorescent source or a conventional narrow-linewidth fiber laser. No random backward SBS pulses are observed when using a narrow-linewidth fiber superfluorescent source as the seed. The corresponding average power and peak power reach 153 W and 3.4 kW, respectively, only limited by the available pump power. This gives the average power and peak power extraction from the thulium-doped fiber amplifier with 17 fold enhancement, in comparison with the situation using the conventional narrow-linewidth fiber laser with similar central wavelength and spectral linewidth as the seed. This work indicates that using low coherent fiber superfluorescent sources is a good solution for power scaling in narrow-linewidth fiber amplifier system in order to overcome the limitation of SBS effect.

© 2017 Optical Society of America

1. Introduction

Rare-earth-doped fibers offer superior thermal handling capabilities compared to conventional crystal material, owing to their large surface-area-to-volume ratio and long device lengths [1–3]. Recently, the output power of the single-mode beam quality continuous-wave (CW) ytterbium-doped fiber master-oscillator power-amplifier (MOPA) has reached 10 kW level [4, 5], and the thulium-doped fiber MOPA with output power in excess of 1 kW as well [6]. To further scale up the output powers with good beam quality requires the combination of many of these fiber outputs. This can be achieved by either coherent [7–15] or spectral [16–22] beam combining of multiple fiber amplifiers. Either of these methods requires a narrow spectral linewidth from each fiber amplifier to maintain good beam quality and combination efficiency. Currently Stimulated Brillouin Scattering (SBS) effect limits the fiber amplifier power scaling for single-frequency or narrow-linewidth operation [23]. Various approaches such as imposing thermal and/or strain distributions [24, 25], design special active fiber [26–28], directly using multi-longitudinal-mode oscillator for high-power amplification [29], and employing phase modulation technique [30, 31] have been proposed to mitigate and suppress the SBS effect. Most notably, a single-frequency ytterbium-doped fiber amplifier with an SBS-limited output power of 811 W has been demonstrated using a large-mode-area (LMA) photonic crystal fiber (PCF) with gain and segmented acoustic tailoring [26]. An average output power of 3 kW with narrow-linewidth and near diffraction-limited beam quality has been presented by using ytterbium-doped LMA fiber with an extremely low numerical aperture (NA) to suppress SBS effect [28].

Due to the high temporal stability, short coherence length and good beam quality, superfluorescent sources, with the power level from several miliwatts to hundreds of miliwatts, are needed for a range of applications such as gas sensing, low coherence interferometry, medical imaging and so on. In particular, superfluorescent source has advantages on suppressing SBS due to its features of no longitudinal modes and equally distributed photons within the spectral range [32, 33]. More recently, superfluorescent sources based on various rare-earth-doped fibers including power scaling [34–38], temporal stability [36], spectral beam combining [39], and application potentials [36, 40] have been widely studied. It’s worth noting that Schmidt etc. demonstrated a SBS suppression of at least 17 dB comparing the narrow-linewidth fiber superfluorescent source and single-frequency laser in a passive single mode fiber [35].

In this contribution, we demonstrate the SBS suppression in high-power thulium-doped fiber amplifier seeded with a fiber superfluorescent source. The random backward SBS pulses generated in the thulium-doped fiber amplifier with a seed from a conventional narrow-linewidth fiber laser are the main factor preventing peak power scaling. However, when using a narrow-linewidth fiber superfluorescent source as the seed, no random backward SBS pulses have been observed in the thulium-doped fiber amplifier. The corresponding average power and peak power reach 153 W and 3.4 kW, respectively, only limited by the available pump power. The average power and peak power extraction from the thulium-doped fiber amplifier have been enhanced by more than 17 times in comparison with the case using the conventional narrow-linewidth fiber laser with similar central wavelength and spectral linewidth as the seed.

2. Experimental setup and results

The schematic setup of the high-power narrow-linewidth thulium-doped all-fiber amplifier system is shown in Fig. 1. It consists of a narrow-linewidth fiber seed source, two-stage cladding-pumped thulium-doped fiber preamplifiers and a cladding-pumped thulium-doped fiber power amplifier. For the seed source, either a narrow-linewidth CW fiber superfluorescent source or a narrow-linewidth CW fiber laser is used. The narrow-linewidth CW fiber superfluorescent source is achieved by selecting a small region out of a broadband thulium-doped fiber superfluorescence spectrum using a narrow-linewidth fiber Bragg grating (FBG) at a central wavelength of 1991.8 nm with 3 dB spectrum linewidth of 77 pm [36]. The narrow-linewidth CW fiber laser is based on a home-made thulium-doped fiber laser with central wavelength of 1991.8 nm and 3 dB spectral linewidth of 71 pm.

 figure: Fig. 1

Fig. 1 Schematic setup of the high-power narrow-linewidth thulium-doped all-fiber amplifier system, dashed line: narrow-linewidth CW thulium-doped fiber superfluorescent source or narrow-linewidth CW thulium-doped fiber laser; AWG: arbitrary waveform generator; AOM: acoustic-optic modulator; TDFA: double-clad thulium-doped fiber amplifier; MFA: mode field adaptor; TDF: double-clad thulium-doped fiber.

Download Full Size | PPT Slide | PDF

The narrow-linewidth fiber superfluorescent source or fiber laser is externally modulated by an acoustic-optic modulator (AOM), which receives the TTL modulated signal from an arbitrary waveform generator. The modulated nanosecond pulses after the AOM are amplified by a two-stage cladding-pumped thulium-doped fiber preamplifier. The two-stage thulium-doped fiber preamplifier also allows to control the input power seeded to the thulium-doped fiber power amplifier input. In this way, the thulium-doped fiber power amplifier input can be matched for both seed source ensuring equivalent input conditions for a proper comparison. Figure 2(a) shows the optical spectrum of narrow-linewidth nanosecond fiber superfluorescent source after the amplification of the two-stage cladding-pumped thulium-doped fiber preamplifier. The 3 dB spectral linewidth is measured to be 77 pm by the optical spectral analyzer with a resolution of 50 pm. This spectral linewidth is the same as the one from the CW fiber superfluorescent seed source. The 3 dB spectral linewidth of narrow-linewidth nanosecond fiber laser is 71 pm, as shown in Fig. 2(b). The narrow-linewidth fiber superfluorescent source or fiber laser is modulated by AOM into Gaussian pulses with a pulse duration of 45 ns (full width at half maximum, FWHM) at 1 MHz repetition rate. It results in a pulse peak power of 53 W (average power of 2.4 W), for the seed from both fiber sources before launching into the final thulium-doped fiber power amplifier.

 figure: Fig. 2

Fig. 2 Optical spectrum after two-stage cladding-pumped thulium-doped fiber preamplifier amplification. (a) nanosecond fiber superfluorescent source with a 3 dB spectral linewidth of 77 pm; (b) nanosecond fiber laser with a 3 dB spectral linewidth of 71 pm.

Download Full Size | PPT Slide | PDF

In the final cladding-pumped thulium-doped fiber power amplifier, a piece of 7 m LMA double-clad thulium-doped fiber (Nufern Inc., LMA-TDF-25P/400-HE) is used as the gain medium. The thulium-doped fiber has a core diameter of 25 μm, an inner cladding diameter of 400 μm, an NA of 0.09 for the core and an NA of 0.46 for the inner cladding. The cladding-absorption is 1.8 dB/m at 793 nm. The active fiber is put inside a water-cooled tube and cooled down to 15°C, in order to promote efficient two-for-one cross relaxation [41, 42]. The pump source of the fiber power amplifier consists of six temperature-stabilized 793nm multimode laser diode modules. The output of the diode modules are delivered into a multimode fiber with a core diameter of 200 µm, which matches to the pump fiber combiner. The total output power of these diode modules is 340 W. A (6 + 1) × 1 pump combiner (from ITF Labs) is used to deliver pump light into the double-clad thulium-doped fiber with a coupling efficiency of 98%. The output end of the thulium-doped fiber is spliced with a piece of passive fiber with a matched core diameter. The output facet has been cleaved with an angle of 8° to suppress parasitic lasing. A dichroic mirror is used to separate residual pump light from the signal. A three-port circulator (from Advance Fiber Resources Ltd.) is directly spliced between the second thulium-doped fiber preamplifier and the final cladding-pumped thulium-doped fiber power amplifier for in situ monitoring the backward SBS signal during high-power amplification process. In our experiment, the average power is measured with a thermal power meter (Gentec-EO, UP55G-500F-H12). The optical spectrum is recorded by an optical spectral analyzer (YOKOGAWA AQ6375) with a resolution of 50 pm. A 25 GHz real-time oscilloscope (Agilent, DSO-X92504A) and a 12.5 GHz InGaAs photodetector (EOT, ET-5000F) are used to measure time characteristics.

Firstly, the temporal characteristics of thulium-doped fiber power amplifier seeded with the fiber superfluorescent source have been investigated. Figures 3(a), 3(c) and 3(e) show the forward temporal signals of thulium-doped fiber power amplifier with the forward output power of 25 W, 100 W and 153 W respectively. The forward pulse intensity gradually increases with the 793 nm pump power, but the pulse duration remains at 45 ns, as shown in Figs. 3(a), 3(c) and 3(e). In the backward output, no backward SBS signal can be observed in the third port of three-port circulator even when the forward average power is raised from 25 W to 153 W, as shown in Figs. 3(b), 3(d) and 3(f). Note that in the experiment, the maximum forward average output power is 153 W, corresponding to the pulse energy of 153 μJ and the pulse peak power of 3.4 kW respectively, when the 793 nm pump power of is 340 W.

 figure: Fig. 3

Fig. 3 Forward and backward temporal signals of thulium-doped fiber power amplifier seeded with fiber superfluorescent source. (a, b) fiber power amplifier forward output power of 25 W; (c, d) fiber power amplifier forward output power of 100 W; (e, f) fiber power amplifier forward output power of 153 W.

Download Full Size | PPT Slide | PDF

Figure 4 shows the forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with the fiber superfluorescent source. The forward optical spectrum has a central wavelength of 1991.8 nm, nearly the same as the one of the fiber superfluorescent seed source. The 3 dB spectral linewidth is broadened slightly from 77 pm to 91 pm by self-phase modulation (SPM) at the average power of up to 153 W [33, 43], as shown in Fig. 4(a). The backward optical spectrum of thulium-doped fiber power amplifier is shown in Fig. 4(b), with a central wavelength of 1991.8 nm, arising from Rayleigh scattering signal or reflection of fiber output end. No Stokes shift has been observed as described in the references [31, 44]. However, due to the low sensitivity of photodetector, little Rayleigh scattering signal is observed in time domain.

 figure: Fig. 4

Fig. 4 Forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with fiber superfluorescent source. (a) forward output optical spectrum (b) backward output optical spectrum.

Download Full Size | PPT Slide | PDF

For comparison’s purpose, we present experimental results of thulium-doped fiber power amplifier seeded with the fiber laser. Figure 5 show the forward and backward temporal signals of thulium-doped fiber power amplifier. When the forward average power is 4.5 W, corresponding to the pulse peak power of ~100 W, no backward SBS signal is monitored in the third port of three-port circulator, as seen in Fig. 5(b). When the forward average power is raised to 6.8 W, corresponding to the pulse peak power of ~150 W, disorder giant pulses are seen from the third port of three-port circulator because of the random SBS effect [33, 45], as shown in Fig. 5(d). The pulse duration of the backward scattering giant pulses is measured to be ~22 ns, shorter than that of the forward pulses. When the forward average power is raised to 8.9 W, corresponding to the pulse peak power of up to ~198 W, a number of the Brillouin scattering pulses appears in Fig. 5(f). This derives from the SBS generator, the spontaneous scattering of the signal light from thermally excited acoustic waves, or in the low-temperature regime, from quantum noise associated with the fiber medium.

 figure: Fig. 5

Fig. 5 Forward and backward temporal signals of thulium-doped fiber power amplifier seeded with fiber laser. (a, b): when the forward output power of the fiber power amplifier is 4.5 W; (c, d): when the forward output power of the fiber power amplifier is 6.8 W; (e, f) when the forward output power of the fiber power amplifier is 8.9 W.

Download Full Size | PPT Slide | PDF

Figure 6 shows the forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with the fiber laser. The spectrum of the backward signal shows two peaks with similar power distribution, and the interval between the two peaks was measured to be 0.12 nm, corresponding to the interval of pump light and Stokes light at 1991.8 nm, as shown in Fig. 6(b, red line). The Stokes shift is similar to that was described in the reference [31]. When the average power is 11.9 W, corresponding to the laser peak power of up to ~264 W, the input signal of photodetector has exceeded the acceptable range. These random giant pulses with irregular amplitude and pulse duration probably cause the damage of isolator or pump diodes. The spectral traces of these destructive pulses are illustrated in Fig. 6(b, blue line). The prominent Stokes scattering peak covers the Rayleigh scattering peak completely and the spectrum of Stokes light shows the extremely instability.

 figure: Fig. 6

Fig. 6 Forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with fiber laser. (a) forward output optical spectrum; (b) backward output optical spectrum.

Download Full Size | PPT Slide | PDF

Figure 7 shows the relation between the 793 nm pump power and the output power of thulium-doped fiber power amplifier seeded either with a fiber superfluorescent source or with a conventional fiber laser. As one can see from Fig. 7(a) that in the case of the thulium-doped fiber amplifier system seeded with a narrow-linewidth fiber laser, the SBS is seen when the peak reaches 198 W. In the case of the thulium-doped fiber amplifier system seeded with a narrow-linewidth fiber superfluorescent source, even when the peak power reaches 3.4 kW in the piece of 6 m thulium-doped fiber, still no backward SBS is observed, indicating over 17 fold enhancement on suppressing the SBS than using the fiber laser as the seed. Figure 7(b) shows a comparison of the backward average power vs. forward pulse peak power of thulium-doped fiber amplifier seeded with the fiber superfluorescent source or the fiber laser. For the traditional fiber laser amplifier system, the backward average power increases quickly at the forward peak power of up to ~198 W when the backward giant pulses accumulate rapidly. However, for the fiber superfluorescent source amplification system, no significant changes during high-power amplification process.

 figure: Fig. 7

Fig. 7 The relation between the output power and the pump power of thulium-doped fiber power amplifier seeded with fiber superfluorescent source or fiber laser: (a) forward output peak power; (b) backward average output power.

Download Full Size | PPT Slide | PDF

Traditionally, the SBS threshold for a single frequency laser can be estimated approximately using the equation as below [46–48]:

Pthpeak21KAeffgBLln(G)

Where K is the polarization factor, Aeff is the effective mode area of the fiber, gB is the peak Brillouin gain coefficient, L is the fiber length, and G is the gain of the power amplifier, repectively. And the peak Brillouin gain coefficient gB can be calculated [49]:

gB=8π2γe2cnpλp2ρ0νAΓB

Where γe is the electrostrictive coupling coefficient of silica, c is the speed of light in vacuum, np is the refractive index of pump laser, λp is the laser signal wavelength, ρ0 is the material density of silica, vA is the speed of sound in silica, and ГB is the reverse of lifetime of acoustic phonon TB, respectively. The polarization factor K is equal to 2, indicating the complete polarization scrambling of the pump laser. The parameters used in the theoretical calculation are given in Table 1.

Tables Icon

Table 1. The Parameters Used in Estimation of SBS Threshold in Fiber Amplifier

Using the parameters in Table 1, the SBS threshold of the thulium-doped fiber power amplifier seeded with the narrow-linewidth nanosecond fiber laser is estimated to be 203 W, which is close to the peak power of ~198 W measured in our experiment. We think that the random backward SBS pulses are caused by irregular fluctuations of narrow-linewidth fiber laser in the frequency domain. Sometimes the narrow-linewidth multimode fiber laser randomly emits single or few mode signals. Its coherence will be substantially increased being within the Brillouin gain peak and then trigger the backward SBS pulse. In contrast, fiber superfluorescent source has the most distinguishing features of no longitudinal modes, low coherence, and equally distributed photons within the spectral range. In addition, the SBS effect requires that the interference between the backward Stokes wave and the forward pump wave, whereas the coherence of the fiber superfluorescent source only exists in the coherent photons derived from the stimulated emission of single photon in the amplification process. Due to the characteristics of the stimulated emission, it is determined that the coherent photons only exist in the specific cross section in the fiber, and there is no coherence in the fiber axial direction. Therefore, the pump wave and the Stokes wave are difficult to form a transient moving grating from standing wave, and there will be no backscattered Stokes wave. According to the traditional SBS formula [Eq. (1)] with a factor of (1 + δvpvB), the SBS threshold is calculated to be ~23.6 kW for fiber superfluorescent seed source with spectral linewidth δvp of 77 pm.

In addition, an experiment of observing SBS suppression in thulium-doped fiber amplifier seeded with fiber superfluorescent source at repetition rate of 500 kHz has been carried out, by reducing the repetition rate of AOM. In the case of using the narrow-linewidth fiber laser as the seed, the random backward SBS pulses are observed in the third port of three-port circulator when the average output power of thulium-doped fiber power amplifier reaches 4.5 W, corresponding to the laser peak power of ~200 W, close to the above observed laser peak power of 198 W at repetition rate of 1 MHz. Instead, when using the narrow-linewidth fiber superfluorescent source as the seed, no random backward SBS pulses are observed even when the average power and peak power of thulium-doped fiber power amplifier reach 80 W and 3.6 kW, respectively. The average power and peak power extraction from the thulium-doped fiber power amplifier have been enhanced by more than 18 times in comparison with the case using the narrow-linewidth fiber laser as the seed. However, the 3 dB spectral linewidth of thulium-doped fiber superfluorescent source under this peak power value is broadened from 77 pm to 100 pm, due to the SPM effect. Since the SBS threshold strongly depends on the linewidth of the pulsed pump, this results into a dramatical enhancement of the SBS threshold. Further increase of the average output power of the thulium-doped fiber power amplifier will not make the experiment comparable with the results using narrow-linewidth fiber laser. To confirm higher SBS suppression ratio than the above factor, a further careful design on the experiment is ongoing.

3. Conclusion

We have investigated the SBS effect in high-power thulium-doped fiber amplifier seeded with a narrow-linewidth fiber superfluorescent source or a conventional narrow-linewidth fiber laser. The thulium-doped fiber amplifier using a conventional narrow-linewidth fiber laser as the seed shows that random backward SBS pulses are the major limitation for peak power scaling. Instead, when using a narrow-linewidth fiber superfluorescent source as the seed, no random backward SBS pulses are observed even when the peak output power reaches 3.4 kW, only limited by the available pump power. Our experiments have proven that fiber amplifier system seeded with narrow-linewidth fiber superfluorescent source is a good solution power scaling, due to low coherence of the seed.

Funding

National Natural Science Foundation of China (Nos. 61505004, 61527822, and 61235010), the China Postdoctoral Science Foundation (No. 2016T90019), and the Scientific Research General Program of Beijing Municipal Commission of Education (No. KM201610005028).

Acknowledgments

The authors thank Congwen Zha from the Institute of Physics (IOP), the Chinese Academy of Science (CAS), for discussions.

References and Links

1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004). [CrossRef]   [PubMed]  

2. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007). [CrossRef]  

3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]  

4. G. Overton, “IPG Photonics offers world’s first 10 kW single-mode production laser,” http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html, Laser Focus World (Published 06/17/2009), 12/09/2015.

5. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10 kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (2009), paper CThA3. [CrossRef]  

6. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009). [CrossRef]  

7. B. He, Q. Lou, J. Zhou, J. Dong, Y. Wei, D. Xue, Y. Qi, Z. Su, L. Li, and F. Zhang, “High power coherent beam combination from two fiber lasers,” Opt. Express 14(7), 2721–2726 (2006). [CrossRef]   [PubMed]  

8. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009). [CrossRef]   [PubMed]  

9. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009). [CrossRef]  

10. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011). [CrossRef]   [PubMed]  

11. Y. Yang, M. Hu, B. He, J. Zhou, H. Liu, S. Dai, Y. Wei, and Q. Lou, “Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source,” Opt. Lett. 38(6), 854–856 (2013). [CrossRef]   [PubMed]  

12. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013). [CrossRef]   [PubMed]  

13. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016). [CrossRef]   [PubMed]  

14. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016). [CrossRef]   [PubMed]  

15. Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect,” J. Opt. Soc. Am. B 34(3), A7–A14 (2017). [CrossRef]  

16. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, “Wavelength beam combining of ytterbium fiber lasers,” Opt. Lett. 28(5), 331–333 (2003). [CrossRef]   [PubMed]  

17. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005). [CrossRef]  

18. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007). [CrossRef]   [PubMed]  

19. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007). [CrossRef]  

20. O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009). [CrossRef]   [PubMed]  

21. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009). [CrossRef]   [PubMed]  

22. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011). [CrossRef]   [PubMed]  

23. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013). [CrossRef]  

24. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001). [CrossRef]  

25. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013). [CrossRef]   [PubMed]  

26. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014). [CrossRef]   [PubMed]  

27. B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015). [CrossRef]   [PubMed]  

28. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016). [CrossRef]   [PubMed]  

29. Z. Huang, X. Liang, C. Li, H. Lin, Q. Li, J. Wang, and F. Jing, “Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators,” Appl. Opt. 55(2), 297–302 (2016). [CrossRef]   [PubMed]  

30. Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015). [CrossRef]   [PubMed]  

31. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016). [CrossRef]   [PubMed]  

32. D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011). [CrossRef]  

33. M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014). [CrossRef]  

34. P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007). [CrossRef]  

35. O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011). [CrossRef]   [PubMed]  

36. J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014). [CrossRef]  

37. J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015). [CrossRef]   [PubMed]  

38. P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016). [CrossRef]   [PubMed]  

39. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016). [CrossRef]   [PubMed]  

40. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016). [CrossRef]   [PubMed]  

41. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013). [CrossRef]   [PubMed]  

42. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014). [CrossRef]   [PubMed]  

43. X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016). [CrossRef]  

44. M. Asano, Y. Takeuchi, S. K. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24(11), 12082–12092 (2016). [CrossRef]   [PubMed]  

45. C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007). [CrossRef]  

46. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008). [CrossRef]   [PubMed]  

47. W. Shi, E. B. Petersen, M. Leigh, J. Zong, Z. Yao, A. Chavez-Pirson, and N. Peyghambarian, “High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band,” Opt. Express 17(10), 8237–8245 (2009). [CrossRef]   [PubMed]  

48. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013). [CrossRef]   [PubMed]  

49. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

References

  • View by:

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  2. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  4. G. Overton, “IPG Photonics offers world’s first 10 kW single-mode production laser,” http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html , Laser Focus World (Published 06/17/2009), 12/09/2015.
  5. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10 kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (2009), paper CThA3.
    [Crossref]
  6. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  7. B. He, Q. Lou, J. Zhou, J. Dong, Y. Wei, D. Xue, Y. Qi, Z. Su, L. Li, and F. Zhang, “High power coherent beam combination from two fiber lasers,” Opt. Express 14(7), 2721–2726 (2006).
    [Crossref] [PubMed]
  8. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
    [Crossref] [PubMed]
  9. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
    [Crossref]
  10. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
    [Crossref] [PubMed]
  11. Y. Yang, M. Hu, B. He, J. Zhou, H. Liu, S. Dai, Y. Wei, and Q. Lou, “Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source,” Opt. Lett. 38(6), 854–856 (2013).
    [Crossref] [PubMed]
  12. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
    [Crossref] [PubMed]
  13. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
    [Crossref] [PubMed]
  14. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
    [Crossref] [PubMed]
  15. Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect,” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
    [Crossref]
  16. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, “Wavelength beam combining of ytterbium fiber lasers,” Opt. Lett. 28(5), 331–333 (2003).
    [Crossref] [PubMed]
  17. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
    [Crossref]
  18. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
    [Crossref] [PubMed]
  19. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
    [Crossref]
  20. O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
    [Crossref] [PubMed]
  21. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
    [Crossref] [PubMed]
  22. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
    [Crossref] [PubMed]
  23. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  24. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [Crossref]
  25. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
    [Crossref] [PubMed]
  26. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  27. B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015).
    [Crossref] [PubMed]
  28. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
    [Crossref] [PubMed]
  29. Z. Huang, X. Liang, C. Li, H. Lin, Q. Li, J. Wang, and F. Jing, “Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators,” Appl. Opt. 55(2), 297–302 (2016).
    [Crossref] [PubMed]
  30. Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
    [Crossref] [PubMed]
  31. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016).
    [Crossref] [PubMed]
  32. D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
    [Crossref]
  33. M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
    [Crossref]
  34. P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
    [Crossref]
  35. O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
    [Crossref] [PubMed]
  36. J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014).
    [Crossref]
  37. J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
    [Crossref] [PubMed]
  38. P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
    [Crossref] [PubMed]
  39. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
    [Crossref] [PubMed]
  40. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
    [Crossref] [PubMed]
  41. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  42. J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
    [Crossref] [PubMed]
  43. X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
    [Crossref]
  44. M. Asano, Y. Takeuchi, S. K. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24(11), 12082–12092 (2016).
    [Crossref] [PubMed]
  45. C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
    [Crossref]
  46. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  47. W. Shi, E. B. Petersen, M. Leigh, J. Zong, Z. Yao, A. Chavez-Pirson, and N. Peyghambarian, “High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band,” Opt. Express 17(10), 8237–8245 (2009).
    [Crossref] [PubMed]
  48. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
    [Crossref] [PubMed]
  49. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2017 (1)

2016 (10)

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

Z. Huang, X. Liang, C. Li, H. Lin, Q. Li, J. Wang, and F. Jing, “Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators,” Appl. Opt. 55(2), 297–302 (2016).
[Crossref] [PubMed]

N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016).
[Crossref] [PubMed]

P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
[Crossref]

M. Asano, Y. Takeuchi, S. K. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24(11), 12082–12092 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref] [PubMed]

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014).
[Crossref]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

2013 (6)

2011 (4)

2010 (1)

2009 (6)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

W. Shi, E. B. Petersen, M. Leigh, J. Zong, Z. Yao, A. Chavez-Pirson, and N. Peyghambarian, “High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band,” Opt. Express 17(10), 8237–8245 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (5)

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

2006 (1)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

Aggarwal, R. L.

Anderson, B. M.

Andrekson, P. A.

Asano, M.

Augst, S. J.

Barty, C. P. J.

Beach, R. J.

Beier, F.

Breitkopf, S.

Brückner, F.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Chavez-Pirson, A.

Chen, J.

Chen, X.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
[Crossref]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

Clausnitzer, T.

Cui, S.

Dai, S.

Dajani, I.

Dawson, J. W.

Dong, J.

Dong, L.

Dross, F.

Eberhardt, R.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Ehrenreich, T.

Eidam, T.

Fan, T. Y.

Feng, Y.

Flores, A.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Goldizen, K. C.

Gong, M.

X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
[Crossref]

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Gottschall, T.

Gowin, M.

Goyal, A. K.

Guo, S.

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

Haarlammert, N.

Hädrich, S.

Hansryd, J.

Hao, H.

Hawkins, T. W.

He, B.

Heebner, J. E.

Hein, S.

Hoffman, P. R.

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Holten, R.

Honea, E.

Honea, E. C.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Hou, Y.

Hu, M.

Huang, L.

P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
[Crossref] [PubMed]

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Huang, Z.

Hupel, C.

Ihring, J.

Ikuta, R.

Imoto, N.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jeong, Y.

Jiang, Z.

Jing, F.

Jung, M.

Kienel, M.

Klenke, A.

Kliner, A.

Klingebiel, S.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Knudsen, S. N.

Kong, F.

Kuhn, S.

Leigh, M.

Leng, J.

Li, C.

Li, D.

Li, L.

Li, Q.

Liang, X.

Limpert, J.

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
[Crossref]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Lin, H.

Liu, A.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

Liu, C.

Liu, G.

Liu, H.

Liu, J.

Liu, K.

Liu, Q.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Liu, W.

Liu, Z.

Loftus, T. H.

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Lou, Q.

Ludewigt, K.

Lv, H.

Ma, H.

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

Ma, P.

Ma, Y.

Melo, M.

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Messerly, M. J.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Müller, M.

Murphy, D. V.

Naderi, N. A.

Nilsson, J.

Nodop, D.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
[Crossref]

Nold, J.

Norsen, M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

Ozdemir, S. K.

Pax, P. H.

Payne, D.

Peschel, T.

Petersen, E. B.

Peyghambarian, N.

Plötner, M.

Pulford, B.

Qi, Y.

Ran, Y.

Redmond, S. M.

Rekas, M.

Rhein, S.

Richardson, D. J.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Robin, C.

Roser, F.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Rothhardt, J.

Royse, R.

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

Sahu, J.

Sahu, J. K.

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sanchez, A.

Sattler, B.

Schimpf, D.

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
[Crossref]

Schmidt, O.

Schreiber, T.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Shen, X.

Shestaev, E.

Shi, H.

Shi, W.

Shverdin, M. Y.

Si, L.

Siders, C. W.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sousa, J. M.

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Sridharan, A. K.

Stappaerts, E. A.

Strecker, M.

Su, R.

Su, Z.

Takeuchi, Y.

Tan, F.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014).
[Crossref]

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

Tao, R.

ten Have, E.

Thomas, A. M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

Tiinnermann, A.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Tsybin, I.

Tünnermann, A.

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
[Crossref]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, J.

Wang, P.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014).
[Crossref]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

Wang, X.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect,” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
[Crossref] [PubMed]

Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[Crossref] [PubMed]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

Wei, Y.

Westlund, M.

Wirth, C.

Xiao, H.

Xu, J.

Xu, X.

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

Xue, D.

Yamamoto, T.

Yan, P.

X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
[Crossref]

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Yang, L.

Yang, Y.

Yao, Z.

Ye, C.

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Yu, C. X.

Zhang, F.

Zhang, H.

Zhang, L.

Zhao, C.

Zhao, X.

Zheng, Y.

Zhou, J.

Zhou, P.

Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, and P. Zhou, “High-power coherent beam polarization combination of fiber lasers: progress and prospect,” J. Opt. Soc. Am. B 34(3), A7–A14 (2017).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
[Crossref] [PubMed]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref] [PubMed]

Y. Ran, R. Tao, P. Ma, X. Wang, R. Su, P. Zhou, and L. Si, “560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality,” Appl. Opt. 54(24), 7258–7263 (2015).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[Crossref] [PubMed]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

Zong, J.

Appl. Opt. (2)

Appl. Phys. B (1)

D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102(4), 737–741 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (7)

P. Wang, J. K. Sahu, and W. A. Clarkson, “Power scaling of ytterbium-doped fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 13(3), 580–587 (2007).
[Crossref]

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 497–502 (2014).
[Crossref]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tiinnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, “Coherent beam combination of fiber amplifiers using stochastic parallel gradient descent algorithm and its application,” IEEE J. Sel. Top. Quantum Electron. 15(2), 248–256 (2009).
[Crossref]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11(3), 567–577 (2005).
[Crossref]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, “Stimulated Brillouin scattering phenomena in a nanosecond linearly polarized Yb-doped double-clad fiber amplifier,” Laser Phys. Lett. 4(5), 376–381 (2007).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fiber lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (15)

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21(5), 5456–5462 (2013).
[Crossref] [PubMed]

O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
[Crossref] [PubMed]

B. He, Q. Lou, J. Zhou, J. Dong, Y. Wei, D. Xue, Y. Qi, Z. Su, L. Li, and F. Zhang, “High power coherent beam combination from two fiber lasers,” Opt. Express 14(7), 2721–2726 (2006).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

W. Shi, E. B. Petersen, M. Leigh, J. Zong, Z. Yao, A. Chavez-Pirson, and N. Peyghambarian, “High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band,” Opt. Express 17(10), 8237–8245 (2009).
[Crossref] [PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[Crossref] [PubMed]

P. Ma, L. Huang, X. Wang, P. Zhou, and Z. Liu, “High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality,” Opt. Express 24(2), 1082–1088 (2016).
[Crossref] [PubMed]

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, “10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation,” Opt. Express 24(11), 12063–12071 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

J. Liu, H. Shi, K. Liu, Y. Hou, and P. Wang, “210 W single-frequency, single-polarization, thulium-doped all-fiber MOPA,” Opt. Express 22(11), 13572–13578 (2014).
[Crossref] [PubMed]

X. Shen, H. Zhang, H. Hao, D. Li, P. Yan, and M. Gong, “Self-phase modulation of nanosecond pulses in fiber amplifiers with gain saturation,” Opt. Express 24(5), 4382–4390 (2016).
[Crossref]

M. Asano, Y. Takeuchi, S. K. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24(11), 12082–12092 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
[Crossref] [PubMed]

Opt. Lett. (15)

J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
[Crossref] [PubMed]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34(19), 2939–2941 (2009).
[Crossref] [PubMed]

S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, “Wavelength beam combining of ytterbium fiber lasers,” Opt. Lett. 28(5), 331–333 (2003).
[Crossref] [PubMed]

O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009).
[Crossref] [PubMed]

T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007).
[Crossref] [PubMed]

C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, “Coherent combining of a 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36(14), 2686–2688 (2011).
[Crossref] [PubMed]

Y. Yang, M. Hu, B. He, J. Zhou, H. Liu, S. Dai, Y. Wei, and Q. Lou, “Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source,” Opt. Lett. 38(6), 854–856 (2013).
[Crossref] [PubMed]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1 kW 1 mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41(15), 3439–3442 (2016).
[Crossref] [PubMed]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref] [PubMed]

N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, “Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition,” Opt. Lett. 41(17), 3964–3967 (2016).
[Crossref] [PubMed]

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
[Crossref] [PubMed]

B. Pulford, T. Ehrenreich, R. Holten, F. Kong, T. W. Hawkins, L. Dong, and I. Dajani, “400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier,” Opt. Lett. 40(10), 2297–2300 (2015).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Other (3)

G. Overton, “IPG Photonics offers world’s first 10 kW single-mode production laser,” http://www.laserfocusworld.com/articles/2009/06/ipg-photonics-offers-worlds-first-10-kw-single-mode-production-laser.html , Laser Focus World (Published 06/17/2009), 12/09/2015.

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10 kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (2009), paper CThA3.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic setup of the high-power narrow-linewidth thulium-doped all-fiber amplifier system, dashed line: narrow-linewidth CW thulium-doped fiber superfluorescent source or narrow-linewidth CW thulium-doped fiber laser; AWG: arbitrary waveform generator; AOM: acoustic-optic modulator; TDFA: double-clad thulium-doped fiber amplifier; MFA: mode field adaptor; TDF: double-clad thulium-doped fiber.
Fig. 2
Fig. 2 Optical spectrum after two-stage cladding-pumped thulium-doped fiber preamplifier amplification. (a) nanosecond fiber superfluorescent source with a 3 dB spectral linewidth of 77 pm; (b) nanosecond fiber laser with a 3 dB spectral linewidth of 71 pm.
Fig. 3
Fig. 3 Forward and backward temporal signals of thulium-doped fiber power amplifier seeded with fiber superfluorescent source. (a, b) fiber power amplifier forward output power of 25 W; (c, d) fiber power amplifier forward output power of 100 W; (e, f) fiber power amplifier forward output power of 153 W.
Fig. 4
Fig. 4 Forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with fiber superfluorescent source. (a) forward output optical spectrum (b) backward output optical spectrum.
Fig. 5
Fig. 5 Forward and backward temporal signals of thulium-doped fiber power amplifier seeded with fiber laser. (a, b): when the forward output power of the fiber power amplifier is 4.5 W; (c, d): when the forward output power of the fiber power amplifier is 6.8 W; (e, f) when the forward output power of the fiber power amplifier is 8.9 W.
Fig. 6
Fig. 6 Forward and backward optical spectrum of thulium-doped fiber power amplifier seeded with fiber laser. (a) forward output optical spectrum; (b) backward output optical spectrum.
Fig. 7
Fig. 7 The relation between the output power and the pump power of thulium-doped fiber power amplifier seeded with fiber superfluorescent source or fiber laser: (a) forward output peak power; (b) backward average output power.

Tables (1)

Tables Icon

Table 1 The Parameters Used in Estimation of SBS Threshold in Fiber Amplifier

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P thpeak 21K A eff g B L ln(G)
g B = 8 π 2 γ e 2 c n p λ p 2 ρ 0 ν A Γ B

Metrics