Abstract

We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

© 2017 Optical Society of America

1. Introduction

The first on-chip photonic components were developed in the mid-1980s, and the subsequent three decades have demonstrated exponential growth in the data capacity per die [1] due to the miniaturization enabled by integrated photonic devices. Photonic integrated circuits are now playing a role in advanced technologies with applications ranging from atmospheric spectroscopy [2] and medical diagnostics [3–7] to telecommunications [8, 9], data centers, [10, 11] and supercomputers [12, 13]. Each of these integrated photonic application spaces opens new possibilites for science and technology.

The chip-scale photonic devices enabling this innovation are manufactured using lithographic techniques developed by the semiconductor industry, and it is the precision, accuracy, and reliability of these fabrication techniques that has enabled the rapid adoption of integrated photonics for myriad applications. However, the broad range of integrated photonic technologies and application spaces makes it more difficult to create a technology roadmap [14] and a foundry process [15–17] with broad applicability than it has been for electronics.

Nevertheless, many efforts currently exist which serve a variety of integrated photonics applications including silicon photonics [14, 15, 17] and InP photonics [16]. Yet for nonlinear and quantum optics, other dielectric material platforms are more desirable [18]. For nonlinear optics in the visible and near-infrared, Si is not a desirable waveguiding medium due to high one- and two-photon absorption [19]. For nonlinear optics in the mid-IR, the absorption of a standard buried SiO2 layer is problematic [20]. For superconducting optoelectronic networks [21] and quantum-optical applications, high detection efficiency is required, and superconducting detectors are a very desirable option [22]. Such detectors are not likely to be incorporated into a foundry process in the near term.

In the present work, we show how a variety of alternative application spaces can be served with a simple, low-cost approach to fabrication of integrated photonic devices and systems as well as a simple back-end-of-line (BEOL) approach to fiber packaging. We introduce a modular fabrication process, employing layers of dielectrics, superconductors, metals, and polymers deposited at near-ambient temperatures (< 65 °C). The dielectrics are deposited using plasma-enhanced chemical vapor deposition (PECVD), and the superconductors are deposited with sputtering. Such deposition techniques are compatible with BEOL processing, so these process modules and photonic devices can be straightforwardly integrated with fully processed wafers from other foundries. For BEOL integration with CMOS electronics, deposition temperatures of less than 400 °C can meet many process requirements, and several photonic devices have been demonstrated in such a process [23]. Room temperature deposited materials [24] are even more broadly compatible. With this fabrication process, we have demonstrated low-loss passive SiN waveguides and resonators, critically coupled rings, and Mach-Zehnder interferometers (MZIs), dispersion-engineered waveguides and waveguide-device-integrated WSi superconducting-nanowire single-photon detectors (SNSPDs).

2. Fabrication and passive devices

While most Si photonics foundry processes to date utilize crystalline Si as a waveguiding layer, deposited amorphous materials offer several advantages such as low-propagation-loss amorphous silicon (a-Si) [25, 26] as well as SiN waveguides [24, 27], a wide variety of indices of refraction, lower loss and crosstalk in waveguide crossings [27], and 3D layering [27–30]. A schematic of the layers used in this process is shown in Fig. 1. The process begins with a handle Si wafer on which 3 μm of thermal SiO2 is grown as a bottom cladding layer. Thermal SiO2 could easily be replaced by PECVD SiO2 deposited at 65 °C for compatibility with BEOL processing. Alternatively, the fabrication process could commence with a handle wafer other than oxidized Si such as sapphire, quartz, diamond, or III–V materials. Next, the SiN waveguiding layer is deposited using plasma-enhanced chemical vapor deposition [24] using N2 and SiH4 as precursors (27 and 30 sccm respectively). The plasma is struck at 30 W and cut to 0 W after 10 s. The chamber pressure is 10 mTorr, and the inductively-coupled power is 1000 W. The wafer temperature has been monitored and does not exceed 65 °C. The resulting SiN film has low stress due to high hydrogen content, so films as thick as 900 nm have been deposited with no cracking or delamination. Even with the excess hydrogen, low propagation losses are observed, as will be discussed shortly. The index was measured to be 1.96 at 1550 nm, indicating a slightly silicon rich material.

 figure: Fig. 1

Fig. 1 A schematic of the layers used in this fabrication process. The inset shows the index of refraction of the SiN waveguide layer as measured with spectroscopic ellipsometry.

Download Full Size | PPT Slide | PDF

Following the SiN deposition, and without breaking the vacuum of the PECVD chamber, a thin spacer SiO2 layer is deposited as an etch stop for the WSi SNSPD etch. The wafer is removed from the PECVD chamber and transferred to a sputtering chamber where 3.5 nm WSi is deposited followed by a 2 nm amorphous Si layer [22]. Both of these sputtering steps are performed at ambient temperature. Alignment marks are etched in the stack. The SNSPD layer is next patterned using using 365 nm i-line stepper photolithography to achieve wires as narrow as 250 nm. The SNSPDs are etched using 40 sccm Ar and 1 sccm SF6 to minimize sidewall residue. The photoresist is stripped, and the waveguide layer is patterned, again using the i-line stepper. The SiN waveguides and all photonic devices (rings, beam splitters, grating couplers) are etched using CF4 chemistry.

After patterning of the SNSPDs and waveguides, Au pads with a Ti adhesion layer are deposited to make contacts to the SNSPDs. Subsequently, the entire wafer is clad with 2 μm of PECVD SiO2 deposited with the same tool as was used for the SiN waveguiding layer. Following the cladding deposition, vias are etched through this cladding to allow access to the Au pads for wire bonding. The final layers are SU-8 polymer layers used for packaging and will be discussed in more detail in Sec. 3. Fig. 1 shows the full layer stackup.

To illustrate the utility of this process, we demonstrate several photonic devices. Figures 2(a) and (b) show microscope images of a SiN grating and the spectral response of a single ring coupled to a waveguide between two gratings. The insertion loss due to the gratings is 6.8 dB/coupler, in close agreement with the finite-difference time-domain simulated value of 6.68 dB/coupler. The 3 dB bandwidth of these couplers is 90 nm, and the 3 dB angular tolerance is 3°. The low index contrast of the SiN/SiO2 grating results in a structure which is insensitive to position in the longitudinal direction. In the transverse direction, the alignment tolerance is dominated by the Gaussian mode profile of the fiber mode, and it drops to 1/e2 (13.5%) of maximum value with a distance corresponding to the mode field diameter of 10.4 μm. This gives a lateral 3 dB alignment tolerance of 6.1 μm. The spectrum in Fig. 2(b) was taken after the fibers were fixed in place as described in Sec. 3. While the lower index contrast of SiN limits grating efficiency, the insertion loss can be significantly improved with a thicker SiN layer [31], a backside mirror [32], a second deposited layer [33], or an additional (partial) etch step [34]. With a backside mirror (which could be integrated easily in this process), insertion loss of 2.6 dB has been demonstrated [32], and insertion loss of < 2 dB has been simulated [31] in a SiN single-etch process similar to this work. The addition of more and higher index layers, such as a-Si, could also improve grating coupler insertion loss. State-of-the-art Si grating couplers have achieved insertion losses of less than 1 dB [35, 36], while grating couplers in a two-layer CMOS process with ∼ 0.2 dB coupling loss have recently been designed [37]. All of these approaches are compatible with the deposited photonics process and packaging approach presented here.

 figure: Fig. 2

Fig. 2 (a) Microscope image of a fabricated grating. The period is 1.4 μm, and the duty cycle is 60 %. (b) Spectral response of a single ring with outer radius of 60 μm, width of 1.5 μm coupled to a waveguide between two gratings. The coupling bus has a width of 1.5 μm, and the ring-bus gap is 610 nm. (c) Spectrum of four rings achieving close to critical coupling with outer radii of 120 μm. (d) A single ring with small ring-bus gap for critical coupling. (e) Microscope image of a ring-bus coupler. (f) Fitted resonance for weakly coupled ring resonator. (g) Spectrum of the unbalanced MZI. (h) Optical microscope image of the MZI. (c) and (g) are normalized to the peak of the grating response.

Download Full Size | PPT Slide | PDF

Next we investigated critically coupled ring resonators. In Fig. 2(c) we show the transmission spectrum of four rings coupled to a single bus. One such ring is shown in Fig. 2(d). Each of the four rings has a different gap ranging from 360 nm to 500 nm on the mask, corresponding to 610 nm to 750 nm after fabrication. The optimally coupled device achieved > 25 dB extinction across several FSRs. To assess parasitic losses in the critically coupled rings, the most critically coupled resonance from each FSR of the spectrum in Fig. 2(c) was fit to a Lorentzian to obtain a Q factor. The mean Q of these resonances was 43,250 (corresponding to an intrinsic Q of 86,500), and the standard deviation was 2,630.

In addition to critically coupled ring resonators, we have investigated weakly coupled, high-Q rings. Figure 2(e) shows a microscope image of a ring-bus coupler, and Fig. 2(f) shows a fit to a weakly coupled resonance with Q-factor of 125,000, corresponding to 2.5 dB/cm propagation loss. The five resonances of this ring closest to 1570 nm were fit to obtain Qs. The mean Q of the data set was 110,000 (corresponding to 2.8 dB/cm), and the standard deviation was 8,900. Sidewall roughness due to patterning with i-line lithography is likely the leading contribution to linear propagation losses, as lower losses have been observed in waveguides of similar material when patterned with electron beam lithography (0.8 dB/cm) [24] as well as within this process when resist reflow was employed (1.8 dB/cm), as discussed in Sec. 4. This is comparable to PECVD nitride deposited at 400°C [23], but significantly higher than high temperature deposited LPCVD SiN, where losses of less than 0.1 dB/cm have been observed [30, 38–40]. Silicon waveguides typically exhibit propagation losses near 3 dB/cm [41]. Finally, in Fig. 2(g) we show the spectrum of an unbalanced MZI [Fig. 2(h)] demonstrating > 25 dB extinction between all ports across > 40 nm of spectral bandwidth. This extinction demonstrates that the adiabatic beam splitters created in our process are nearly ideal with no more than 1.5% deviation from 50/50 splitting. If scattered light, noise from the laser source, or unbalanced losses are affecting the visibility, then the beam splitters are even closer to 50/50.

The thermal tuning of passive integrated-photonic devices is often advantageous. A process layer for heaters can be straightforwardly inserted either with evaporated metals or PECVD-deposited and doped a-Si. The a-Si option is particularly attractive due to the decreased electromigration relative to metals, and addition of a-Si to the process is also likely to lead to detectors for high-peak-power pulses used for nonlinear optics.

3. Fiber packaging

Due to the absence of an integrated silicon light source, coupling external light on chip via a robust packaging technique has been an important technological goal for the integrated photonics community. Fiber packaging for operation at cryogenic temperatures is particularly challenging, and many researchers avoid packaging altogether by using fiber positioning stages in the cryostat [42–45]. Alternatively, a high-numerical-aperture objective can be used to couple to waveguides through a window in the cryostat [46]. Such systems typically achieve insertion losses > 7 dB, although lower insertion losses have been reported [45]. Cryogenic coupling with tapered optical fibers has been achieved with losses below 1 dB [47]. However, coupling with positioning stages requires frequent realignment and high-precision stages inside the cryostat where space is constrained.

The fiber packaging approach presented here is achieved with two processing steps which construct fiber support structures above the grating couplers. These fiber collars comprise two layers of SU-8 epoxy-based photoresist which is permanent upon UV exposure and curing. First, a 20 μm pedestal layer is fabricated with SU-8 3020 photoresist. This layer serves to hold an optical fiber at the designed angle relative to the grating (15° in this work). The second SU-8 3050 layer is referred to as the collar, and it is 50 μm thick. The collar serves to align the fiber relative to the grating, and it provides a receptacle in which epoxy can be delivered.

After patterning the SU-8 collar layer, the wafer is diced, and the chips are ready for fiber packaging. A fully processed and diced wafer is shown in Fig. 3(a). It can be seen that multiple die types have been fabricated. A close up of one particular die is shown in Fig. 3(b). The SU-8 pedestal and collar are shown in Fig. 3(c). A grating coupled to a tapered waveguide is also visible, and the inset shows two such fiber collars with a ring coupled to a bus between. In Fig. 3(c) one can see that the fiber collar has two channels on the sides of the fiber. The low viscosity of the epoxy enables it to run through these channels into the ellipse housing the fiber. Upon filling the entire volume, the epoxy is UV-cured. After placing all fibers, an additional amount of epoxy can be delivered to further strengthen the assembly. When packaging is complete, the assembly is mechanically robust and can be handled easily without drift in coupling. A fully packaged chip suitable for cryogenic applications is shown in Fig. 3(d).

 figure: Fig. 3

Fig. 3 (a) A fabricated and diced wafer. (b) A focus-stacked image of a single die (1 cm2). (c) Optical microscope image of the fiber collar and pedestal above a SiN grating. (d) The fully packaged die prepared for mounting in a cryostat.

Download Full Size | PPT Slide | PDF

This packaging approach is suitable for a wide range of operating temperatures. With Dymax OP-4-20632 cryogenic epoxy, we demonstrated cooling of a packaged sample down to < 1 K, incurring an additional 1.5 dB insertion loss per coupler. This sample has been thermally cycled twice with the same performance. Additional thermal cycles have not been attempted. With Norland Optical Adhesive, we demonstrated heating up to 160 °C. Upon heating to 120 °C an additional 1 dB insertion loss per coupler was incurred. The sample was held at 120 °C for 16 hours with no additional insertion loss. It was then raised to 160 °C incurring an additional 1 dB insertion loss per coupler. Such packaged chips have been observed to maintain stable coupling for weeks, and the fully encased fibers are protected from the environment to enable exceptional longevity.

We wish to use our waveguide devices to perform spectroscopy in outdoor environments, and also for quantum optical experiments with superconductors in cryogenic environments. Toward these ends, the packaging approach presented here has several strengths. The simplicity renders it useful in many contexts, as it does not depend on KOH wet etch steps to form v-grooves [48, 49], which can be difficult from a process-integration standpoint, and it is not dependent on a two-chip assembly [50]. Alignment of the collar relative to the grating is achieved lithographically, so little optimization is required. Fiber couplers can be placed anywhere on the die for higher density, not just the periphery, as in many v-groove [48,49] and two-chip approaches [50]. Packaging can be highly automated as the placement of a fiber in a collar and the epoxy delivery is well-suited to robotics with machine vision.

4. Applications in nonlinear optics

SiN waveguides provide an excellent platform for nonlinear optics due to their high nonlinear index (10× larger than silica) [51] and low absorption from visible to infrared wavelengths. Recent progress [52, 53] has revealed opportunities to use group-velocity-dispersion (GVD) engineered devices in conjunction with high-power ultrafast lasers to generate spectra suitable for applications such as spectroscopy [54], time and frequency metrology [55–58], and novel optical sources.

Finite-difference frequency domain calculations show near-zero GVD is achieved for wavelengths in the near-IR by engineering SiN waveguides with thicknesses above 600 nm. For the present study, we investigated waveguides with 700 nm thickness. The GVD curves for these waveguides are shown in Fig. 4(a) for various waveguide widths. These calculations assume thermal SiO2 as an undercladding, air as an overcladding, and employ the SiN index data shown in Fig. 1(b). Waveguides with widths > 1.4 μm have very flat, near-zero anomalous GVD with one zero crossing at short wavelengths. These waveguides can be used for octave-spanning super-continuum generation which is useful for self-referenced frequency combs [55, 56, 58]. Slightly narrower waveguides have anomalous GVD with two zero crossings. As the waveguide width is reduced below 1 μm, the anomalous GVD region becomes narrower and drops more steeply to negative values. These waveguides generate narrow, flat-top spectra. Such spectra improve the signal-to-noise ratio for spectroscopic applications targeting a specific narrow frequency band.

 figure: Fig. 4

Fig. 4 (a) GVD curves for 700 nm thick SiN waveguides with air over-cladding for different waveguide widths. (b) Scanning electron micrograph of paperclip waveguide structures for measuring propagation losses. (c) Tapered waveguide for edge-coupling.

Download Full Size | PPT Slide | PDF

Figure 4(b) and (c) show scanning electron micrographs of fabricated waveguides. In addition to the processing described in Sec. 2, these waveguides incurred a resist reflow at 150 °C for five minutes before etching. The WSi, SU-8, and overcladding layers were omitted for these devices. Figure 4(b) shows a waveguide in a paperclip configuration [59] to measure propagation losses. These measurements give 1.8 dB/cm propagation loss, an improvement over the loss-ring measurement of the thin waveguides presented in Sec. 2 (2.5 dB/cm). The loss has not been observed to depend on intensity, indicating that multiphoton absorption is a smaller contribution than sidewall scattering even for femtosecond pulses with 6 kW peak power. Figure 4(c) shows a waveguide with a tapered tip for edge coupling, which was used for these nonlinear optics experiments. Insertion loss of 5.2 dB/facet was measured. For spectroscopy applications in the field or metrology applications in a system, the fiber packaging approach presented in Sec. 3 can be utilized.

For investigation of nonlinear spectral broadening, a high-power, femtosecond 1550 nm fiber frequency comb with up to 17 kW peak power and 60 fs pulse duration was used as the laser source [60]. The source was TE-polarized and coupled into the waveguide tapers with a lensed fiber. Output spectra were recorded as a function of incident power with an optical spectrum analyzer. The measured outputs of 960 nm- and 2100 nm-wide waveguides are presented in Figs. 5(a) and (b), respectively. Also shown on these plots are the theoretical predictions using the GVD curves of Fig. 4(a) in the nonlinear Schrödinger equation (NLSE) [61, 62]. The 960 nm device generates a supercontinuum that stays within 20 dB over the wavelength range from 1350 nm to 1850 nm and sharply drops beyond this spectral range. This relatively flat spectrum is suitable for spectroscopy wherein a flat spectrum provides a correspondingly flat response function with a uniform signal-to-noise ratio.

 figure: Fig. 5

Fig. 5 (a) Supercontinuum generation from a 960 nm wide waveguide. (b) Supercontinuum from a 2.1 μm wide waveguide. Light is coupled out of the waveguide into a single-mode fiber and into an optical spectrum analyzer where the power is measured. For both of these measurements, the peak laser power was 5.25 kW, the repetition rate was 200 MHz, and the average power was 63 mW. The resolution of the optical spectrum analyzer was 2 nm.

Download Full Size | PPT Slide | PDF

In contrast to the spectrum of Fig. 5(a) the spectrum of Fig. 5(b) shows broad supercontinuum generation from a 2100 nm-wide waveguide. This supercontinuum covers the spectrum from 1050 to 2200 nm when pumped with comb peak power of 5.25 kW. Because sources of phase noise, such as free-carrier absorption and multiphoton absorption are minimal in SiN, we expect the supercontinuum process to maintain coherence. Coherence after supercontinuum broadening has been demonstrated in Ref. [63]. Such a coherent comb spectrum is suitable for self-referenced frequency combs. Additionally, due to the design of the GVD zero crossings at 1.1 μm and 2.2 μm, the optical power is concentrated at these wavelengths which will be utilized in the difference-frequency generation process.

These examples of spectral tailoring for spectroscopic applications as well as frequency metrology applications show the utility of this deposited-waveguide fabrication process for nonlinear optics.

5. Integration with single-photon detectors

For superconducting optoelectronic networks [21] and quantum optical applications including metrology, linear-optical quantum computing, and quantum networks, single-photon detection with near-unity efficiency is paramount. For systems utilizing many components, an integrated photonic environment with fiber optics and on-chip devices operating at telecom wavelengths is the most promising route to scaling. Within this context, SNSPDs are a promising candidate for single-photon detection with high efficiency and low timing jitter. The fabrication of SNSPDs on waveguide devices [42–46, 49, 64–68] has been described in Sec. 2.

The detection mechanism of an SNSPD depends on the absorption of a photon locally breaking Cooper pairs in the superconductor, leading to the production of a region of normal metal, referred to as a “hot spot”. With sufficient bias current, the absorption of a photon by the SNSPD will result in a voltage pulse [22, 69–79]. The required wire dimensions for this process depend on the wavelength of the light and the material properties. Typical SNSPD materials are NbN [80] or WSi [81]. WSi devices typically have a lower critical temperature and higher timing jitter than NbN, but at present have higher yield and higher detection efficiency. Here we explore WSi SNSPDs.

For detection of 1550 nm photons, typical WSi wires are 130 nm wide and 4 nm thick [22]. In wires much wider than this, the hot spot created via photon absorption is not large enough to span the width of the wire and result in a voltage pulse, even when the wire is biased very close to its critical current. However, using the lithographic system available to us, we cannot achieve such narrow features. To circumvent this issue, we experimented with varying the film thickness with the intention of achieving similar photon detection efficiency with wider wires.

We incorporated these SNSPDs into several photonic devices. Figure 6(a) shows an optical micrograph of an MZI with two fiber input ports and WSi SNSPDs at the output ports. Figure 6(b) shows an optical micrograph of the waveguide-integrated SNSPD, and Fig. 6(c) shows a scanning electron micrograph of the photolithographically patterned nanowire with 250 nm width.

 figure: Fig. 6

Fig. 6 (a) Optical microscope image of an MZI. Between the two input ports, a waveguide tapping 10% of the light before entering the MZI is used to optimize fiber alignment at room temperature. (b) Optical microscope image of a waveguide-integrated detector. (c) Scanning electron micrograph of the tip of a waveguide-integrated SNSPD. (d) Response of a single detector versus bias current for various optical powers. (e) Measurements of waveguide-integrated SNSPDs at the output ports of an MZI.

Download Full Size | PPT Slide | PDF

The response of a waveguide-integrated WSi SNSPD with 250 nm width and 3.5 nm (85% the typical thickness [22]) to light at 1570 nm is shown in Fig. 6(d) for different input powers at the grating. For these measurements, the device was operated at 740 mK. Not only do we find that these wider, thinner wires are capable of detecting photons of this energy, we observe a broad plateau as a function of bias current, indicating saturated internal quantum detection efficiency. Within the plateau region near 4 μA, the dark count rate was measured to be less than 1 Hz. The dead time of these devices is on the order of 30 ns. The maximum observed count rate was 1 MHz. In the devices presented here, it is impossible to differentiate between insertion loss at the grating couplers and loss at the detectors, so the efficiency of the detectors alone has not yet been measured. However, it is possible to devise structures to distinguish between grating loss and detector loss, and these measurements will be the subject of future work. We note that thinning of our SNSPD material suppresses the critical temperature and current, leading to reduced performance, limiting the extent to which thinning the material can relax the lithographic requirements. A thorough study of SNSPD performance across the parameter space of width and thickness will be the subject of future work.

The optical transmission spectra from each of the two MZI input ports to each of the detectors is shown in Fig. 6(e). Nearly 30 dB extinction is observed. The data in Fig. 6(d) was acquired from one of these detectors, and their performance was nearly identical. The offset of the spectra along the wavelength axis is due to imprecise timing alignment between the sweep of the laser and the SNSPD data acquisition, resulting in a slight inaccuracy in the recorded wavelength.

Finally, we integrated the SNSPDs at the drop ports of four first-order filters. An optical micrograph of the optoelectronic devices is shown in Fig. 7(a). The ring design used for this device is the same as that shown in Fig. 2(c), except with a drop port as well as a through port and a 650 nm ring-bus gap on both ports. The detector response as a function of wavelength is shown in Fig. 7(b) for the detectors at all four drop ports. Extinction of > 20 dB is observed for all four detectors. We note that the yield of these detectors fabricated from WSi using i-line lithography was higher than 80%, and it was not necessary to test multiple MZI devices or filter banks to find one with all detectors working. Such a fabrication process is scalable to large systems without the need for pick-and-place device assembly methods [45].

 figure: Fig. 7

Fig. 7 (a) Optical microscope image of four ring filters dropping to detectors. (b) Spectrum of the device.

Download Full Size | PPT Slide | PDF

6. Summary and outlook

We have presented an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography was performed with a 365 nm i-line stepper. We have shown low-loss waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, MZIs, and a robust fiber-packaging system. We have further explored the utility of this process by demonstrating spectral tailoring and supercontinuum generation of a fiber-generated frequency comb. Finally, we demonstrated the applicability of this fabrication process to quantum-optical systems by integrating SNSPDs with MZIs and channel-dropping filters.

Because all layers in this process are deposited at near-ambient temperature, and because the fiber packaging approach is compatible with a wide variety of substrates, devices, and processes, this fabrication process is compatible with BEOL incorporation on fully processed CMOS wafers or wafers of integrated photonic devices fabricated by other foundries. Additionally, because we have only made use of deposited films for the waveguide and detector layers, it is possible to extend this platform by vertically stacking many layers of waveguides and detectors using interlayer waveguide couplers to construct complex, 3D photonic systems.

Regarding the utility of this scalable and nimble fabrication infrastructure, we note that the cost of all equipment used to perform the fabrication of these devices is quite low. The PECVD tool costs $400K, and can also serve as the RIE tool. The sputtering tool also costs $400K. The i-line stepper is $3.2M. Thus, the entire capital investment for this equipment could be as low as $4M, making this approach accessible for start-ups, small businesses, academics, and innovators in developing countries. If added to an existing foundry, the additional capital investment would be a small fraction of the total cost of the foundry. Based on these results, we are of the opinion that as integrated photonics moves to a foundry process model, innovation per dollar can be maximized through investment in nimble and diverse processes serving a wider range of application spaces.

Acknowledgments

This is a contribution of NIST, an agency of the US government, not subject to copyright. Product disclaimer: Any mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.

References and links

1. F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011). [CrossRef]  

2. N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008). [CrossRef]   [PubMed]  

4. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009). [CrossRef]   [PubMed]  

5. A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009). [CrossRef]   [PubMed]  

6. A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010). [CrossRef]  

7. Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015). [CrossRef]  

8. K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014). [CrossRef]   [PubMed]  

9. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015). [CrossRef]  

10. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012). [CrossRef]  

11. D. Nikolova, S. Rumley, D. Calhoun, A. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015). [CrossRef]   [PubMed]  

12. S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33, 547 (2015). [CrossRef]  

13. C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015). [CrossRef]   [PubMed]  

14. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016). [CrossRef]  

15. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014). [CrossRef]  

16. K. A. Williams, E. A. J. M Bente, D. Heiss, Y. Jiao, K. Lawniczuk, X. J. M. Leijtens, J. J. G. M van der Tol, and M. K. Smit, “InP photonic circuits using generic integration”, Photon. Res. 3, B60 (2015). [CrossRef]  

17. “American Institute for Manufacturing Integrated Photonics,” URL http://www.aimphotonics.com/.

18. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).

19. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013). [CrossRef]  

20. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006). [CrossRef]  

21. J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017). [CrossRef]  

22. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013). [CrossRef]  

23. Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013). [CrossRef]  

24. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24, 1865 (2016). [CrossRef]   [PubMed]  

25. S. Zhu, G. Lo, and D. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283 (2010). [CrossRef]   [PubMed]  

26. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779 (2014). [CrossRef]   [PubMed]  

27. W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

28. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011). [CrossRef]  

29. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011). [CrossRef]   [PubMed]  

30. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163 (2011). [CrossRef]   [PubMed]  

31. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010). [CrossRef]  

32. H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

33. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006). [CrossRef]   [PubMed]  

34. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008). [CrossRef]   [PubMed]  

35. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011). [CrossRef]  

36. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277 (2014). [CrossRef]   [PubMed]  

37. J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in Optical Fiber Communication Conference (OSA, 2015), p. Th3F.2.

38. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544 (2013). [CrossRef]   [PubMed]  

39. M. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. Jost, and T. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20 (2016). [CrossRef]  

40. Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P.-H. Wang, K. Han, J. Jaramillo-Villegas, A. Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171 (2016). [CrossRef]  

41. J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

42. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012). [CrossRef]   [PubMed]  

43. C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016). [CrossRef]   [PubMed]  

44. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011). [CrossRef]  

45. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015). [CrossRef]   [PubMed]  

46. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015). [CrossRef]   [PubMed]  

47. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007). [CrossRef]  

48. J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013). [CrossRef]   [PubMed]  

49. A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

50. T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014). [CrossRef]  

51. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015). [CrossRef]  

52. J. M. C. Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846 (2014). [CrossRef]  

53. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011). [CrossRef]   [PubMed]  

54. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016). [CrossRef]  

55. S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000). [CrossRef]   [PubMed]  

56. J. Hall, “Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006). [CrossRef]  

57. A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009). [CrossRef]   [PubMed]  

58. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51 (2010). [CrossRef]  

59. J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012). [CrossRef]   [PubMed]  

60. L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015). [CrossRef]  

61. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides,” Opt. Express 15, 16604 (2007). [CrossRef]   [PubMed]  

62. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014). [CrossRef]   [PubMed]  

63. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015). [CrossRef]   [PubMed]  

64. P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011). [CrossRef]  

65. M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012). [CrossRef]   [PubMed]  

66. H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014). [CrossRef]  

67. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015). [CrossRef]   [PubMed]  

68. D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015). [CrossRef]  

69. G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001). [CrossRef]  

70. C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012). [CrossRef]  

71. D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013). [CrossRef]  

72. A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009). [CrossRef]  

73. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012). [CrossRef]   [PubMed]  

74. A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015). [CrossRef]  

75. A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013). [CrossRef]  

76. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009). [CrossRef]  

77. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008). [CrossRef]  

78. J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007). [CrossRef]  

79. M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003). [CrossRef]  

80. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001). [CrossRef]  

81. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
    [Crossref]
  2. N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008).
    [Crossref] [PubMed]
  4. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
    [Crossref] [PubMed]
  5. A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
    [Crossref] [PubMed]
  6. A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
    [Crossref]
  7. Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
    [Crossref]
  8. K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
    [Crossref] [PubMed]
  9. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  10. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012).
    [Crossref]
  11. D. Nikolova, S. Rumley, D. Calhoun, A. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
    [Crossref] [PubMed]
  12. S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33, 547 (2015).
    [Crossref]
  13. C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
    [Crossref] [PubMed]
  14. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  15. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
    [Crossref]
  16. K. A. Williams, E. A. J. M Bente, D. Heiss, Y. Jiao, K. Lawniczuk, X. J. M. Leijtens, J. J. G. M van der Tol, and M. K. Smit, “InP photonic circuits using generic integration”, Photon. Res. 3, B60 (2015).
    [Crossref]
  17. “American Institute for Manufacturing Integrated Photonics,” URL http://www.aimphotonics.com/ .
  18. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).
  19. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  20. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
    [Crossref]
  21. J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
    [Crossref]
  22. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  23. Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013).
    [Crossref]
  24. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24, 1865 (2016).
    [Crossref] [PubMed]
  25. S. Zhu, G. Lo, and D. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283 (2010).
    [Crossref] [PubMed]
  26. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779 (2014).
    [Crossref] [PubMed]
  27. W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.
  28. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
    [Crossref]
  29. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011).
    [Crossref] [PubMed]
  30. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163 (2011).
    [Crossref] [PubMed]
  31. C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
    [Crossref]
  32. H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.
  33. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006).
    [Crossref] [PubMed]
  34. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
    [Crossref] [PubMed]
  35. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
    [Crossref]
  36. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277 (2014).
    [Crossref] [PubMed]
  37. J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in Optical Fiber Communication Conference (OSA, 2015), p. Th3F.2.
  38. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544 (2013).
    [Crossref] [PubMed]
  39. M. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. Jost, and T. Kippenberg, “Photonic damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3, 20 (2016).
    [Crossref]
  40. Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P.-H. Wang, K. Han, J. Jaramillo-Villegas, A. Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171 (2016).
    [Crossref]
  41. J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.
  42. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref] [PubMed]
  43. C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
    [Crossref] [PubMed]
  44. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
    [Crossref]
  45. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref] [PubMed]
  46. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
    [Crossref] [PubMed]
  47. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
    [Crossref]
  48. J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
    [Crossref] [PubMed]
  49. A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.
  50. T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
    [Crossref]
  51. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
    [Crossref]
  52. J. M. C. Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846 (2014).
    [Crossref]
  53. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011).
    [Crossref] [PubMed]
  54. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016).
    [Crossref]
  55. S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
    [Crossref] [PubMed]
  56. J. Hall, “Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006).
    [Crossref]
  57. A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
    [Crossref] [PubMed]
  58. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51 (2010).
    [Crossref]
  59. J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
    [Crossref] [PubMed]
  60. L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
    [Crossref]
  61. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides,” Opt. Express 15, 16604 (2007).
    [Crossref] [PubMed]
  62. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).
    [Crossref] [PubMed]
  63. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref] [PubMed]
  64. P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
    [Crossref]
  65. M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
    [Crossref] [PubMed]
  66. H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
    [Crossref]
  67. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
    [Crossref] [PubMed]
  68. D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
    [Crossref]
  69. G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
    [Crossref]
  70. C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
    [Crossref]
  71. D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
    [Crossref]
  72. A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
    [Crossref]
  73. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012).
    [Crossref] [PubMed]
  74. A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
    [Crossref]
  75. A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
    [Crossref]
  76. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
    [Crossref]
  77. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
    [Crossref]
  78. J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
    [Crossref]
  79. M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
    [Crossref]
  80. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
    [Crossref]
  81. B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
    [Crossref]

2017 (1)

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

2016 (6)

2015 (15)

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, A. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
[Crossref] [PubMed]

S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33, 547 (2015).
[Crossref]

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

K. A. Williams, E. A. J. M Bente, D. Heiss, Y. Jiao, K. Lawniczuk, X. J. M. Leijtens, J. J. G. M van der Tol, and M. K. Smit, “InP photonic circuits using generic integration”, Photon. Res. 3, B60 (2015).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

2014 (8)

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277 (2014).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779 (2014).
[Crossref] [PubMed]

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).
[Crossref] [PubMed]

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

J. M. C. Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846 (2014).
[Crossref]

2013 (7)

J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
[Crossref] [PubMed]

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (6)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
[Crossref]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012).
[Crossref] [PubMed]

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
[Crossref] [PubMed]

2011 (9)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011).
[Crossref] [PubMed]

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163 (2011).
[Crossref] [PubMed]

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

2010 (4)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

S. Zhu, G. Lo, and D. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283 (2010).
[Crossref] [PubMed]

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51 (2010).
[Crossref]

2009 (5)

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
[Crossref] [PubMed]

2008 (3)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008).
[Crossref] [PubMed]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

2007 (3)

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides,” Opt. Express 15, 16604 (2007).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

2006 (3)

J. Hall, “Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006).
[Crossref] [PubMed]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

2003 (1)

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

2001 (2)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

2000 (1)

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Agafonov, I.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

Agashe, K. T. S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Agrawal, G. P.

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Alloatti, L.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Alvarez, L. S. E.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Anant, V.

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008).
[Crossref] [PubMed]

Asanovic, K.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Atabaki, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Atikian, H. A.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Avizienis, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006).
[Crossref] [PubMed]

Bailey, R.

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
[Crossref] [PubMed]

Barber, Z. H.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Bartels, A.

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Barton, J. S.

Barwicz, T.

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

Baumann, E.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Bauters, J. F.

Beetz, J.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Bente, E. A. J. M

Berggren, K.

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Berggren, K. K.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Bergman, K.

S. Rumley, D. Nikolova, R. Hendry, Q. Li, D. Calhoun, and K. Bergman, “Silicon photonics for exascale systems,” J. Lightwave Technol. 33, 547 (2015).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, A. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
[Crossref] [PubMed]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Bernier, E.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Berroth, M.

Beyer, A.

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Biberman, A.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Bitauld, D.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Blumenthal, D. J.

Bodenmüller, D.

Boggio, J. M. C.

Böhm, M.

Bois, A.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Bostak, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Bowers, J. E.

Bowman, A.

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

Brasch, V.

Briggs, R.

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Buckley, S. M.

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

Buhl, L. L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Burek, M. J.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Burghartz, J.

Butschke, J.

Calhoun, D.

Casaburi, A.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
[Crossref] [PubMed]

Cavalier, P.

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Chan, J.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Chen, A.

Chen, H.

Chen, K. K.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Chen, L.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Chen, S.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Chen, Y.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24, 1865 (2016).
[Crossref] [PubMed]

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Chen, Y.-H.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Chen, Y.-K.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Choy, J. T.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Christini, D.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Chulova, G.

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016).
[Crossref]

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Coddington, I.R.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Cohen, J. D.

J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
[Crossref] [PubMed]

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Constancias, C.

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Cook, H.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Corzine, S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Cossel, K.C.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Cristiano, R.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

Cundiff, S.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Dai, D.

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Dauler, E.

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Davenport, M. L.

Dentai, A.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Deschênes, J.-D.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Diddams, S.

S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51 (2010).
[Crossref]

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Dobbelaere, P. De

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Doerr, C. R.

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

Dominic, V.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Doylend, J. K.

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Dumais, P.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Eftekharian, A.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Eisermann, R.

Ejrnaes, M.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Englund, D.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Evans, P.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Fan, L.

Fan, Z.

Fang, A. W.

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Feautrier, P.

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Fédéli, J. -M

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Ferrari, S.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Fiore, A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012).
[Crossref] [PubMed]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Fisher, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Fitch, M.

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Franson, J.

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Fremberg, T.

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Fukuda, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Gaeta, A. L.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011).
[Crossref] [PubMed]

Gaggero, A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Geiselmann, M.

Georgas, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Giannone, D.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Goldfarb, G.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Goltsman, G. N.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Goodwill, D.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Griffith, A. G.

Griol, A.

Grubb, S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Gunn, L.

A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
[Crossref] [PubMed]

Guo, X.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

Gylfason, K. B.

Hadfield, R.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
[Crossref]

Hadfield, R. H.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Hall, J.

J. Hall, “Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006).
[Crossref]

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hamed Majedi, A.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Han, K.

Hänsch, T.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Haynes, R.

He, J.-J.

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Heath, R.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Heinecke, D.

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Heiss, D.

Hendry, G.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Hendry, R.

Hill, D.

Hiraki, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).

Hofling, S.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

HoÌLfling, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Holzwarth, R.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Hu, X.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Huang, Y.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Ishikawa, Y.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Jacobs, B.

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Jafari Salim, A.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Jahanmirinejad, S.

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012).
[Crossref] [PubMed]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

Jaramillo-Villegas, J.

Jeong, J.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Jian, J.

Jiang, M.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Jiang, W.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Jiao, Y.

John, D.

Johnson, A. R.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Jones, D.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Jost, J.

Joyner, C.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012).
[Crossref]

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Kamei, T.

Kamp, M.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Kato, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Kaufman, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Kazmierczak, A.

Keller, U.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

Kerman, A.

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Khader, I. H.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Kim, S.

Kippenberg, T.

Kish, F.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Klenner, A.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Kordts, A.

Korneev, A.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Kou, R.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Kramer, S.

Kumar, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Kuntz, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Kunze, A.

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Kwong, D.

Lagoudakis, K.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Lal, V.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Lambert, D.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Lamont, M. R. E.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).
[Crossref] [PubMed]

Lau, R. K. W.

Lawniczuk, K.

Leaird, D.

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Lee, Y.

Y. Xuan, Y. Liu, L. Varghese, A. Metcalf, X. Xue, P.-H. Wang, K. Han, J. Jaramillo-Villegas, A. Noman, C. Wang, S. Kim, M. Teng, Y. Lee, B. Niu, L. Fan, J. Wang, D. Leaird, A. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3, 1171 (2016).
[Crossref]

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Lee, Y. H. D.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013).
[Crossref]

Leeuwen, M. V.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Leijtens, X. J. M.

Leinse, A.

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Leoni, R.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Letzkus, F.

Leu, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Levy, J. S.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011).
[Crossref] [PubMed]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Li, A.

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Li, H.

Li, M.

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Li, Q.

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Lin, Q.

Lin, S.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Lipson, M.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013).
[Crossref]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011).
[Crossref] [PubMed]

Lisker, M.

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

Liu, D.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Liu, L.

Liu, Y.

Lo, G.

Lo, G.-Q.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

Lo, P. G.-Q.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Loncar, M.

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Luchansky, M.

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

Luke, K.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

Luo, X.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Ma, C.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Ma, X.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

Maire, G.

Mak, J.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Malendevich, R.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Manako, S.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
[Crossref] [PubMed]

Marsili, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Mattioli, F.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Mayer, A. S.

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

McNicol, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Meenehan, S. M.

J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
[Crossref] [PubMed]

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Mehta, K.

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Melle, S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Metcalf, A.

Mikkelsen, J.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Mirin, R.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Mirin, R. P.

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Mitchell, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Molnar, R.

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

Morand, A.

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Mori, M.

Moss, B.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Murthy, S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Muthiah, R.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Nader, N.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Nagarajan, R.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

Nam, S. W.

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

Nappi, C.

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Natarajan, C.

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
[Crossref]

Newbury, N.

Newbury, N. R.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Newbury, N.R.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Nikolova, D.

Nilsson, A.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Nishi, H.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Niu, B.

Noman, A.

Notaros, J.

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in Optical Fiber Communication Conference (OSA, 2015), p. Th3F.2.

Okawachi, Y.

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Omoda, E.

Orcutt, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
[Crossref] [PubMed]

Ou, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Painter, O.

J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

Painter, O. J.

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides,” Opt. Express 15, 16604 (2007).
[Crossref] [PubMed]

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Pavanello, F.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Pavinski, D.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Pernice, W. H. P.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Pfeiffer, M.

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Pittman, T.

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Pleumeekers, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Poon, J.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Poon, J. K. S.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

Poot, M.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

Popovic, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in Optical Fiber Communication Conference (OSA, 2015), p. Th3F.2.

Preston, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Qi, M.

Raburn, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Rahn, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Ram, R.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
[Crossref] [PubMed]

Ranka, J.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Roelkens, G.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006).
[Crossref] [PubMed]

Rosfjord, K.

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Roth, M. M.

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Rumley, S.

Sacher, W.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Sacher, W. D.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

Saha, K.

Sahin, D.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Sakakibara, Y.

Salvatore, R.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Samadi, P.

Samra, P.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Sanchez, B.

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sattler, G.

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Schuck, C.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Shainline, J.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Shainline, J. M.

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

Shainline, J.M.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

Shao, Z.

Shaw, M.

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Sherwood-Droz, N.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011).
[Crossref] [PubMed]

Sinclair, L.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Smirnov, K.

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Smit, M. K.

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Sohlström, H.

Sonderhouse, L.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Song, J.

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

Spannagel, A.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Srinivasan, K.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stewart, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Stojanovic, V.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
[Crossref] [PubMed]

Strezelecka, E.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Studenkov, P.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Sun, C.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Sun, H.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Swann, W.

Swann, W. C.

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Taira, Y.

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

Takeda, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Takei, R.

Tang, H. X.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

Tang, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Tang, L.

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Tang, S.

Tanner, M.

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
[Crossref]

Tanner, M. G.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Taylor, B.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Teng, M.

Tern, R. P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Tien, M.-C.

Tomkos, I.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012).
[Crossref]

Tsai, H.-S.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Tu, X.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

Udem, T.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

van de Sanden, M. C. M.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

van der Tol, J. J. G. M

Van Thourhout, D.

Varghese, L.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verheijen, M. A.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Verma, V.

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

VilleÌAgier, J.-C.

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
[Crossref] [PubMed]

Vogel, W.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008).
[Crossref] [PubMed]

Voronov, B.

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Wada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Wade, M.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, J.

Wang, P.-H.

Wang, Y.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Wang, Z.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Warburton, R. J.

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Washburn, A.

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
[Crossref] [PubMed]

Waterman, A.

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

Weber, J.-W.

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

Weiner, A.

Welch, D.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Wen, Y. H.

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

Williams, K. A.

Williams, W.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Windeler, R.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).

Wu, K.-T.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Xie, X.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Xuan, Y.

Xue, X.

Yamada, K.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Yamamoto, T.

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Yang, C.

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24, 1865 (2016).
[Crossref] [PubMed]

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Yang, J.

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

Yang, X.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Yang, Y.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

Ye, J.

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Yong, Z.

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

You, L.

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

Yu, F.

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Yu, M.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Yu, S.

Zaoui, W. S.

Zervas, M.

Zhang, F.

Zhang, H.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Zhang, J.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Zhang, Y.

Zhou, H.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Zhou, L.

Zhu, S.

Ziari, M.

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Zimmermann, L.

ACM J. Emerg. Technol. Comput. Syst. (1)

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerg. Technol. Comput. Syst. 7, 1–25 (2011).
[Crossref]

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform”, Adv. Opt. Technol. 4, 189 (2015).

AIP Adv. (1)

P. Cavalier, J.-C. VilleÌĄgier, P. Feautrier, C. Constancias, and A. Morand, “Light interference detection on-chip by integrated SNSPD counters,” AIP Adv. 1, 042120 (2011).
[Crossref]

Anal. Chem. (2)

A. Washburn, L. Gunn, and R. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499 (2009).
[Crossref] [PubMed]

A. Washburn, M. Luchansky, A. Bowman, and R. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69 (2010).
[Crossref]

Appl. Phys. Lett. (7)

H. A. Atikian, A. Eftekharian, A. Jafari Salim, M. J. Burek, J. T. Choy, A. Hamed Majedi, and M. Lončar, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett. 104, 122602 (2014).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. HoÌĹfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[Crossref]

A. Casaburi, R. Heath, M. Tanner, R. Cristiano, M. Ejrnaes, C. Nappi, and R. Hadfield, “Current distribution in a parallel configuration superconducting strip-line detector,” Appl. Phys. Lett. 103, 013503 (2013).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
[Crossref]

B. Baek, A. E. Lita, V. Verma, and S. W. Nam, “Superconducting a-Wx Si1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm,” Appl. Phys. Lett. 98, 251105 (2011).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE Commun. Surveys Tutorials (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surveys Tutorials 14, 1021 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts”, IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

F. Kish, D. Welch, R. Nagarajan, J. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. Corzine, M. Mitchell, P. Samra, J. Rahn, M. V. Leeuwen, J. Stewart, D. Lambert, R. Muthiah, H.-S. Tsai, J. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. Taylor, R. Salvatore, M. Fisher, A. Spannagel, E. Strezelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. T. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17, 1470 (2011).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19, 8200207 (2013).
[Crossref]

D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Hofling, M. C. M. van de Sanden, R. Leoni, and A. Fiore, “Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties,” IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015).
[Crossref]

IEEE Photon. J. (1)

T. Barwicz and Y. Taira, “Low-cost interfacing of fibers to nanophotonic waveguides: design for fabrication and assembly tolerances,” IEEE Photon. J. 6, 1–18 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. R. Doerr, L. Chen, Y.-K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22, 1461–1463 (2010).
[Crossref]

IEEE Trans. Appl. Supercond. (2)

D. Liu, L. You, S. Chen, X. Yang, Z. Wang, Y. Wang, X. Xie, and M. Jiang, “Electrical characteristics of superconducting nanowire single photon detector,” IEEE Trans. Appl. Supercond. 23, 2200804 (2013).
[Crossref]

J. Yang, A. Kerman, E. Dauler, V. Anant, K. Rosfjord, and K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581 (2007).
[Crossref]

J. Biophotonics (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophotonics 2, 212 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, and J. -M Fédéli, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

J. Opt. A (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A 8, 840–848 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanotechnology (1)

M. G. Tanner, L. S. E. Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, “A superconducting nanowire single photon detector on lithium niobate,” Nanotechnology 23, 505201 (2012).
[Crossref] [PubMed]

Nat. Commun. (5)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref] [PubMed]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nat. Commun. 6, 8233 (2015).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref] [PubMed]

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nat. Commun. 7, 10352 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591 (2008).
[Crossref] [PubMed]

Nat. Photon. (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photon. 2, 302 (2008).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nature (1)

C. Sun, M. Wade, Y. Lee, J. Orcutt, L. Alloatti, M. Georgas, A. Waterman, J. Shainline, R. Avizienis, S. Lin, B. Moss, R. Kumar, F. Pavanello, A. Atabaki, H. Cook, A. Ou, J. Leu, Y.-H. Chen, K. Asanović, R. Ram, M. Popović, and V. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[Crossref]

Opt. Comm. (1)

Y. Chen, F. Yu, C. Yang, J. Song, L. Tang, M. Li, and J.-J. He, “Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels,” Opt. Comm. 344, 129 (2015).
[Crossref]

Opt. Express (15)

D. Nikolova, S. Rumley, D. Calhoun, A. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159 (2015).
[Crossref] [PubMed]

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24, 1865 (2016).
[Crossref] [PubMed]

S. Zhu, G. Lo, and D. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283 (2010).
[Crossref] [PubMed]

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779 (2014).
[Crossref] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19, 17758 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163 (2011).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277 (2014).
[Crossref] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622 (2006).
[Crossref] [PubMed]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328 (2008).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21, 544 (2013).
[Crossref] [PubMed]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation is silicon nitride waveguides,” Opt. Express 12, 015440 (2015).
[Crossref]

J. D. Cohen, S. M. Meenehan, and O. Painter, “Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction,” Opt. Express 21, 11227 (2013).
[Crossref] [PubMed]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017 (2012).
[Crossref] [PubMed]

J. Orcutt, S. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanović, and R. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express 20, 7243 (2012).
[Crossref] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides,” Opt. Express 15, 16604 (2007).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (3)

Photon. Res. (1)

Phys. Rev. A (1)

M. Fitch, B. Jacobs, T. Pittman, and J. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Phys. Rev. Appl. (1)

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Appl. 7, 034013 (2017).
[Crossref]

Phys. Rev. B (2)

A. Casaburi, R. Heath, M. Ejrnaes, C. Nappi, R. Cristiano, and R. Hadfield, “Experimental evidence for photoinduced vortex crossing in current carrying superconducting strips,” Phys. Rev. B 92, 214512 (2015).
[Crossref]

A. Kerman, J. Yang, R. Molnar, E. Dauler, and K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79, 100509 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. Diddams, D. Jones, J. Ye, S. Cundiff, J. Hall, J. Ranka, R. Windeler, R. Holzwarth, T. Udem, and T. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. Hall, “Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

L. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86, 081301 (2015).
[Crossref]

Sci. Rep. (1)

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5, 10941 (2015).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).
[Crossref] [PubMed]

Science (1)

A. Bartels, D. Heinecke, and S. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326, 681 (2009).
[Crossref] [PubMed]

Supercond. Sci. Tech. (1)

C. Natarajan, M. Tanner, and R. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech. 25, 063001 (2012).
[Crossref]

Other (7)

A. Beyer, R. Briggs, F. Marsili, J. D. Cohen, S. M. Meenehan, O. J. Painter, and M. Shaw, “Waveguide-coupled superconducting nanowire single-photon detectors,” in Conference on Lasers and Electro-optics (OSA, 2015), p. STh1I.2.

J. K. S. Poon, W. D. Sacher, Y. Huang, and G.-Q. Lo, “Multilayer silicon nitride-on-silicon integrated photonic platforms,” in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (IEEE, 2015), pp. 1–4.

N. Nader, K.C. Cossel, E. Baumann, I.R. Coddington, N.R. Newbury, R. Mirin, and J.M. Shainline, “Spectral engineering of frequency combs using deposited waveguides,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016).

“American Institute for Manufacturing Integrated Photonics,” URL http://www.aimphotonics.com/ .

W. Sacher, Z. Yong, J. Mikkelsen, A. Bois, Y. Yang, J. Mak, P. Dumais, D. Goodwill, C. Ma, J. Jeong, E. Bernier, and J. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platform for 3D photonic circuits,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2016) p. JTh4C.3.

J. Notaros and M. Popović, “Band-structure approach to synthesis of grating couplers with ultra-high coupling efficiency and directivity,” in Optical Fiber Communication Conference (OSA, 2015), p. Th3F.2.

H. Zhang, C. Li, X. Tu, H. Zhou, X. Luo, M. Yu, and P. G.-Q. Lo, “High efficiency silicon nitride grating coupler with DBR,” in Optical Fiber Communication Conference (OSA, 2014), p. Th1A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic of the layers used in this fabrication process. The inset shows the index of refraction of the SiN waveguide layer as measured with spectroscopic ellipsometry.
Fig. 2
Fig. 2 (a) Microscope image of a fabricated grating. The period is 1.4 μm, and the duty cycle is 60 %. (b) Spectral response of a single ring with outer radius of 60 μm, width of 1.5 μm coupled to a waveguide between two gratings. The coupling bus has a width of 1.5 μm, and the ring-bus gap is 610 nm. (c) Spectrum of four rings achieving close to critical coupling with outer radii of 120 μm. (d) A single ring with small ring-bus gap for critical coupling. (e) Microscope image of a ring-bus coupler. (f) Fitted resonance for weakly coupled ring resonator. (g) Spectrum of the unbalanced MZI. (h) Optical microscope image of the MZI. (c) and (g) are normalized to the peak of the grating response.
Fig. 3
Fig. 3 (a) A fabricated and diced wafer. (b) A focus-stacked image of a single die (1 cm2). (c) Optical microscope image of the fiber collar and pedestal above a SiN grating. (d) The fully packaged die prepared for mounting in a cryostat.
Fig. 4
Fig. 4 (a) GVD curves for 700 nm thick SiN waveguides with air over-cladding for different waveguide widths. (b) Scanning electron micrograph of paperclip waveguide structures for measuring propagation losses. (c) Tapered waveguide for edge-coupling.
Fig. 5
Fig. 5 (a) Supercontinuum generation from a 960 nm wide waveguide. (b) Supercontinuum from a 2.1 μm wide waveguide. Light is coupled out of the waveguide into a single-mode fiber and into an optical spectrum analyzer where the power is measured. For both of these measurements, the peak laser power was 5.25 kW, the repetition rate was 200 MHz, and the average power was 63 mW. The resolution of the optical spectrum analyzer was 2 nm.
Fig. 6
Fig. 6 (a) Optical microscope image of an MZI. Between the two input ports, a waveguide tapping 10% of the light before entering the MZI is used to optimize fiber alignment at room temperature. (b) Optical microscope image of a waveguide-integrated detector. (c) Scanning electron micrograph of the tip of a waveguide-integrated SNSPD. (d) Response of a single detector versus bias current for various optical powers. (e) Measurements of waveguide-integrated SNSPDs at the output ports of an MZI.
Fig. 7
Fig. 7 (a) Optical microscope image of four ring filters dropping to detectors. (b) Spectrum of the device.

Metrics