Abstract

Hyper-entangled photon pairs are very promising in the quantum information field for enhancing the channel capacity in communication and improving compatibility for networks. Here we report on the experimental generation of a hyper-entangled photon pair at a wavelength of 795 nm and 1475 nm via the spontaneous four-wave mixing process in a cold 85Rb atomic ensemble. The photons in each pair generated are entangled in both the time-frequency and polarization degrees of freedom. Such hyper-entangled photon pairs with special wavelength have potential applications in high-dimensional quantum communication and quantum physics.

© 2017 Optical Society of America

1. Introduction

Entangled photon pairs are important resources for realizing many quantum information protocols such as quantum cryptography [1], quantum-state teleportation [2,3], quantum communication [4,5] and so on. Generally, photons can be entangled in one of some available degrees of freedom (DOF) such as time-frequency, polarization, time-bin or orbital angular momentum. Recently, hyperentanglement [6–10], which means particles are entangled in multiple DOFs simultaneously, has attracted more researchers’ attention. Compared to the entanglement in single DOF, hyperentanglement enlarges the Hilbert space for encoding, leading to high channel capacity and effective performance of quantum information process [11–13].

Generally, spontaneous parametric down conversion (SPDC) process in a nonlinear crystal [14] is a common way to prepare entangled photon pairs. However, the generated photon has so wide bandwidth (~THz) that it does not match the working bandwidth of the quantum memory, an indispensable building block for quantum repeaters. To solve this problem, a nonlinear crystal inserted in a cavity [15,16] is used to generate narrowband photon pairs. Besides, spontaneously four-wave mixing (SFWM) in an atomic system [17–20] is another way for generating narrowband photon pairs. In this work, we experimentally generate a hyper-entangled photon pair via SFWM in a cold atomic ensemble. The wavelengths of two photons are 795 nm and 1475 nm respectively, so one photon in telecom-band can be used as an information carrier for long distance transmission, the other one can couple with atoms effectively. Compared with photons entangled in single DOF, the generated hyper-entangled photon pairs can largely improve the channel capacity, which is significant for quantum communication. Thereby, the generated hyper-entangled photon pairs are suitable for building up a long-distance and a high-dimensional quantum communication network based on atomic quantum memories.

Firstly we will introduce the generation of photon pairs based on an atomic ensemble trapped in a two-dimensional magneto-optical trap (MOT) and verify the non-classical correlation of photon pairs. After that we will measure the two-photon interference and check the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality to verify the polarization entanglement of photon pairs. Besides, we will use the quantum beat phenomenon to demonstrate the time-frequency entanglement of photon pairs. Finally we give a simple conclusion.

2. Experimental setup

We prepare a non-classical correlated photon pair through SFWM process via a diamond configuration in a cold 85Rb atomic ensemble. The energy level diagram is shown in Fig. 1. A laser beam at 780 nm from an external-cavity diode laser (DL 100, Toptica) and the other laser beam at 1530 nm from another external-cavity diode laser (DL Prodesign, Toptica) act as pump 2 and pump 1 respectively. Pump 2 couples to the atomic transition of 5S1/2(F = 3)→5P3/2(F' = 4) and pump 1 couples to the transition of 5P3/2(F' = 4)→4D3/2(F” = 4). The wavelengths of generated signal 1 and signal 2 photons are 795 nm and 1475 nm respectively. Here, five states, denoted as |1>, |2>, |3>, |4> and |5>, correspond to 85Rb atomic levels 5S1/2(F = 3), 5P1/2(F' = 2), 5P1/2(F' = 3), 5P3/2(F' = 4) and 4D3/2(F” = 4) respectively. Δ1=ωP2ω41 and Δ2=ωP1ω54represent the detuning of pump 2 and pump 1 respectively, and Δ=Δ1+Δ2 represents two–photon detuning. We denote the blue frequency detuning to be positive in this article. During the experiment, pump 3, which couples to the transition of 5S1/2(F = 2)→5P3/2(F' = 3), is kept open for optical pumping the atoms to the state of |1>.

 figure: Fig. 1

Fig. 1 Energy levels diagram. P1, P2 and P3 are pump1, 2 and 3; S1 and S2 are signal 1 and 2. States|1>, |2>, |3>, |4> and |5> correspond to 85Rb atomic levels of 5S1/2(F = 3), 5P1/2(F' = 2), 5P1/2(F' = 3), 5P3/2(F' = 4) and 4D3/2(F” = 4) respectively.

Download Full Size | PPT Slide | PDF

Experimental setup is shown in Fig. 2. Pump 1 co-propagates with pump 2 through the MOT in a collinear configuration. We focus pump 2 and pump 1 on the center of 85Rb atomic ensemble by two lenses with the focal lengths of 600 mm and 485 mm respectively. The powers of pump 2 and pump 1 are 40 µW and 2.8 mW respectively. At first, we perform four-waving mixing experiment to adjust experimental setup. The pump 1 is horizontally polarized after propagating through PBS and pump 2 is vertically polarized after propagating through PBS and HWP 1 (Here, HWP 1, HWP 2 and HWP 3 are half-wave plates. HWP 2 and HWP 3 are placed for demonstrating polarization entanglement of photon pairs). In order to reduce the noise, pump 2 propagates through a filter (Semrock LL01-780 type with bandwidth of 3 nm and 98% transmittance), and pump 1 propagates through a single-band bandpass filter (SemrockNIR01-1535/3 type with bandwidth of 3 nm and 98% transmittance). A bandpass interference filter placed before Detector 1 and a 22 degree-tilted filter (Semrock LL01-808 type with bandwidth of 3.1nm and 98% transmittance) set before Detector 2 are also used to reduce noise from pump lasers. Besides, a space grating and three fiber Bragg gratings set before Detector 1 are used to further reduce the noise. We use two single-mode fibers to collect signal 1 and signal 2 with the coupling efficiencies of 51.8% and 70.3% respectively. Then a time-to-digital converter is utilized to measure the time-correlated function of two signals after the signal 1 and signal 2 photons are detected by Detector 1(a free-running In-GaAs photon detector, ID Quantique ID220 FRSMF, 10% efficiency) and Detector 2 (avalanche diode, PerkinElmer SPCM-AQR-15-FC, 50% efficiency) respectively.

 figure: Fig. 2

Fig. 2 Setup of experiment. FC is fiber coupler, PBS is polarization beam splitter, HWP1, HWP 2 and HWP 3 are half-wave plate, DM is dichroic mirror, MOT is magneto-optical trap, Detector 1 is In-GaAs photon detector and Detector 2 is avalanche diode.

Download Full Size | PPT Slide | PDF

3. Experimental results and analysis

Generally, the classical light satisfies the Cauchy-Schwarz inequality [21] written below

R=[gS1,S2(2)(τ)]2gS1,S1(2)gS2,S2(2)1
Here, gS1,S1(2),gS2,S2(2)are the auto-correlation functions of signal 1 and signal 2 respectively, gS1,S2(2)is the cross-correlation function. If inequality (1) is violated, which means R>1, the photons are non-classical correlated. When the two–photon detuning is −30MHz, the measured gS1,S2(2)(τ=6.4ns)=131.67±3.81 as shown in Fig. 3, and the obtained auto-correlation function of signal 1 and signal 2 aregS1,S1(2)(0)=1.2±0.1, gS2,S2(2)(0)=1.38±0.12 respectively. According to the above results, we calculate R=(1.08±0.25)×104, which strongly violates the Cauchy-Schwarz inequality, therefore the photons generated in our work are non-classical correlated.

 figure: Fig. 3

Fig. 3 Measurement of the cross-correlation function between two signals when the two–photon detuning is −30MHz. The red solid line is a guide for the eye.

Download Full Size | PPT Slide | PDF

Under this condition, the detected rate of photon pairs is 24 s−1 with CS1=3×102s1 and CS2=3×103s1 (Here, CS1,CS2represents the count rate of signal 1 and signal 2 respectively). Considering the total detecting efficiency for signal 1 of ~10% × 40% (including 10% detecting efficiency and 40% collecting efficiency) and of ~50% × 60% for signal 2 (including 50% detecting efficiency and 60% collecting efficiency), the generating rate of photon pairs is 24 s−1/(10% × 40% × 50% × 60%) = 2000 s−1. Noise here is mostly eliminated as we have used DM, space grating, and fiber grating to reduce noise of signal 1 (total transmission: 77%, isolation: 80 dB). And for signal 2, we have used three clean-up filters with 85% transmission and 90 dB isolation.

After SFWM process in this atomic ensemble, the generated hyper-entangled state of signal 1 and signal 2 can be denoted as

|ψS1S2=(|HS1|VS2+α|VS1|HS2)(|ωS1|ωS2β|ωS1+Δ23|ωS2Δ23)
Here, |HS1> (|VS1>) represents horizontal (vertical) polarized state of signal 1, ωS1andωS2are the frequency of signal 1 and signal 2 respectively. Δ23 is energy level spacing between level |2> and level |3>. α and βare the coefficients.

In our experiment, polarization entangled state is denoted as|HS1|VS2+α|VS1|HS2. According to the observed two-photon interference curves in the bases of horizontal/vertical and diagonal/anti-diagonal, shown in Fig. 4(a), we find the best fitted α1/2. Here, αis very sensitive to the two-photon detuning of pump beam according to experimental measurement, so it is very difficult to give a fixed value.

 figure: Fig. 4

Fig. 4 (a) The red and black curves are the two-photon interference curves in the bases of |V> and (|H> + |V>)/21/2 of signal 1 respectively when Δ = −50MHz. (b) The quantum beat phenomenon when Δ = −50MHz, red line is the theoretical fitted curve.

Download Full Size | PPT Slide | PDF

We investigate the polarization entanglement of photon pairs via plotting two interference curves when Δ = −50MHz as shown in Fig. 4(a). The coincidence counts between two photons are measured in different bases of signal 1 and signal 2. In the bases of |V> and (|H> + |V>)/21/2 of signal 1, we obtain the red and black interference curves respectively by changing the relative phase angle θS2 of signal 2.

The visibilities of interference curves in the bases of |V> and (|H> + |V>)/21/2 are 96.1% ± 0.7% and 78.2% ± 1.8% respectively, which both exceed 70.7% [22], the benchmark of Bell’s inequality. Therefore, two photons are entangled in polarization. According to the visibilities, we calculate an average visibility V' = 87.2% ± 0.9% and derive CHSH inequality parameter S = 2.47 ± 0.03 via the formula S=22V' [23]. Therefore, it further demonstrates the existence of entanglement between photons since the value of S is larger than 2, violating the CHSH inequality [24]. So, the high visibilities of interference curves shown in Fig. 4(a) and the added demonstration of violation of CHSH inequality surely demonstrate the polarization entanglement of generated photon pairs.

For the entanglement in time-frequency DOF, we measure the cross-correlation of photon pairs shown in Fig. 4(b) when the two-photon detuning is −50MHz. It is easy to see the quantum beat phenomenon which demonstrates the generated photon pairs are time-frequency entangled. A simple analysis is shown below to illustrate the demonstration of time-frequency entanglement.

In Fig. 1, when two-photon detuning is not equal to zero, two pump beams can partially couple to the atomic transition of 5S1/2(F = 3)→4D3/2(F” = 3). According to the transition selection rule, when the atoms stay on the level 4D3/2(F” = 3), there are two transition paths shown in the dotted arrow part of Fig. 1, which results in the generation of signal 1 and signal 2 via two hyperfine levels |2> and levels |3>. According to the work in [25–27], the quantum beat phenomenon will appear if there are two different transition paths, which will finally results in entanglement. Here, because the transition matrix elements of two transition paths are totally unknown (we cannot find any datasheet containing the needed transition matrix element), the precise evaluation of β is not achievable at present, and we have to estimate the value of β through data fitting method.

After fitting the experimental data usingGs1s22ebx(1+Vcos[2πvx]) [25] in Fig. 4(b), we have the best fitted v353.68MHz which is very close to ideal situation: Δ23 = 361.58MHz [28]. This proves the existence of two transition paths leading to the generation of entanglement in time-frequency DOF. We also obtain the best fitted parameter V corresponding to the visibility of quantum beat is equals to 0.35 and estimate the value of β to be 0.35 or 2.86. The reason why the value of βis not 1 mainly results from the different transition strength between two transition paths, which results in the low visibility of quantum beats in experiment. The obtained entanglement in time-frequency DOF is non-maximal. For non-maximal entanglement [29], it can verify the nonlocality of quantum mechanics without inequalities [30] in the logical arguments and reduce the detector efficiencies for loophole-free tests of Bell inequalities [31,32]. Moreover non-maximal entanglement can be transformed to maximal entanglement via entanglement concentration method, therefore the generated non-maximal entangled state may be a significant resource for quantum information processing and researching about quantum physics.

In the end of paper, we illustrate a phenomenon found in our work. When we change the detuning of pump 1 with a step of 10MHz, it is very interesting to see that quantum beat phenomenon sometimes appears and sometimes disappears as shown in Fig. 5.

 figure: Fig. 5

Fig. 5 (1)~(13) are the different results describing the different quantum beat phenomenon with the changing of two-photon detuning in the range of + 70MHz~-50MHz.

Download Full Size | PPT Slide | PDF

The curves shown in Fig. 5(1)~5(13) are results describing the different quantum beat phenomenon with the changing of two-photon detuning in the range of + 70MHz~-50MHz. Generally, the quantum beat phenomenon becomes weaker when the two-photon detuning gradually approaches to 0, and it will be stronger when the two-photon detuning is gradually away from 0.

In the following part, we make a simple analysis to explain this phenomenon. When pump 1 and pump 2 resonantly couple level |1> to level |5>, nearly all atoms are excited to level |5>, which causes that signal 1 and signal 2 can only be generated via one transition path (level |5>→level |3>→level |1>) according to the transition selection rule. Therefore, quantum beat phenomenon can hardly be observed shown in Fig. 5(8). On the contrary, if two pump beams are gradually away from resonance between level |1> and level |5>, the coupling between two pump beams and the atomic transition 5S1/2(F = 3)→4D3/2(F” = 3) becomes stronger, then signal 1 and signal 2 can be generated via two transition paths, and quantum beat phenomenon can be observed.

4. Conclusion

In conclusion, we generate a hyper-entangled photon pair in a cold 85Rb atomic ensemble. To demonstrate the polarization entanglement of photon pairs, we measure two-photon interference curves and check the violation of CHSH inequality. Besides, we use the quantum beat phenomenon observed in our experiment to verify the time-frequency entanglement of photon pairs. All results clearly demonstrate these photons with special wavelength are hyper-entangled. Our work is very useful in high-dimensional and long-distance quantum communication.

Funding

National Natural Science Foundation of China (Grant Nos. 61275115, 61435011 and 61525504).

References and links

1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef]   [PubMed]  

2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997). [CrossRef]  

3. J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003). [CrossRef]   [PubMed]  

4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef]   [PubMed]  

5. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016). [CrossRef]   [PubMed]  

6. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005). [CrossRef]   [PubMed]  

7. W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016). [CrossRef]   [PubMed]  

8. Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015). [CrossRef]  

9. T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015). [CrossRef]   [PubMed]  

10. W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010). [CrossRef]  

11. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007). [CrossRef]   [PubMed]  

12. S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

13. X. H. Li, X. Chen, and Z. Zeng, “Hyperconcentration for entanglement in two degrees of freedom,” J. Opt. Soc. Am. B 30(11), 2774–2780 (2013). [CrossRef]  

14. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004). [CrossRef]  

15. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999). [CrossRef]  

16. L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016). [CrossRef]  

17. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008). [CrossRef]   [PubMed]  

18. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009). [CrossRef]  

19. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012). [CrossRef]   [PubMed]  

20. W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014). [CrossRef]  

21. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003). [CrossRef]   [PubMed]  

22. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999). [CrossRef]  

23. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990). [CrossRef]   [PubMed]  

24. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969). [CrossRef]  

25. H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011). [CrossRef]   [PubMed]  

26. Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977). [CrossRef]  

27. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006). [CrossRef]   [PubMed]  

28. D. A. Steck, “Rubidium 85 D Line Data,” (Revision 2.1.6, 2013), http://steck.us/alkalidata/.

29. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999). [CrossRef]  

30. L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993). [CrossRef]   [PubMed]  

31. P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993). [CrossRef]   [PubMed]  

32. A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [Crossref] [PubMed]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  3. J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
    [Crossref] [PubMed]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  5. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref] [PubMed]
  6. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
    [Crossref] [PubMed]
  7. W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
    [Crossref] [PubMed]
  8. Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
    [Crossref]
  9. T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
    [Crossref] [PubMed]
  10. W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
    [Crossref]
  11. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
    [Crossref] [PubMed]
  12. S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).
  13. X. H. Li, X. Chen, and Z. Zeng, “Hyperconcentration for entanglement in two degrees of freedom,” J. Opt. Soc. Am. B 30(11), 2774–2780 (2013).
    [Crossref]
  14. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
    [Crossref]
  15. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
    [Crossref]
  16. L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
    [Crossref]
  17. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
    [Crossref] [PubMed]
  18. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
    [Crossref]
  19. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
    [Crossref] [PubMed]
  20. W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
    [Crossref]
  21. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
    [Crossref] [PubMed]
  22. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  23. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
    [Crossref] [PubMed]
  24. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
    [Crossref]
  25. H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
    [Crossref] [PubMed]
  26. Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
    [Crossref]
  27. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
    [Crossref] [PubMed]
  28. D. A. Steck, “Rubidium 85 D Line Data,” (Revision 2.1.6, 2013), http://steck.us/alkalidata/ .
  29. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
    [Crossref]
  30. L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
    [Crossref] [PubMed]
  31. P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
    [Crossref] [PubMed]
  32. A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
    [Crossref] [PubMed]

2016 (3)

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

2015 (2)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

2014 (1)

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

2010 (1)

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

2009 (1)

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

2008 (1)

2007 (1)

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

2006 (2)

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

2005 (1)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

2004 (1)

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

2003 (2)

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

1999 (3)

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

1995 (1)

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

1993 (2)

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

1990 (1)

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

1977 (1)

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Almeida, M. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Aspelmeyer, M.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Bernstein, H. J.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Bienfang, J. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Chen, J. F.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Chen, K.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, Q. F.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

Chen, S.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, X.

Chen, Y. A.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, Z. B.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Chu, S. T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Ding, D. S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

Dong, M. X.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Du, S.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Eberhard, P. H.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

Feng, M.

Gao, W. B.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Garuccio, A.

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

Gasparoni, S.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Gibbs, H. M.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Goebel, A.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Gong, Y. X.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Graham, T. M.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Gühne, O.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Guo, G. C.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

Hardy, L.

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

Hikspoors, H. M. J.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

James, D. F. V.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Jennewein, T.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Junge, M.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Kwiat, P. G.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Li, C. M.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Li, S. J.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Li, X. H.

Li, Y.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Liang, J. L.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Little, B. E.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Liu, S. L.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Loy, M. M. T.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Lu, C. Y.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Lu, X. S.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Mair, A.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Monken, C. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Morandotti, R.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Moss, D. J.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Ou, Z. Y.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Pan, J. S.

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

Pan, J. W.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Peng, C. Z.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Rarity, J. G.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Restelli, A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Shapiro, J. H.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Shi, B. S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

Shi, S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Shrestha, S.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Souto Ribeiro, P. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Tapster, P. R.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Tian, L.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Tomita, A.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

Vrehen, Q. H. F.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Walborn, S. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Wang, H.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Wang, K.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Wei, T. C.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

White, A. G.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Wong, C. W.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Wong, F. N. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Wong, G. K. L.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Xie, Z. D.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Xu, X. A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Yan, H.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Yao, X. C.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Yuan, H. X.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zeilinger, A.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Zeng, Z.

Zhang, Q.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Zhang, S.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

Zhang, Y. S.

Zhong, T.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Zhou, Z. Y.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Zou, X. B.

Chin. Phys. Lett. (2)

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Nat. Commun. (2)

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Nat. Phys. (1)

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Nature (4)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (3)

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (12)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Quantum Inf. Comput. (1)

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Other (1)

D. A. Steck, “Rubidium 85 D Line Data,” (Revision 2.1.6, 2013), http://steck.us/alkalidata/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Energy levels diagram. P1, P2 and P3 are pump1, 2 and 3; S1 and S2 are signal 1 and 2. States|1>, |2>, |3>, |4> and |5> correspond to 85Rb atomic levels of 5S1/2(F = 3), 5P1/2(F' = 2), 5P1/2(F' = 3), 5P3/2(F' = 4) and 4D3/2(F” = 4) respectively.
Fig. 2
Fig. 2 Setup of experiment. FC is fiber coupler, PBS is polarization beam splitter, HWP1, HWP 2 and HWP 3 are half-wave plate, DM is dichroic mirror, MOT is magneto-optical trap, Detector 1 is In-GaAs photon detector and Detector 2 is avalanche diode.
Fig. 3
Fig. 3 Measurement of the cross-correlation function between two signals when the two–photon detuning is −30MHz. The red solid line is a guide for the eye.
Fig. 4
Fig. 4 (a) The red and black curves are the two-photon interference curves in the bases of |V> and (|H> + |V>)/21/2 of signal 1 respectively when Δ = −50MHz. (b) The quantum beat phenomenon when Δ = −50MHz, red line is the theoretical fitted curve.
Fig. 5
Fig. 5 (1)~(13) are the different results describing the different quantum beat phenomenon with the changing of two-photon detuning in the range of + 70MHz~-50MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= [ g S1,S2 (2) (τ)] 2 g S1,S1 (2) g S2,S2 (2) 1
| ψ S1S2 =(| H S1 | V S2 +α| V S1 | H S2 )(| ω S1 | ω S2 β| ω S1 + Δ 23 | ω S2 Δ 23 )

Metrics