Abstract

Zero-index metamaterials (ZIMs) offer unprecedented ways to manipulate the flow of light, and are of interest for wide range of applications including optical cloaking, super-coupling, and unconventional phase-matching properties in nonlinear optics. Impedance-matched ZIMs can be obtained through a photonic Dirac-cone (PDC) dispersion induced by an accidental degeneracy of an electric monopole and a transverse magnetic dipole mode at the center of the Brillouin zone. Therefore, PDC is very sensitive to fabrication imperfections. In this work, we propose and demonstrate fabrication-tolerant all-dielectric ZIM in telecom regime that supports near PDC dispersion over much wider parameter space than conventional designs. The prism device integrated with Si photonics is fabricated and measured for the verification.

© 2017 Optical Society of America

1. Introduction

Optical metamaterials have attracted attention because their optical properties can be engineered. In the extreme case, the refractive index can even be driven to zero [1,2]. The effective wavelength and phase velocity of such a zero-index metamaterial (ZIM) are infinitely large, which can lead to a plethora of interesting optical phenomena and applications. These include optical cloaking [1,3], super coupling [4–7], unconventional phase-matching properties in nonlinear optics [8–11], large mode volume single mode surface emitting lasers [12,13], control of the radiation characteristics of emitters [14–18], and realization of ultralow spherical aberration lens [19]. Because the refractive index neff = (μeff∙εeff)1/2 arises due to the combined electric and magnetic properties of a material, neff = 0 can be achieved when either μeff = 0 (Mu-near-zero material) or εeff = 0 (Epsilon-near-zero material) [20]. However, this can cause the effective wave impedance Zeff ( = (μeffeff)1/2) of the metamaterial to be either zero or infinity. In both cases the reflection of light at the metamaterial interface is large, and efficient coupling of light into the material is not possible [20,21]. In the case when both μeff = 0 and εeff = 0 [1], it is possible to achieve simultaneously neff = 0 and a finite Zeff, reducing the reflection at the interface. One possible implementation of a simultaneously μ and ε-near-zero (MENZ) metamaterial, shown in Fig. 1(a), is based on a square array of dielectric pillars. This structure can support electric monopole and transverse magnetic dipole modes that feature electric and magnetic flux loops circling around each pillar, respectively as shown in Fig. 1(b). Importantly, the fields from neighboring pillars cancel one another because their fields are looping in opposite directions. As a result, D and B field components vanish, which leads to effective μeff = 0 and εeff = 0. In the structure shown in Fig. 1, this condition can be met by careful tuning of the pitch (a) and pillar diameter (2r) of the array. As a result, we can obtain a PDC as shown in Fig. 1(c). Despite several experimental demonstrations of such metamaterials [2,14,22] fabrication of these structures is challenging because the μeff = εeff = 0 degeneracy can be achieved only for a narrow range of parameters. This limitation imposes stringent constraints on the fabrication tolerances: typically less than ± 0.6% discrepancy between designed and fabricated structure is required [1]. In this work we consider the effect of fabrication tolerances on systematic variations of 2r from structure to structure. The effect of the disorder (variance) in single ZIM structure has been investigated in our earlier work based on metal-clad ZIM [22], and is not considered here.In this work, we propose and demonstrate an all-dielectric zero-index metamaterial (AD-ZIM) in the telecom regime that is robust to fabrication imperfections. Figure 1(a) illustrates the schematic of our AD-ZIM consisting of a square lattice of Si pillars on SiO2/Si substrate. Because the pillar spacing a and pillar height hSi are defined by high-resolution e-beam lithography and material growth, respectively, they can be well controlled during the fabrication process (to within 5 nm). On the other hand, the pillar diameter 2r can vary significantly because it is affected by processing conditions that include exposure dose, development time, and etching. Designs that are insensitive to variations in 2r are therefore crucial in order to enable realization of a robust ZIM. The paper is organized as follows: We first outline our design principles and present a robust ZIM design. Next, we summarize the fabrication procedure used to realize an on-chip waveguide-fed AD-ZIM prism. Then, we present our experimental measurements of refraction inside the prism, and use this information to evaluate the effective index. Finally we compare and discuss our experimental and theoretical results.

 figure: Fig. 1

Fig. 1 On-chip fabrication-tolerant AD-ZIM in the telecom regime. (a) Schematic. The inset shows the unit cell sandwiched by perfectly matched layers (PMLs). (b) Representative Ez (color) and H (black arrows) distribution at the middle of the Si pillar in a single unit cell for electric monopole (left) and magnetic dipole mode (right) at the Γ point for wavelength of 1596.7 nm. a = 918 nm, hSi = 860 nm, 2r = 528 nm were used. (c) Representative 3D dispersion surface of two modes with the k vector (kx, ky) around Γ point (a = 918 nm, hSi = 860 nm, 2r = 512 nm). Here, we omit the “dark” longitudinal magnetic dipole mode [1] for clarity.). The quality factors of monopole and dipole modes are Q > 105 and Q ~50, respectively. Different Qs result in different imaginary parts of modes’ eigenfrequencies, even when there is degeneracy in the real parts, giving rise to the quadratic dispersion around Γ point. This is confirmed by a 2D model of our structure (not shown), with infinitely long pillars: lack of out-of-plane losses results in infinitely large Qs for both modes and consequently the linear dispersion around Γ point is recovered. We note that the effect of finite and different Qs is analogous to parity-time symmetry without gain [23].

Download Full Size | PPT Slide | PDF

2. Design of fabrication-tolerant AD-ZIM

The two modes of interest in this work, shown in Fig. 1(b), are a “monopole mode” and “dipole mode” of the structure. The representative dispersion diagram for these two modes, shown in Fig. 1(c), features a photonic Dirac cone (PDC). Because each eigenfrequency of the modes forming a PDC is sensitive to the pillar geometry, including 2r, the existence of PDC is very sensitive to fabrication imperfections [16]. For example, we find that if the fabricated 2r differs from the theoretical value by more than 5 nm, the degeneracy is broken, the Dirac-like dispersion is lost, and a photonic bandgap appears. This strict fabrication tolerance is a major impediment to the realization of ZIMs in the telecom and visible wavelength regime [8,14,22]. To overcome this, we are interested in designs that are tolerant to variations in metamaterial geometry. To achieve such tolerance, both the monopole and dipole modes shown in Fig. 1(b) need to have the same eigenfrequency at the Γ-point, as well as the same dependence on structural variation (slope of Δλ/Δ2r). The latter is inversely proportional to the overlap of the mode with the pillar - ηSi. When the size of the pillar is smaller than the wavelength of light used, the modal equivalent index neq can be approximated as

neq ~  ηSinSi+ηSiO2nSiO2+ηairnair,
where ηSiO2 and ηair describe the overlap of the mode with SiO2 and air region, respectively (ηSi + ηSiO2 + ηair = 1). Therefore, in order to obtain an insensitive structure, it is important to achieve the same modal overlap for both modes. We calculate neq for both monopole and dipole modes (neq_mono and neq_di) for different hSi, and summarize the results in Fig. 2(a). In our calculations, a = 879 nm, 2r = 512 nm, nSi = 3.42 and nSiO2 = 1.45. The neq of both modes are the same when hSi = 885 nm. Using this hSi, we calculate the resonant wavelengths λmono and λdi as a function of 2r as shown in Fig. 2(b), and find that the two modes have nearly identical slopes Δλ/Δ2r for wide range of 2r, however the degeneracy is lost. From these results, we can conclude that a robust metamaterial structure needs to satisfy two important conditions: i) λmono = λdi and ii) neq_mono = neq_di. To accomplish this we investigate the dependence of λmono, λdi, neq_mono, neq_di on important lattice parameters, and approximate this dependence with the linear approximations below:
{λi ~ AihSi + Bia + Cineq_i ~ DihSi + Eia + Fi,
where Ai = ΔλihSi, Bi = Δλia, Di = Δneq_ihSi, Ei = Δneq_ia, and Ci and Fi are free parameters, and i = {mono, di}. To estimate all the coefficients in Eq. (2), we simulated each structural dependency for a and hSi. By requiring λmono = λdi and neq_mono = neq_di, we solve Eq. (1) for a and hSi, and find the optimal geometry to be a = 967 nm and hSi = 897 nm. With these values, we calculate the modal wavelength dependence on 2r as shown in Fig. 3(a). We find much more robust operation, albeit at a longer wavelength of approximately 1700 nm. However, as the Maxwell’s equations are scale invariant, as the last step we tune the operation wavelength by scaling the size of the structure as shown in Fig. 3(b). Using this approach, we derive the ideal lattice parameters to be a = 918 nm and pillar height hSi = 860 nm for our experimental demonstration, resulting in the monopole and dipole modes that are degenerate for a range of 2r as shown in Fig. 4(a). Importantly, both curves have similar slopes Δλ/Δ2r, indicating a shared wavelength λ at the Γ point. If we define “near-PDC” as a near-degeneracy with |Δλ| < 1 nm (|Δλ/λ| < 0.065%), the tolerance of the pillar diameter is extended up to ± 19 nm (2r = 508 – 546 nm). This is an order of magnitude larger tolerance window than in the case of the designs with the “accidental” degeneracy which is limited to < ± 2 nm. Figure 4(b) shows the calculated band diagrams around the Γ point for five different values of 2r, clearly illustrating the power of our concept and structural robustness of our AD-ZIM. If 2r becomes either too small or too large, the degeneracy is slightly broken, as shown in the leftmost (2r = 496 nm) and rightmost (2r = 560 nm) figures. Experimentally, we expect almost bandgap-free zero-index behavior even with a large variation in 2r. The same mechanism also allows us to tune zero-index wavelength from 1560 nm to 1620 nm simply by changing 2r. Although the lattice constant of AD-ZIM is comparable to half of the free-space wavelength, it is still much smaller than the effective wavelength of the metamaterial around Γ point, at which the effective wavelength approaches infinite. Consequently, we can treat AD-ZIM as a homogeneous bulk medium with effective constitutive parameters around the PDC wavelengths [1,24].

 figure: Fig. 2

Fig. 2 (a) neq for monopole (red dots) and dipole (blue dots) modes as a function of hSi (a = 879 nm, 2r = 512 nm). The modes have identical neq when hSi = 885 nm (circled point). (b) Wavelengths of two eigenmodes at Γ point as a function of 2r for hSi = 885 nm. In this case, Δλ/Δ2r of two modes are nearly identical for wide range of 2r, as indicated by nearly parallel curves.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Scaling laws for fabrication tolerance in AD-ZIM. (a) λ as a function of 2r with a and hSi of monopole (red dots) and dipole (blue dots) modes obtained by solving Eq. (1). The orange area indicates the near-degeneracy regime (Δλ < 1 nm). (b) λ as a function of 2r with all parameters scaled-down to 88%, 90%, and 92% of their values used in (a).

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Fabrication-tolerant PDC, insensitive to variations in 2r. (a) Γ-point wavelengths for monopole (red dots) and dipole (blue dots) modes (top) and their difference Δλ (bottom) with different pillar diameter2r. (b) Photonic band diagrams with five different 2r showing PDCs at different wavelengths. Black dots indicate “dark” longitudinal magnetic dipole mode [1].

Download Full Size | PPT Slide | PDF

3. Experimental results

To verify the zero-index behaviors and the fabrication tolerance of the AD-ZIM, we fabricated a series of AD-ZIM prisms with varying 2r, and measure the refraction of light through these prisms. To fabricate samples, we prepared a Silicon-on-insulator (SOI) wafer with hSi = 850 − 870 nm. To obtain this specific hSi we used a Si regrowth technique, depositing additional silicon by chemical vapor deposition on top of a commercially available SOI wafer with an original Si device layer thickness of 510 nm. Next, we fabricate pillar arrays in the shape of an isosceles right triangle using e-beam lithography followed by an inductively coupled plasma reactive ion etching (See Section 5. Method for the specific conditions). We note that the fabrication procedure used to realize AD-ZIM is much simpler than that we used to realize metal-clad ZIM [23].

Figure 5(a) shows representative scanning electron microscope images of a fabricated device with the optimized parameters. 22 prism devices with different 2r were fabricated on the same chip, each measuring 8 pillars across. Light is coupled into the prism from a Si waveguide that is adiabatically widened to enable prism excitation with a nearly uniform wave-front. The light propagates through the prism with a phase velocity determined by the prism’s effective index, and refracts at the output facet of the prism. The refracted light couples into a semicircular SU-8 slab waveguide, where it propagates to the edge and scatters out (See Section 5. Method). Therefore, by monitoring the intensity of the scattered signal at the output of the SU-8 waveguide, we can determine the refraction angle α. Figure 5(b) shows the refracted light from one of the prisms, as measured by a near-infrared (NIR) camera positioned above the sample. Despite strong scattering from the prism itself, the refracted beam is clearly observed at the edge of the SU-8 slab waveguide at α = 0°, consistent with our expectation of neff = 0 based on Snell’s law. In terms of diffractions at the prism output, we can consider the grating equation for our system as:

sin45°λeff_prism+sinαmλeff_SU8=m2a,
where λeff_prism and λeff_SU8 are effective wavelengths (λ/neff) in the AD-ZIM prism and the SU-8 slab waveguide, respectively. αm is m-th order’s diffraction angle and m is the diffraction order (therefore, α = α0). 2a indicates the grating pitch at the output facet of the 45° prism. If we assume λeff_prism=λeff_SU8 because of the zero effective index, αm can be approximated as:
αm~sint1(mλeff_SU82a).
By substituting m = 1, λeff_SU8 = 1.55 μm / 1.58, and a = 918 nm, we obtain αm ~49.1° which is far away from the zero-order diffraction (refraction). According to this, we can clearly distinguish the origin of the scattered spots. The observed strong spot is due to the refraction through the metamaterial prism. Some spots appear around the left-side of the SU-8 slab waveguide are due to the directional light from the Si tapered input waveguide. The strong scattering around the prism input is likely due to the impedance mismatch between the prism and waveguide, and has been observed before [14]. This scattering at the prism boundary could be suppressed by introducing an adiabatic taper with gradually changed impedance, similar to what is used to couple light into slow-light waveguides [25,26].

 figure: Fig. 5

Fig. 5 Experimental demonstration of an on-chip fabrication-tolerant AD-ZIM prism integrated with Si photonics. (a) Scanning electron microscope image of the fabricated device. The inset shows the magnified picture of the prism. (b) Representative NIR image showing light scattered from the prism (λ = 1.56 μm). The refracted beam with α ~0° is visible at the top. The white dashed line shows the outline of the SU-8 slab waveguide.

Download Full Size | PPT Slide | PDF

Figure 6 summarizes the results for three samples with different 2r. Figure 6(a) shows the angular intensity distribution of the scattered light taken along the edge of the SU-8 slab waveguide with different input wavelength from 1480 nm to 1680 nm. As we vary the input wavelength, the refraction angle α changes gradually and continuously (without a bandgap) from positive refraction angles at short wavelengths to negative refraction angles at long wavelengths. Between these two regimes, each sample clearly shows α = 0°. The zero-crossing wavelength increases as 2r increases, in agreement with the theoretical prediction shown in Fig. 4. To estimate neff, we use Snell’s law (neff = nSU8∙sin(α)/sin(45°), where nSU8 = 1.58 is the index of SU-8 polymer). Because both our simulated and measured refraction beams have a spatial broadening due to diffraction, we perform 2D Gaussian fitting for the measured and simulated near field patterns [27]. Figure 6(b) compares the simulated and measured neff. Based on this comparison, we can conclude that we have successfully demonstrated the proposed AD-ZIM concept and its fabrication tolerance. Our experimental results are in the excellent agreement with the theoretical predictions. Small discrepancies between the two may be attributed to the material parameters used in the simulations that were measured before Si growth as well as due to the tapered profile of the etched pillars with an angle of 2 – 3°.

 figure: Fig. 6

Fig. 6 Demonstration of fabrication-tolerant AD-ZIM (a = 918 nm, hSi = 860 nm). (a) Observed angular intensity distribution of the scattered light along the edge of the SU-8 slab waveguide as a function of input wavelength for samples with different 2r (for the animation showing smaller 2r variations, please see Visualization 1). (b) Estimated effective index neff for (a). Blue dots with error bars and red curves indicate the experimental and theoretical results, respectively. The theoretical results are simulated using 3D finite difference time domain (FDTD) with the same geometries of the fabricated devices. Error bars depict uncertainties in the measurement.

Download Full Size | PPT Slide | PDF

4. Conclusion

We presented on-chip fabrication-tolerant all-dielectric zero-index materials (AD-ZIMs). With a proper choice of lattice constant a and pillar height hSi, the PDC achieves fabrication tolerance against variation of pillar diameter 2r, which is obtained by engineering the structural dependencies of the target modes. We also demonstrated this concept by fabricating on-chip AD-ZIM prism devices with different 2r, and measuring their neff. Fabrication simplicity and tolerance increases the yield ratio of ZIMs dramatically, enabling many applications of on-chip ZIM including unconventional phase-matching properties in nonlinear optics [8–11] with large area. This concept can be extended to other operation wavelength regimes with different materials by changing the overall scaling factor of the pillar array.

5. Methods

For the finite element method simulation, we use commercially available software (COMSOL Multiphysics®) to find the eigenfrequencies of the unit cell as shown in the inset of Fig. 1(a). We apply periodic boundary conditions in x and y directions and 2-μm-thick PMLs in z direction. For the material parameters of the Si and SiO2, we applied the material parameters measured using spectroscopic ellipsometry [22].

In terms of the fabrication, first we performed Si growth on a commercial SOI wafer with a 500- nm Si layer on a 3- μm SiO2 layer. The native oxide was removed by brief BHF dip. Then, using a home-built chemical vapor deposition (CVD) chamber, we deposited Si with 5 mTorr SiH4 partial pressure and temperature of 775 °C. The growth rate was ~30 – 40 nm/min. We have also checked the cross section after the growth, and defects between the original Si layer and the regrown Si layer were not observed by SEM. With this regrown SOI wafer, we perform three iterations of e-beam lithography (ELS-125, Elionix) to produce Si prisms/waveguides, bottom gold mirrors, and SU-8 waveguides. For the first iteration, we spin-coated HSQ negative resist (Fox16, Dow Corning) so that the resist thickness is around 300 − 400 nm, and patterned the AD-ZIM prisms and the coupling Si tapered waveguides. The resist pattern was transferred into the Si layer by using inductively coupled plasma reactive ion etching. The second lithography step was followed by a lift-off process with using poly (methyl methacrylate) (PMMA) positive resist (495PMMA A6, MicroChem) to form bottom gold mirrors for the refraction angle measurement. For the gold deposition, we deposited 5- nm-thick titanium and 45- nm-thick gold by using an e-beam evaporator. For the third lithography step, we spin-coated SU-8 polymer (SU-8 2002, MicroChem) and formed the SU-8 slab waveguides and SU-8/Si mode converters for the optical fiber input at the cleaved facet.

To carry out the measurements, we butt-coupled a lensed fiber to the cleaved SU-8 waveguide facets. We measure light scattering from the surface to calculate the refraction angle of AD-ZIM prisms using InGaAs NIR camera (SU640HSX-1.7RT, Goodrich) through x50 objective lens while sweeping the laser wavelength of telecom tunable lasers (TSL-510, Santec). To enhance the scattering light intensity at the edge of the SU-8 slab waveguide, we deposited semicircular strip of gold along the edge of SU-8 slab. We also patterned a reference SU-8 waveguide surrounding the SU-8 slab waveguide.

Funding

Air Force Office of Scientific Research (AFOSR) (FA9550-14-1-0389); National Science Foundation (NSF) (DMR-1360889); Natural Sciences and Engineering Research Council of Canada (NSERC); Harvard Quantum Optics Center (HQOC); Japan Society for the Promotion of Science (JSPS).

Acknowledgments

We thank S. Kalchmair, A. Shneidman, I. Huang, C. Wang, Y. Sohn, and Z. Lin for discussions. We thank M. J. Burek for supporting the measurement. We thank Prof. C. Lieber for supporting Si regrowth process.

References and links

1. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011). [CrossRef]   [PubMed]  

2. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017). [CrossRef]  

3. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010). [CrossRef]  

4. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007). [CrossRef]  

5. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013). [CrossRef]   [PubMed]  

6. D. I. Vulis, O. Reshef, P. Muñoz, S. Kita, Y. Li, M. Lončar, and E. Mazur, “Integrated super-couplers based on zero index metamaterials,” in The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics (New York, NY, 2015), pp. 832–833.

7. H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016). [CrossRef]  

8. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013). [CrossRef]   [PubMed]  

9. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013). [CrossRef]  

10. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016). [CrossRef]   [PubMed]  

11. O. Reshef, Y. Li, M. Yin, L. Christakis, D. I. Vulis, P. Muñoz, S. Kita, M. Lončar, and E. Mazur, “Phase-Matching in Dirac-Cone-Based Zero-Index Metamaterials,” in Conference on Laser and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper jTu5A.53. [CrossRef]  

12. J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012). [CrossRef]   [PubMed]  

13. S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014). [CrossRef]   [PubMed]  

14. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013). [CrossRef]  

15. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002). [CrossRef]   [PubMed]  

16. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004). [CrossRef]   [PubMed]  

17. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014). [CrossRef]   [PubMed]  

18. R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013). [CrossRef]  

19. X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016). [CrossRef]  

20. V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014). [CrossRef]  

21. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009). [CrossRef]   [PubMed]  

22. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015). [CrossRef]  

23. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015). [CrossRef]   [PubMed]  

24. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009). [CrossRef]  

25. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002). [CrossRef]   [PubMed]  

26. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012). [CrossRef]   [PubMed]  

27. F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

References

  • View by:

  1. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  2. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  3. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
    [Crossref]
  4. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
    [Crossref]
  5. N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
    [Crossref] [PubMed]
  6. D. I. Vulis, O. Reshef, P. Muñoz, S. Kita, Y. Li, M. Lončar, and E. Mazur, “Integrated super-couplers based on zero index metamaterials,” in The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics (New York, NY, 2015), pp. 832–833.
  7. H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
    [Crossref]
  8. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
    [Crossref] [PubMed]
  9. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
    [Crossref]
  10. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  11. O. Reshef, Y. Li, M. Yin, L. Christakis, D. I. Vulis, P. Muñoz, S. Kita, M. Lončar, and E. Mazur, “Phase-Matching in Dirac-Cone-Based Zero-Index Metamaterials,” in Conference on Laser and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper jTu5A.53.
    [Crossref]
  12. J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
    [Crossref] [PubMed]
  13. S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
    [Crossref] [PubMed]
  14. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  15. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  16. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  17. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
    [Crossref] [PubMed]
  18. R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
    [Crossref]
  19. X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
    [Crossref]
  20. V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
    [Crossref]
  21. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
    [Crossref] [PubMed]
  22. Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
    [Crossref]
  23. B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
    [Crossref] [PubMed]
  24. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
    [Crossref]
  25. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
    [Crossref] [PubMed]
  26. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
    [Crossref] [PubMed]
  27. F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

2017 (1)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

2016 (3)

H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
[Crossref]

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

2015 (2)

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

2014 (3)

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

2013 (5)

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

2012 (2)

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

2011 (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

2010 (1)

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

2009 (2)

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

2008 (1)

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

2007 (1)

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2002 (2)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Alù, A.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Beruete, M.

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

Biagioni, P.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Boyd, S. P.

Bravo-Abad, J.

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Caglayan, H.

H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
[Crossref]

Campione, S.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Capolino, F.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Carbonell, J.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Chan, C. T.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chang, M. L.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Chua, S. L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

de Ceglia, D.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Deng, S. Z.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Dong, J. W.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Feichtner, T.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

Fleury, R.

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Hajian, H.

H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
[Crossref]

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hao, J.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

He, X. T.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Hecht, B.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

Hsu, C. W.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Huang, J. S.

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Huang, Z. Z.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Igarashi, Y.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Joannopoulos, J. D.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Johnson, S. G.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Kaminer, I.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Kita, S.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Lai, Y.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lheurette, E.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Li, Y.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Lippens, D.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Loncar, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Lu, L.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

Mahmoud, A. M.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

Mazur, E.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Muñoz, P.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Mutapcic, A.

Navarro-Cía, M.

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

Noda, S.

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Ochiai, T.

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Onoda, M.

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Oskooi, A.

Ozbay, E.

H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
[Crossref]

Pacheco-Peña, V.

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

Pick, A.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Potet, S.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Qiu, M.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Reshef, O.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Scalora, M.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

She, J. C.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Soljacic, M.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

S. L. Chua, L. Lu, J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point,” Opt. Lett. 39(7), 2072–2075 (2014).
[Crossref] [PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
[Crossref] [PubMed]

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Torres, V.

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Vanbésien, O.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Vincenti, M. A.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Vulis, D. I.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Xu, S. Z.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Yan, W.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yin, M.

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Zhao, F. L.

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Zhao, X.

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

Zhen, B.

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

ACS Photonics (1)

X. T. He, Z. Z. Huang, M. L. Chang, S. Z. Xu, F. L. Zhao, S. Z. Deng, J. C. She, and J. W. Dong, “Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration,” ACS Photonics 3(12), 2262–2267 (2016).
[Crossref]

Appl. Phys. Lett. (2)

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

H. Hajian, E. Ozbay, and H. Caglayan, “Enhanced transmission and beaming via a zero-index photonic crystal,” Appl. Phys. Lett. 109(3), 031105 (2016).
[Crossref]

IEEE T. Microw. Theory (1)

F. Zhang, S. Potet, J. Carbonell, E. Lheurette, O. Vanbésien, X. Zhao, and D. Lippens, “Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial,” IEEE T. Microw. Theory 56(11), 2566–2573 (2008).

J. Opt. (1)

V. Pacheco-Peña, V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, “ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves,” J. Opt. 16(9), 094009 (2014).
[Crossref]

Nano Lett. (1)

J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Y. Li, S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Lončar, and E. Mazur, “On-chip zero index materials,” Nat. Photonics 9(11), 738–742 (2015).
[Crossref]

Nature (1)

B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of Dirac cones,” Nature 525(7569), 354–358 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

R. Fleury and A. Alù, “Enhanced superradiance in epsilon-near-zero plasmonic channels,” Phys. Rev. B 87(20), 201101 (2013).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).
[Crossref] [PubMed]

Science (3)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

N. Engheta, “Materials science. Pursuing near-zero response,” Science 340(6130), 286–287 (2013).
[Crossref] [PubMed]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[Crossref] [PubMed]

Other (2)

D. I. Vulis, O. Reshef, P. Muñoz, S. Kita, Y. Li, M. Lončar, and E. Mazur, “Integrated super-couplers based on zero index metamaterials,” in The 6th International Conference on Metamaterials, Photonic Crystals and Plasmonics (New York, NY, 2015), pp. 832–833.

O. Reshef, Y. Li, M. Yin, L. Christakis, D. I. Vulis, P. Muñoz, S. Kita, M. Lončar, and E. Mazur, “Phase-Matching in Dirac-Cone-Based Zero-Index Metamaterials,” in Conference on Laser and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper jTu5A.53.
[Crossref]

Supplementary Material (1)

NameDescription
Visualization 1: MP4 (658 KB)      visualization 1

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 On-chip fabrication-tolerant AD-ZIM in the telecom regime. (a) Schematic. The inset shows the unit cell sandwiched by perfectly matched layers (PMLs). (b) Representative Ez (color) and H (black arrows) distribution at the middle of the Si pillar in a single unit cell for electric monopole (left) and magnetic dipole mode (right) at the Γ point for wavelength of 1596.7 nm. a = 918 nm, hSi = 860 nm, 2r = 528 nm were used. (c) Representative 3D dispersion surface of two modes with the k vector (kx, ky) around Γ point (a = 918 nm, hSi = 860 nm, 2r = 512 nm). Here, we omit the “dark” longitudinal magnetic dipole mode [1] for clarity.). The quality factors of monopole and dipole modes are Q > 105 and Q ~50, respectively. Different Qs result in different imaginary parts of modes’ eigenfrequencies, even when there is degeneracy in the real parts, giving rise to the quadratic dispersion around Γ point. This is confirmed by a 2D model of our structure (not shown), with infinitely long pillars: lack of out-of-plane losses results in infinitely large Qs for both modes and consequently the linear dispersion around Γ point is recovered. We note that the effect of finite and different Qs is analogous to parity-time symmetry without gain [23].
Fig. 2
Fig. 2 (a) neq for monopole (red dots) and dipole (blue dots) modes as a function of hSi (a = 879 nm, 2r = 512 nm). The modes have identical neq when hSi = 885 nm (circled point). (b) Wavelengths of two eigenmodes at Γ point as a function of 2r for hSi = 885 nm. In this case, Δλ/Δ2r of two modes are nearly identical for wide range of 2r, as indicated by nearly parallel curves.
Fig. 3
Fig. 3 Scaling laws for fabrication tolerance in AD-ZIM. (a) λ as a function of 2r with a and hSi of monopole (red dots) and dipole (blue dots) modes obtained by solving Eq. (1). The orange area indicates the near-degeneracy regime (Δλ < 1 nm). (b) λ as a function of 2r with all parameters scaled-down to 88%, 90%, and 92% of their values used in (a).
Fig. 4
Fig. 4 Fabrication-tolerant PDC, insensitive to variations in 2r. (a) Γ-point wavelengths for monopole (red dots) and dipole (blue dots) modes (top) and their difference Δλ (bottom) with different pillar diameter2r. (b) Photonic band diagrams with five different 2r showing PDCs at different wavelengths. Black dots indicate “dark” longitudinal magnetic dipole mode [1].
Fig. 5
Fig. 5 Experimental demonstration of an on-chip fabrication-tolerant AD-ZIM prism integrated with Si photonics. (a) Scanning electron microscope image of the fabricated device. The inset shows the magnified picture of the prism. (b) Representative NIR image showing light scattered from the prism (λ = 1.56 μm). The refracted beam with α ~0° is visible at the top. The white dashed line shows the outline of the SU-8 slab waveguide.
Fig. 6
Fig. 6 Demonstration of fabrication-tolerant AD-ZIM (a = 918 nm, hSi = 860 nm). (a) Observed angular intensity distribution of the scattered light along the edge of the SU-8 slab waveguide as a function of input wavelength for samples with different 2r (for the animation showing smaller 2r variations, please see Visualization 1). (b) Estimated effective index neff for (a). Blue dots with error bars and red curves indicate the experimental and theoretical results, respectively. The theoretical results are simulated using 3D finite difference time domain (FDTD) with the same geometries of the fabricated devices. Error bars depict uncertainties in the measurement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eq  ~   η Si n Si + η SiO2 n SiO2 + η air n air ,
{ λ i  ~  A i h Si  +  B i a +  C i n eq_i  ~  D i h Si  +  E i a +  F i ,
sin45° λ eff_prism + sin α m λ eff_SU8 = m 2 a ,
α m ~si n t1 ( m λ eff_SU8 2 a ).

Metrics