Abstract

High spatial multiplicity fiber designs are presented for homogeneous and heterogeneous 4LP-mode multicore fibers (MCFs) that support six spatial modes per core. The high-spatial-density 4LP-mode MCF design methodology is explained in detail. The influence of the number of cores on the cladding diameter (Dcl) and relative core multiplicity factor (RCMF) is investigated. The optimal core designs and MCF layouts with square and triangular lattices maintain glass fiber reliability (maximum Dcl = 250 μm). For homogeneous 4LP-mode MCFs, a 19-core triangular-lattice fiber gives the highest RCMF of 61.7. For heterogeneous 4LP-mode MCFs, an RCMF of 65.4 is obtained for a 21-core square-lattice fiber.

© 2017 Optical Society of America

1. Introduction

Space-division multiplexing (SDM) has attracted considerable attention as a method for overcoming the capacity limits of conventional single-mode single-core fibers as well as for enhancing optical fiber transmission systems [1–6]. Moreover, SDM based on multicore fibers (MCFs), few-mode fibers (FMFs), and few-mode MCFs (FM-MCFs) has been proposed to increase spatial multiplicity, which is SDM channel density per fiber, and transmission capacity [7–28].

The main issue in weakly coupled FM-MCFs is the suppression of inter-core crosstalk (XT) while achieving high spatial multiplicity, as well as the reduction of the cable cutoff wavelength (λcc) to less than 1530 nm [29]. In addition, the differential mode delay (DMD) should be reduced in order to relax the complexity of multiple-input and multiple-output (MIMO) processing at the receiver [30]. So far, various weakly coupled homogeneous and heterogeneous FM-MCFs have been fabricated with the aim of achieving more than 100 spatial channels [17, 18, 25]. The number of spatial channels can be increased by enlarging the cladding diameter (Dcl). However, to satisfy mechanical reliability, Dcl should be less than the limiting value of around 250 μm [25, 31]. Thus, the number of cores for FM-MCFs is limited by Dcl which is in turn determined by the core pitch (Λ) and outer cladding thickness (t). Therefore, it is important to focus not only on the spatial channel count but also on the spatial multiplicity of the FM-MCFs. Recently, we have proposed a 4LP-mode 19-core fiber with a triangular lattice layout, which has the highest reported relative core multiplicity factor (RCMF) of more than 60 and 100 spatial channels with Dcl of less than 250 μm [25].

In this work, we describe the detailed design and characteristics of the highest spatial multiplicity homogeneous and heterogeneous 4LP-mode MCFs with low DMD, which were not reported in our earlier experimental work [31]. Here, 4LP-mode includes the following six spatial modes: LP01, LP11a, LP11b, LP21a, LP21b, and LP02 modes. Since each mode is degenerate in terms of the polarization, we only consider one-polarization for each mode for calculating the fiber characteristics. The full-vector finite-element method [32] was used for the calculation. The design starts by determining isolated core parameters (delta, radius, etc.) in which the effective area (Aeff) and DMD of the fiber are the target characteristics. Next, the core pitch is decided by considering XT and cable cutoff wavelength trade-off for a square or triangular lattice layout, since the square or triangular lattice is the best option for dense core arrangement. Finally, the outer cladding thickness is calculated to satisfy low bending loss (BL) requirements. Based on this design procedure, a comprehensive analysis of the 4LP-mode MCF is presented. In particular, the influence of the number of cores on Dcl and RCMF is thoroughly investigated, and the optimal core designs and MCF layouts for both square and triangular lattices are presented that maintain glass fiber reliability (maximum Dcl = 250 μm). For homogeneous 4LP-mode MCF, a 19-core fiber with a triangular lattice layout yields the highest RCMF of 61.7, which was experimentally realized in our previous work [25]. For heterogeneous 4LP-mode MCF, we newly propose a 21-core fiber with a square lattice layout that yields an RCMF of 65.4.

2. Homogeneous 4LP-mode MCFs

The left panel of Fig. 1 shows the refractive index profile of the trench-assisted graded index core, which is used for each core in the 4LP-mode MCF. The center and right panels of Fig. 1 show cross-sections of 12-core fibers with square and triangular lattice layouts. Here, r1, r2, W, Δ1, Δt ( = −0.7%), t, and Λ stand for the core radius, the distance between the core center and the inner edge of trench, the thickness of the trench layer, the peak relative refractive index difference between the core and cladding, the relative refractive index difference between the trench and cladding, outer cladding thickness, and core pitch, respectively. The Δt value of −0.7% might be the limit for the regular vapor axial deposition (VAD) and outside vapor deposition (OVD) processes [33]. Here, Δt was set to −0.7% for fabricated MCFs in our previous works [6, 15, 34]. Δ stands for the relative refractive index differences between the core and cladding and is defined as Δ = Δ1 [1 − (r/r1)α], where α and r represent shape factor and the radial coordinate, respectively. In this work, α is set to 2.0 because low DMD can be achieved with a parabolic shape [35]. In Fig. 1, the cross-sections of a 12-core fiber are shown with square and triangular lattice layouts. We investigated 4LP-mode MCFs with square and triangular lattice layouts with the number of cores ranging from 12 to 27.

 figure: Fig. 1

Fig. 1 Refractive index profile of trench-assisted graded index core (left) and cross-sections of 12-core fiber with square (middle) and triangular (right) lattice layouts.

Download Full Size | PPT Slide | PDF

2.1 Core for homogeneous 4LP-mode MCFs

Figure 2 shows various fiber characteristics as a function of r1 and Δ1 at the wavelength of 1550 nm, where Δt is −0.7% and α is 2.0. The target characteristics of the 4LP-mode MCF are given as follows: the maximum Dcl is 250 μm [25], the effective area of LP01 mode (AeffLP01) is 80 μm2, the maximum DMD (max DMD) is less than 100 ps/km, and the total XT is lower than −30 dB/100 km at bending radius R = 140 mm and wavelength of 1565 nm. The max DMD indicates the group velocity difference between the fastest and slowest propagation modes. In addition, total XT indicates the XT between LP02 modes, which has the worst XT of all modes, from four neighboring cores in the square lattice or six neighboring cores in the triangular lattice layout. Note that the mode coupling coefficient between LP02 modes in neighboring cores is the largest among 4LP-modes, resulting in the largest XT of LP02 mode. In Fig. 2, the black solid line shows r1 and Δ1 at which AeffLP01 = 80 μm2, while the dashed lines show r1 and Δ1 at which max DMD is 100 ps/km for r2/r1 = 1.14, 1.15, and 1.16 for W/r1 = 0.6. Note that max DMD characteristics are insensitive to W/r1 if W/r1 is larger than 0.5. For each dashed line, the region indicated by the arrow has a max DMD that is less than 100 ps/km. The red, blue, and green shaded areas show the region where the max DMD is less than 100 ps/km for r2/r1 = 1.14, 1.15, and 1.16, respectively. The lowest max DMD is obtained in the middle of each shaded area. Finally, the r1 and Δ1 values should be chosen from the black solid line considering the max DMD. In addition, we must consider cutoff wavelength requirement (BL of LP31 mode must be greater than 1 dB/m at 1530 nm for R = 140 mm) and low BL requirement (BL of LP02 mode must be less than 0.5 dB/100 turns at 1565 nm for R = 30 mm) according to International Telecommunication Union Telecommunication (ITU-T) recommendations G.654 [29].

 figure: Fig. 2

Fig. 2 Fiber characteristics as a function of r1 and Δ1 at 1550 nm.

Download Full Size | PPT Slide | PDF

When we select r1 and Δ1 from the green area, both BL and XT will be large since Δ1 from the green area is relatively small. On the other hand, Δ1 from red area is so high that the cutoff wavelength of LP31 mode, λcc, will be longer. Therefore, it is best to select r1 and Δ1 from the blue area. By considering these requirements, (r1, Δ1) = (9.6 μm, 0.82%) with r2/r1 = 1.15, shown by red pentagram in Fig. 2, is selected for this study, at which point the max DMD is less than 18 ps/km. For these r1 and Δ1 values, all required target characteristics are satisfied if the proper W/r1 is selected.

Table 1 shows the parameters and Aeff of each mode at 1550 nm for homogeneous 4LP-mode MCFs, except for W/r1. For W/r1, if W/r1 is small while the cutoff wavelength requirement is relaxed, XT will be increased. For large W/r1, we find the opposite tradeoff. The value of W/r1 should be set carefully by considering the tradeoff, as shown in the next section. For heterogeneous 4LP-mode MCFs, as shown in section 3.1, the black and white pentagrams in Fig. 2 are selected as the two types of non-identical cores with similar Aeff with r2/r1 = 1.15. Figure 3 illustrates the max DMD as a function of wavelength for the homogeneous 4LP-mode MCFs. Moreover, Fig. 3 indicates that the max DMD over the C band is less than 20 ps/km.

Tables Icon

Table 1. Parameters of refractive index profile for homogeneous 4LP-mode MCF

 figure: Fig. 3

Fig. 3 Max DMD as a function of wavelength for homogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

2.2 XT and λcc characteristics

Here, we investigate the total XT and λcc characteristics of homogeneous 4LP-mode 12-core fibers with the square and triangular lattice layouts. Figure 4 illustrates XT and λcc as a function of core pitch, which are used to determine the optimal W/r1 value. The solid and dashed lines represent XT and λcc, respectively. The dashed-dot lines show the target XT and λcc values. To ensure 4LP-mode operation over the C band, target total XT is less than −30 dB/100 km, and λcc should not exceed 1530 nm. Red, blue, and green lines correspond to cases when W/r1W/r1opt, W/r1 > W/r1opt, and W/r1 < W/r1opt, respectively. Here, W/r1opt stands for the optimal W/r1 that can minimize Λ for FM-MCFs, and ΛXT and Λλcc represent required Λ to satisfy XT and λcc requirements, respectively. In Fig. 4, there is a large gap between ΛXT and Λλcc when W/r1 is larger or smaller than W/r1opt. Hence, we must determine W/r1opt, where ΛXT ≅ Λλcc, by varying W/r1 considering the XT and λcc requirements.

 figure: Fig. 4

Fig. 4 Concept figure of XT and λcc as a function of core pitch. (a) Λλcc is used as Λ to satisfy both the XT and λcc requirements, although ΛXT is small, and vice versa for (c). (b) Minimum Λ can be obtained when Λλcc ≅ ΛXT.

Download Full Size | PPT Slide | PDF

Figure 5 shows the core pitch as a function of W/r1 for 12-core fibers with square and triangular lattice layouts, where the core parameters are given in Table 1. Red solid and blue dashed lines represent ΛXT and Λλcc, respectively. Figure 5 indicates that W/r1 of around 0.65 can minimize the core pitch Λ for 12-core fibers with square and triangular lattice layouts, where Λ = 40.7 and 41.5 μm, respectively. Figure 6 shows the relationship between the bending loss αb of LP02 mode and the outer cladding thickness t in the outmost core at the wavelength of 1565 nm and R = 140 mm. Figure 6 indicates that t should be larger than 37.3 μm for the 12-core fibers in order to suppress αb to less than 10−3 dB/km [36].

 figure: Fig. 5

Fig. 5 Core pitch as a function of W/r1 of 12-core fiber with (a) square and (b) triangular lattice layouts.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Relationship between bending loss αb and outer cladding thickness t for homogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

From the definition of core multiplicity factor (CMF) [36], the CMF for homogeneous and heterogeneous FM-MCFs is described as follows [12, 37]:

CMF={[Ncm=1lAeff-m]/[(π/4)Dcl2](Homogeneous)[(Nc/2)m=1lAeff-p-m+(Nc/2)m=1lAeff-q-m]/[(π/4)Dcl2](Heterogeneous)
where Nc is number of cores, l is number of spatial modes (l = 6 for 4LP-mode core), and Aeff-p-m and Aeff-q-m correspond to effective area of m-th spatial mode in core p and core q, respectively. Moreover, RCMF is a ratio between CMF of FM-MCF and that of a conventional single-mode fiber, where Aeff and Dcl are 80 μm2 and 125 μm, respectively, which is given by

RCMF=CMF/[80/(π/4)1252]

When Λ is set at 40.7 and 41.5 μm and t is set at 37.3 μm for 12-core fibers with square and triangular lattice layouts, Dcl is 203.3 and 201.4 μm, respectively. In this case, RCMF is 56 for the 12-core square-lattice fiber and 57.1 for the 12-core triangular-lattice fiber. The same design procedures were performed to find high-spatial-density 4LP-mode MCF structures with core numbers ranging from 12 to 27.

2.3 RCMF of homogeneous 4LP-mode MCFs

In this section, RCMF of 4LP-mode MCFs with square and triangular lattice layouts with various numbers of cores are investigated. For each 4LP-mode MCF, the parameters of isolated cores are given in section 2.1. Core pitch and W/r1 are determined as shown in section 2.2. Figure 7 shows W/r1 and Λ as a function of the number of cores for homogeneous 4LP-mode MCFs. Solid and dashed lines represent W/r1 and Λ, while red and blue lines correspond to the results obtained for square and triangular lattice layouts, respectively. The minimum value of Λ that satisfies both the XT and λcc requirements is selected for each fiber. Here, W/r1 decreases as the number of cores increases to relax the confinement of an inner core. Furthermore, the minimum Λ tends to increase as the number of cores increases to compensate for XT degradation.

 figure: Fig. 7

Fig. 7 W/r1 and Λ as a function of the number of cores for homogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

Figure 8 demonstrates RCMF as a function of Dcl for homogeneous 4LP-mode MCFs. The red and blue lines show the results obtained for the square and triangular lattice layouts, respectively. The number of spatial channels is noted in brackets. The relationship for Dcl of square lattice layout (Dcl_s) and triangular lattice layout (Dcl_t), Λ, t, and Nc in the MCFs is described as follows:

 figure: Fig. 8

Fig. 8 RCMF as a function of Dcl for homogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

Dcl_s={10Λ+2t(Nc=12)32Λ+2t(Nc=16)25Λ+2t(Nc=21)26Λ+2t(Nc=24)
Dcl_t={27/3Λ+2t(Nc=12)23Λ+2t(Nc=13)4Λ+2t(Nc=19)219/3Λ+2t(Nc=27)

In the triangular lattice layout, the peak value of RCMF seems to be achievable at 27-core fibers; however, Dcl is 286 μm, which exceeds the upper limit of Dcl for mechanical reliability [30]. In the square lattice layout, the peak value of RCMF is at 21-core fiber. If the limit values of Dcl are set to 250 μm, the highest RCMF of 61.7 can be achieved in the 19-core triangular-lattice fiber. Therefore, the homogeneous 4LP-mode 19-core triangular-lattice fiber is the best possible candidate for achieving an RCMF of more than 60 and 100 spatial channels with a reliable Dcl. We should note that the fabrication error of the core parameters (r1, Δ1, etc.) would be in the order of several %. Even in this case, the designed MCF satisfies both the XT and λcc requirements while the max DMD varies within a few hundred picoseconds per kilometer [31].

3. Heterogeneous 4LP-mode MCFs

So far, we have numerically investigated the influence of an increased number of cores on the Dcl and RCMF of homogeneous 4LP-mode MCFs with square and triangular lattice layouts. To further increase the spatial multiplicity, employing a heterogeneous arrangement is a promising approach [38]. When designing heterogeneous MCFs, the effective index differences between each non-identical core (Δneff) should be larger than 0.5 × 10−3 to suppress the threshold bending radius (Rpk) [39] to less than 100 mm [22]. Due to the difficulty of selecting more than three types of non-identical cores with Δneff larger than 0.5 × 10−3 while achieving low DMD, we consider heterogeneous MCFs with two types of non-identical cores in this study. Moreover, to realize the heterogeneous arrangement, a minimum of two and three non-identical cores are required for the square and triangular lattice layouts, respectively. Therefore, we only demonstrate the detailed design method and characteristics for heterogeneous 4LP-mode MCFs with the square lattice layout.

3.1 Core design for heterogeneous 4LP-mode MCFs with square lattice layout

Using the same technique as that used for designing the homogeneous core, we select two non-identical cores, where (r1, Δ1) = (9.50 μm, 0.80%) is Core 1 and (9.73 μm, 0.84%) is Core 2 from the blue area in Fig. 2 in section 2.1. In these non-identical cores, Δneff of our target modes is approximately 0.6 × 10−3 for the entire C band. Table 2 shows the parameters, except for W/r1, and Aeff of each mode at the wavelength of 1550 nm for the heterogeneous 4LP-mode MCFs. Here, a heterogeneous 21-core fiber with square lattice layout is considered as an example of a heterogeneous MCF.

Tables Icon

Table 2. Parameters of the refractive index profile for heterogeneous 4LP-mode MCFs

For W/r1, we investigated the dependence of several pairs of W/r1 of Core 1 (W/r1 Core 1) and W/r1 of Core 2 (W/r1 Core 2) on RCMF, as shown in Table 3. Here, W/r1 Core 2 must be lower than that of the homogeneous 21-core fiber to relax the tight confinement of the inner core. Table 3 shows the highest RCMF of 65.4 for the heterogeneous 21-core fiber can be obtained when W/r1 Core 1 = 0.65 and W/r1 Core 2 = 0.40.

Tables Icon

Table 3. Dependence of structural parameters W/r1 Core 1 and W/r1 Core 2 on RCMF

Figure 9 shows the total XT and λcc as a function of the core pitch for the heterogeneous 21-core fiber with W/r1 Core 1 = 0.65 and W/r1 Core 2 = 0.40. The solid and dashed lines represent XT and λcc, respectively. Red and blue dashed lines correspond to λcc of Core 1 and Core 2, respectively. Here, the XT and λcc requirements are the same as those for homogeneous 4LP-mode MCFs. The inset in Fig. 9 is a schematic of the heterogeneous 21-core fiber with square lattice layout. The λcc values for both Core 1 and Core 2 were calculated in the center core, where the confinement is the highest in the fiber, and we used Core 1 as the center core as an example. Figure 9 indicates that a minimum Λ of 38.3 μm is required for the 21-core fiber with square lattice, noting that minimum Λ is restricted by Core 1 when Core 1 is used as the center core. In this case, λcc for Core 2, which is adjacent to the center core, is shorter than 1500 nm and satisfies the λcc requirement.

 figure: Fig. 9

Fig. 9 Total XT and λcc as a function of the core pitch for a heterogeneous 21-core fiber with square lattice layouts.

Download Full Size | PPT Slide | PDF

Figure 10 shows the relationship between BL αb of LP02 mode and the outer cladding thickness in the outmost core at the wavelength of 1565 nm and R = 140 mm, where W/r1 = 0.65 and 0.40 for Core 1 and Core 2, respectively. The red solid and blue dashed lines correspond to the BL of the fiber of Core 1 and Core 2, respectively. Figure 10 indicates that the minimum t of 39.2 μm is required in order to suppress αb to less than 10−3 dB/km [36] for the 21-core square-lattice fiber. Note that the outmost core of the fiber is Core 2 in this case. When Λ is set at 38.3 μm and t is set at 39.2 μm for the 21-core square-lattice fiber, Dcl is 249.1 μm, resulting in RCMF of 65.4.

 figure: Fig. 10

Fig. 10 Relationship between bending loss αb and outer cladding thickness t for heterogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

Figure 11 shows the max DMD as a function of wavelength for heterogeneous 4LP-mode MCFs, where W/r1 = 0.65 and 0.40 for Core 1 and Core 2, respectively. Red solid and blue dashed lines correspond to DMD of Core 1 and Core 2, respectively. Figure 11 indicates that the max DMD over the C band is less than 70 ps/km in both cores.

 figure: Fig. 11

Fig. 11 Max DMD as a function of wavelength for heterogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

3.2 RCMF of heterogeneous 4LP-mode MCFs with square lattice layout

Table 4 shows the optimized structural parameters for heterogeneous 4LP-mode MCFs. The parameters of Core 1 and Core 2 are given in Table 2 for each 4LP-mode MCF. The value for W/r1 Core 1, W/r1 Core 2, core pitch, and the outer cladding thickness are determined as shown in section 3.1. Figure 12 demonstrates the RCMF as a function of Dcl for heterogeneous 4LP-mode MCFs. The number of spatial channels is noted in brackets. The peak value of RCMF is achieved with the 21-core fiber. If the limit value of Dcl is set to 250 μm, the highest RCMF of 65.4 can be achieved in 21-core fibers. Therefore, the 4LP-mode 21-core fiber with a square lattice layout is a possible heterogeneous fiber candidate for achieving an RCMF of more than 65 with 100 spatial channels and a reliable Dcl.

Tables Icon

Table 4. Optimized structural parameters for heterogeneous 4LP-mode MCFs

 figure: Fig. 12

Fig. 12 RCMF as a function of Dcl for heterogeneous 4LP-mode MCFs.

Download Full Size | PPT Slide | PDF

4. Conclusion

The optimized fiber designs of high spatial multiplicity homogeneous and heterogeneous 4LP-mode MCFs were presented and the design methodology of the high-spatial-density 4LP-mode MCF has been explained in detail. Comprehensive analysis on the influence of the number of cores on Dcl and RCMF was performed to reveal the optimal layout for obtaining the highest spatial density while maintaining the mechanical reliability. For the homogeneous 4LP-mode MCF, a 19-core fiber with a triangular layout produces the highest RCMF of 61.7, which was experimentally realized in [25]. For the heterogeneous 4LP-mode MCF, we proposed a 21-core fiber with a square lattice layout, which achieved an RCMF of 65.4. The MCF design strategy presented here can be applied to MCFs with any number of modes. However, for MCFs with larger number of mode (for example, 6LP-mode), some requirements may need to be relaxed.

Funding

Part of this work was supported by the National Institute of Information and Communication Technology (NICT) Japan, under “Research and Development of Innovative Optical Fiber and Communication Technology.”

References and links

1. E. B. Desurvire, “Capacity demand and technology challenges for light-wave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006). [CrossRef]  

2. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of the 14th OptoElectronics and Communication Conference (IEEE, 2009), paper FT4. [CrossRef]  

3. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010). [CrossRef]  

4. K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

5. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]  

6. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “Few-mode multi-core fibre with highest core multiplicity factor,” in Proceedings of European Conference on Optical Communication (IEEE, 2015), paper We.1.4.3. [CrossRef]  

7. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference / National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6. [CrossRef]  

8. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012). [CrossRef]  

9. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1. [CrossRef]  

10. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2012), paper Th.3.C.1. [CrossRef]  

11. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013). [CrossRef]  

12. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014). [CrossRef]   [PubMed]  

13. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014). [CrossRef]  

14. L. Grüner-Nielsen, Y. Sun, R. V. Jensen, J. W. Nicholson, and R. Lingle, “Splicing of few mode fibers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014), paper P.1.15.

15. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015). [CrossRef]  

16. R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.34. [CrossRef]  

17. J. Sakaguchi, W. Klaus, J. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.

18. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 Space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.4.

19. Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015). [CrossRef]  

20. Y. Tobita, T. Fujisawa, K. Takenaga, S. Matsuo, and K. Saitoh, “Comparison of homogeneous and heterogeneous 2LP-mode multicore fibers for high spatial multiplicity,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM1E.2.

21. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2015), paper PDP.3.3. [CrossRef]  

22. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016). [CrossRef]  

23. P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016). [CrossRef]  

24. P. Sillard, D. Molin, K. De Jongh, and F. Achten, “Micro-bend-resistant low-DMGD 6-LP-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.5. [CrossRef]  

25. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.2.

26. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.3.

27. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

28. Y. Tobita, T. Sakamoto, T. Matsui, S. Saitoh, K. Takenaga, K. Aikawa, T. Fujisawa, S. Aozasa, K. Nakajima, and K. Saitoh, “Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), paper WF2.3. [CrossRef]  

29. ITU-T Std., “Characteristics of a cut-off shifted single-mode optical fibre and cable,” ITU-T G.654 (2016).

30. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.3.

31. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

32. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]  

33. F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014). [CrossRef]   [PubMed]  

34. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, and M. Koshiba, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4C.4. [CrossRef]  

35. P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

36. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011). [CrossRef]   [PubMed]  

37. K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012). [CrossRef]  

38. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009). [CrossRef]  

39. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011). [CrossRef]   [PubMed]  

References

  • View by:

  1. E. B. Desurvire, “Capacity demand and technology challenges for light-wave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
    [Crossref]
  2. T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of the 14th OptoElectronics and Communication Conference (IEEE, 2009), paper FT4.
    [Crossref]
  3. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  4. K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).
  5. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  6. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “Few-mode multi-core fibre with highest core multiplicity factor,” in Proceedings of European Conference on Optical Communication (IEEE, 2015), paper We.1.4.3.
    [Crossref]
  7. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference / National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
    [Crossref]
  8. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
    [Crossref]
  9. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.
    [Crossref]
  10. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2012), paper Th.3.C.1.
    [Crossref]
  11. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
    [Crossref]
  12. J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
    [Crossref] [PubMed]
  13. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
    [Crossref]
  14. L. Grüner-Nielsen, Y. Sun, R. V. Jensen, J. W. Nicholson, and R. Lingle, “Splicing of few mode fibers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014), paper P.1.15.
  15. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
    [Crossref]
  16. R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.34.
    [Crossref]
  17. J. Sakaguchi, W. Klaus, J. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.
  18. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 Space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.4.
  19. Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015).
    [Crossref]
  20. Y. Tobita, T. Fujisawa, K. Takenaga, S. Matsuo, and K. Saitoh, “Comparison of homogeneous and heterogeneous 2LP-mode multicore fibers for high spatial multiplicity,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM1E.2.
  21. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2015), paper PDP.3.3.
    [Crossref]
  22. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
    [Crossref]
  23. P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
    [Crossref]
  24. P. Sillard, D. Molin, K. De Jongh, and F. Achten, “Micro-bend-resistant low-DMGD 6-LP-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.5.
    [Crossref]
  25. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.2.
  26. T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.3.
  27. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.
  28. Y. Tobita, T. Sakamoto, T. Matsui, S. Saitoh, K. Takenaga, K. Aikawa, T. Fujisawa, S. Aozasa, K. Nakajima, and K. Saitoh, “Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), paper WF2.3.
    [Crossref]
  29. ITU-T Std., “Characteristics of a cut-off shifted single-mode optical fibre and cable,” ITU-T G.654 (2016).
  30. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.3.
  31. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).
  32. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  33. F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
    [Crossref] [PubMed]
  34. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, and M. Koshiba, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4C.4.
    [Crossref]
  35. P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.
  36. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
    [Crossref] [PubMed]
  37. K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
    [Crossref]
  38. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [Crossref]
  39. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

2014 (3)

2013 (3)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (2)

B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
[Crossref]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

2006 (1)

2002 (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Abe, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Achten, F.

Aikawa, K.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Amezcua-Correa, R.

Amma, Y.

Aozasa, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Arakawa, Y.

Bigot-Astruc, M.

Chandrasekhar, S.

Chen, H.

Chen, Y.

De Jongh, K.

Desurvire, E. B.

Dimarcello, F. V.

Essiambre, R.-J.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Foschini, G. J.

Goebel, B.

Gooijer, F.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Hanik, N.

Hanzawa, N.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Hayashi, T.

Jung, Y.

Kasahara, K.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Kasahara, M.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Kohki, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

Koshiba, M.

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kramer, G.

Kuschnerov, M.

Kuyt, G.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Lankl, B.

Liu, X.

Lobato, A.

Matsui, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Matsuo, M.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Matsuo, S.

Matthijsse, P.

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Miyamoto, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Mizuno, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Molin, D.

Monberg, E.

Morioka, T.

Nakajima, K.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ning Guan, S.

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Okonkwo, C. M.

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Richardson, D. J.

Ryf, R.

Saitoh,

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

F. Ye, J. Tu, K. Saitoh, and T. Morioka, “Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers,” Opt. Express 22(19), 23007–23018 (2014).
[Crossref] [PubMed]

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Saitoh, S.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Sakamoto, T.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Shimakawa, O.

Sillard, P.

Sleiffer, V. A. J. M.

Takenaga, K.

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

J. Tu, K. Saitoh, K. Takenaga, and S. Matsuo, “Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay,” Opt. Express 22(4), 4329–4341 (2014).
[Crossref] [PubMed]

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Tanigawa, S.

Taru, T.

Taunay, T. F.

Tobita, Y.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

Tsujikawa, K.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

Tu, J.

Velazquez-Benitez, A. M.

Winzer, P. J.

Yamamoto, F.

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Yan, M. F.

Ye, F.

Zhu, B.

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

IEEE Photonics J. (1)

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, and M. Koshiba, “Design of few-mode fibers for mode-division multiplexing transmission,” IEEE Photonics J. 5(6), 7201207 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Takenaga, Y. Sasaki, S. Ning Guan, M. Matsuo, K. Kasahara, Saitoh, and M. Koshiba, “Large effective-area few-mode multicore fiber,” IEEE Photonics Technol. Lett. 24(21), 1941–1944 (2012).
[Crossref]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[Crossref]

J. Lightwave Technol. (8)

Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
[Crossref]

P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
[Crossref]

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
[Crossref]

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores),” J. Lightwave Technol. 33(5), 3–5 (2015).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

E. B. Desurvire, “Capacity demand and technology challenges for light-wave systems in the next two decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[Crossref]

B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. Monberg, and F. V. Dimarcello, “High-capacity space-division-multiplexed DWDM transmissions using multicore fiber,” J. Lightwave Technol. 30(4), 486–492 (2012).
[Crossref]

Nanophotonics (1)

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5), 441–454 (2013).

Nat. Photonics (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (4)

Other (21)

Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, and M. Koshiba, “High-density multicore fiber with heterogeneous core arrangement,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4C.4.
[Crossref]

P. Matthijsse, D. Molin, F. Gooijer, and G. Kuyt, “On the design of wide bandwidth window multimode fibers,” in Proceedings of the 54th International Wire and Cable Symposium (IWCS, 2005), pp. 332–337.

Y. Tobita, T. Fujisawa, K. Takenaga, S. Matsuo, and K. Saitoh, “Comparison of homogeneous and heterogeneous 2LP-mode multicore fibers for high spatial multiplicity,” in Frontiers in Optics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM1E.2.

R. Ryf, H. Chen, N. K. Fontaine, A. M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2015), paper PDP.3.3.
[Crossref]

P. Sillard, D. Molin, K. De Jongh, and F. Achten, “Micro-bend-resistant low-DMGD 6-LP-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th1J.5.
[Crossref]

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5A.2.

T. Mizuno, K. Shibahara, H. Ono, Y. Abe, Y. Miyamoto, F. Ye, T. Morioka, Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, and M. Yamada, “32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “High spatial density few-mode multi-core fiber with low differential mode delay characteristics,” in Proceedings of the 21st OptoElectronics and Communication Conference (IEEE, 2016), paper MC2–3.

Y. Tobita, T. Sakamoto, T. Matsui, S. Saitoh, K. Takenaga, K. Aikawa, T. Fujisawa, S. Aozasa, K. Nakajima, and K. Saitoh, “Optimum design of 4LP-mode multicore fibers with low differential mode delay for high spatial multiplicity,” in Proceedings of IEEE Photonics Conference (IEEE, 2016), paper WF2.3.
[Crossref]

ITU-T Std., “Characteristics of a cut-off shifted single-mode optical fibre and cable,” ITU-T G.654 (2016).

K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, H. Nasu, and T. Morioka, “Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.3.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, Y. Mizuno, Y. Abe, S. Kohki, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 µm,” J. Lightwave Technol. (to be published).

L. Grüner-Nielsen, Y. Sun, R. V. Jensen, J. W. Nicholson, and R. Lingle, “Splicing of few mode fibers,” in Proceedings of European Conference on Optical Communication (IEEE, 2014), paper P.1.15.

R. V. Jensen, L. Grüner-Nielsen, N. H. Wong, Y. Sun, Y. Jung, and D. J. Richardson, “Demonstration of a 9 LP-mode transmission fiber with low DMD and loss,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W2A.34.
[Crossref]

J. Sakaguchi, W. Klaus, J. D. Mendinueta, B. J. Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Realizing a 36-core, 3-mode fiber with 108 spatial channels,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.2.

K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, “114 Space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.4.

T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, and F. Yamamoto, “Few-mode multi-core fibre with highest core multiplicity factor,” in Proceedings of European Conference on Optical Communication (IEEE, 2015), paper We.1.4.3.
[Crossref]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference / National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
[Crossref]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.1.
[Crossref]

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SMD/222 WDM 456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proceedings of European Conference and Exhibition on Optical Communication (IEEE, 2012), paper Th.3.C.1.
[Crossref]

T. Morioka, “New generation optical infrastructure technologies: ‘EXAT initiative’ towards 2020 and beyond,” in Proceedings of the 14th OptoElectronics and Communication Conference (IEEE, 2009), paper FT4.
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Refractive index profile of trench-assisted graded index core (left) and cross-sections of 12-core fiber with square (middle) and triangular (right) lattice layouts.
Fig. 2
Fig. 2 Fiber characteristics as a function of r1 and Δ1 at 1550 nm.
Fig. 3
Fig. 3 Max DMD as a function of wavelength for homogeneous 4LP-mode MCFs.
Fig. 4
Fig. 4 Concept figure of XT and λcc as a function of core pitch. (a) Λ λ cc is used as Λ to satisfy both the XT and λcc requirements, although ΛXT is small, and vice versa for (c). (b) Minimum Λ can be obtained when Λ λ cc ≅ ΛXT.
Fig. 5
Fig. 5 Core pitch as a function of W/r1 of 12-core fiber with (a) square and (b) triangular lattice layouts.
Fig. 6
Fig. 6 Relationship between bending loss αb and outer cladding thickness t for homogeneous 4LP-mode MCFs.
Fig. 7
Fig. 7 W/r1 and Λ as a function of the number of cores for homogeneous 4LP-mode MCFs.
Fig. 8
Fig. 8 RCMF as a function of Dcl for homogeneous 4LP-mode MCFs.
Fig. 9
Fig. 9 Total XT and λcc as a function of the core pitch for a heterogeneous 21-core fiber with square lattice layouts.
Fig. 10
Fig. 10 Relationship between bending loss αb and outer cladding thickness t for heterogeneous 4LP-mode MCFs.
Fig. 11
Fig. 11 Max DMD as a function of wavelength for heterogeneous 4LP-mode MCFs.
Fig. 12
Fig. 12 RCMF as a function of Dcl for heterogeneous 4LP-mode MCFs.

Tables (4)

Tables Icon

Table 1 Parameters of refractive index profile for homogeneous 4LP-mode MCF

Tables Icon

Table 2 Parameters of the refractive index profile for heterogeneous 4LP-mode MCFs

Tables Icon

Table 3 Dependence of structural parameters W/r1 Core 1 and W/r1 Core 2 on RCMF

Tables Icon

Table 4 Optimized structural parameters for heterogeneous 4LP-mode MCFs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CMF= { [ N c m = 1 l A eff- m ] / [ ( π / 4 ) D cl 2 ] ( Homogeneous ) [ ( N c / 2 ) m = 1 l A eff- p - m + ( N c / 2 ) m = 1 l A eff- q - m ] / [ ( π / 4 ) D cl 2 ] ( Heterogeneous )
RCMF = CMF / [ 80 / ( π / 4 ) 125 2 ]
D cl_s = { 10 Λ + 2 t ( N c = 12 ) 3 2 Λ + 2 t ( N c = 16 ) 2 5 Λ + 2 t ( N c = 21 ) 26 Λ + 2 t ( N c = 24 )
D cl_t = { 2 7 / 3 Λ + 2 t ( N c = 12 ) 2 3 Λ + 2 t ( N c = 13 ) 4 Λ + 2 t ( N c = 19 ) 2 19 / 3 Λ + 2 t ( N c = 27 )

Metrics