Abstract

Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.

© 2017 Optical Society of America

1. Introduction

The significant advances in the emerging concept of metasurfaces have empowered rapid growths of ultrathin electromagnetic (EM) devices which can arbitrarily control the wavefront by introducing field discontinuities across the interface [1]. The metasurface is generally recognized as a 2D equivalence of metamaterials, which usually consists of flat inhomogeneous array of subwavelength-scaled meta-atoms. The appeal of metasurfaces lies in their maintaining of ultrathin thickness meanwhile creating exotic phenomenon that are otherwise difficult or even impossible with naturally occurring materials, such as anomalous refraction and reflection [1–3]. So far, a number of intriguing EM devices based on metasurface technique have been implemented to demonstrate the unique EM properties, showing a promising prospect for real-world applications, such as invisibility cloaks [4], polarizers [5], flat lens [6], holographic imagers [7,8], etc.

Recently, a new concept of digital or coding metamaterial and metasurface has been reported to manipulate the EM wave radiation and scattering by elaborately designing the coding sequences [9,10], which is quite different to the conventional metamaterials typically described with effective medium theory or phase gradients. The newly emerged concept of geometric-phase-coded metasurface enables further simplification of the design and optimization procedure of the digital metasurface [11]. In particular, by encoding the metasurface with randomized coding sequences, the diffusion-like scattering can be invoked by the destructive interference of the radiations from each constituent element, resulting in significant reduction of the backward radar cross section (RCS), indicating its potentials in stealth technique and many other useful applications [9–17]. However, this kind of coding metasurfaces are exclusively composed of structured meta-atoms with optically opaque materials (e.g. gold or copper), which may limit their applications on windows or domes for observation and communication. In general, an optically transparent metasurface could be required wherever the optical field continuity for viewing through the metasurface is inevitably necessary. For example, aircraft or satellite windows with reduced RCS to escape from radar detection, room windows to prevent radio leakage and electronic surveillance, aesthetic presentation isolating the unwanted radiation, and observation windows in microwave anechoic chamber or EM shielding room. Furthermore, the metasurface with high optical transparency is also an appealing candidate for integration with solar panels. Interestingly, some works based on optically transparent techniques have shown their potentials in some practical microwave applications, such as frequency selective surface [18,19], metamaterial absorbers [20], and transparent antennas [21,22]. Yet, similar concept has not been introduced to microwave metasurface designs.

In this paper, we report the design of a diffusion-like coding metasurface based on highly optically transparent and electrically conductive material (indium tin oxide, ITO) deposited on transparent and flexible back-grounded polyethylene terephtalate (PET) substrate that shows broadband reduction of backward scattering in microwave frequencies. By selecting two particular meta-atoms with out of phase reflection property as the digital bits of “0” and “1”, and extending them according to a pre-design randomized coding sequence, the metasurface can generate a diffusion-like scattering, therefore significantly restrict the specular reflection with at least 10 dB reduction over a broad frequency band from 7.8 GHz to 15 GHz. In addition, the superior performance is insensitive to the incident polarizations, and can be well preserved as the oblique incident angle up to about 50° for both wave polarizations. The use of a plastic substrate has major advantages of lightweight and flexibility, which holds the promise to extend the diffusion-like scattering to conformal cases and therefore may be applied to novel conformal EM shielding and RCS reduction. As an exemplary demonstration, the flexible coding metasurface is conformally wrapped onto a metallic cylinder and achieves broadband performance in suppressing the backward scattering, validating its potential use in window applications as above-mentioned.

2. Design of coding elements

The conductive inclusions composing the meta-atom often act as strong EM resonator and responses mainly due to their geometric patterns. In order to design the meta-atom with optically transparency, the conductive materials should simultaneously have high electrical conductivity and high optical transmittance. Fortunately, intense works of transparent conductors in recent decades have reported several realization methods [23], such as transparent conducting oxide [24], metallic nanowire network [25], perforated continuous metallic films [26], and graphene [27]. In this paper, we use the off-the-shelf commercial product of ITO film to design the coding metasurface.

In a 1-bit coding reflective metasurface, two elements with 180° phase difference are utilized to act as the digital byte of “0” and “1”, and further to form certain custom-designed coding sequences to manipulate the EM wave scattering and radiation. The designed digital elements are schematically illustrated in the upper panel of Fig. 1(a), where ITO thin film with a thickness of 185 nm is used to form the top conductive patterns (a square and a circular patch) and the ground plane, while the flexible PET is used as dielectric substrate with a thickness of 2.55 mm, a relative permittivity of 2.65 and loss tangent of about 0.015. The total thickness is less than 0.1λ (λ is the wavelength corresponding to the center frequency of the working band). The conductivity of the ITO film in the microwave region is about 6.76 × 105 S/m, which results in an equivalent surface resistance of 8 Ω/sq. Consider the use of lossy conductive material, one should carefully optimized the geometric configuration to minimize the surface currents flowing on the metal films to reduce the ohmic loss, which may be different to that with complex resonant structures [11–13]. The reflection of current design does not undergo much attenuation as shown in Fig. 1(b), where full wave analysis is performed to curve the EM responses and the reflection amplitude is uniformly kept at nearly unity across the entire frequency band for both two digital elements. Meanwhile, a nearly constant 180° reflection phase difference within a broad frequency band ranging from 8 GHz to 15 GHz can be achieved under the illumination of a plane wave, offering possibility to design a broadband diffusion metasurface for scattering suppression. Since the phase responses of elements are mainly due to the resonant feature of the structure, one should properly optimize the geometric parameters of the patches to separate the resonant frequency of the two elements (the resonant frequency of the two elements are 8 GHz and 12 GHz, respectively), thus offering a desired 180° phase difference.

 figure: Fig. 1

Fig. 1 (a) Digital elements of “0” (upper-left panel) and “1” (upper-right panel) with optimized geometric parameters of, in millimeters, p = 8, r = 3.5, l = 2.2, t = 2.55. Bottom panel shows the overall view of the coding metasurface with a random distribution of digital elements. (b) Simulated reflection spectra of the digital elements “0” and “1”.

Download Full Size | PPT Slide | PDF

Considering a metasurface containing an array of M × N elements and a plane wave illumination, the scattering pattern from the metasurface can be characterized by the superposition of the scattering wave from each constituent element, which can be derived as

Etol=m=1Mn=1NEm,n(θ,φ)ejφm,n,
where Em,n is the vector far-field scattered by the element located at position of [m, n], θ and φ are the polar and azimuthal angle, respectively. When the initial phase φm,n of the element [m, n] is applied with 0° and 180° randomly, the far-field scattering field will undergo complex interferences in a random manner and thus be reflected to many directions similar to that of light illuminating onto a rugged surface, resulting in low backward scattering.

3. Diffusion-like coding metasurface

Considering there are countless possibilities to determine the randomized coding sequences, we just investigate one certain case as a proof of concept to demonstrate the optically transparent diffuse metasurface. We use a configuration of 3 × 3 identical elements as a supercell to better comply with the boundary condition that used in simulation, where periodic boundary hypothesis is used to obtain the optimized geometric parameters. In general, the dimension of the supercell should be around the working wavelength. As for smaller supercell, the diffusion-like scattering can also be excited but with a little narrow bandwidth. Then the digital elements are uniformly extended in a finite sheet of 240 × 280 mm2 according to a computer-generated pseudorandom 1-bit coding sequence, as shown in the bottom panel of Fig. 1(a). The coding metasurface is composed of totally 30 × 35 = 1050 elements. Full wave simulations are performed on the entire coding metasurface to validate the diffusion scattering performance. The three dimensional (3D) far-field radiation patterns under the normal illumination of a plane wave are shown in Fig. 2. It clearly presents that the scattered wave from the metasurface are randomly spread into numerous directions in the whole upper half-space at 9 GHz, 11 GHz and 13 GHz for both x- and y-polarized incidence, indicating its polarization independent, broadband performances. In contrast, the 3D far-field result of a bare same-sized metallic slab only has a dominating specular reflection with ultra-low side-lobes, as shown in Fig. 2(d) and (h). The working mechanism can also be extended to oblique incident cases as shown in Fig. 2(i)-(k), where the metasurface works well under the EM waves with different incidence angle (15°, 30°, 45°) at 13 GHz. Similar diffusion-like scattering can also be found under x-polarized incidence or at other frequencies during the working band.

 figure: Fig. 2

Fig. 2 The 3D backward scattering patterns under the normal illumination of (a)-(c) x-polarized ((b)-(d) for y-polarized incidence) plane wave at 9 GHz, 11 GHz, and 13 GHz, respectively, as well as the (d) corresponding results ((h) for y-polarized incidence) from a same-sized metallic slab at 13 GHz. The 3D backward scattering patterns of the metasurface under y-polarized incidence with different angle of (i) 15°, (j) 30°, and (k) 45° at 13 GHz, respectively, as well as (j) the corresponding result from a same-sized metallic slab with incident angle of 45° at 13 GHz.

Download Full Size | PPT Slide | PDF

For real applications, flexible low scattering metasurface is more favored to use in curved surfaces and objects. Therefore, the proposed metasurface is conformally wrapped around a metallic cylinder with a diameter of 180 mm and a height of 240 mm. The EM wave scattering is calculated when the metallic cylinder is coated with the flexible coding metasurface and illuminated by monochromatic plane wave propagating along –z direction. We can qualitatively see that at different frequencies shown in Fig. 3(a)-(c) the backward scattering is reduced to very low level and re-distributed to enormous directions within a broad bandwidth, which is intrinsically distinct from that of a bare metallic cylinder (Fig. 3(d)) with the scattered waves only radially confined in y-z plane. These results demonstrate that the flexible coding metasurface can significantly suppress the backward scattering in a broad frequency band, revealing its potential uses in conformal applications.

 figure: Fig. 3

Fig. 3 Calculated 3D backward scattering patterns of (a)-(c) a metasurface-coated cylinder at 9 GHz, 11 GHz and 13 GHz, respectively, as well as (d) bare metallic cylinder at 13 GHz.

Download Full Size | PPT Slide | PDF

4. Experimental results

Figure 4(a) shows the photograph of the fabricated prototype. High optical transparency (about 80%) of the sample can be observed. To validate the concept, experimental measurements are carried out in a microwave chamber with a pair of broadband horn antennas serving as the transmitter and receiver. The unity reflection is calibrated to a same-sized copper slab. Figure 4(b) shows the measured backward reflections as a function of frequency, which roughly consistent with the full-wave simulated results. A low specular reflection below 0.1 can be obtained from 8 GHz to about 15 GHz for both x- and y-polarized incidences. The reflection amplitude of the metasurface element is uniformly kept at nearly unity across the entire working band, indicating that there is negligible energy dissipation during the EM wave coupling and scattering. Therefore, the low backward reflection of the metasurface is mainly attributed to the diffusion-like scattering. To further confirm the result of low-level backward scattering, we have also measured the E-plane scattering patterns of the metasurface by experimentally detecting the scattered wave at different reflection angles from −65° to 65° with an interval of 10° while the transmitting antenna is fixed at the angle of 5°. The inset of Fig. 4(b) obviously shows that at least 10 dB backward scattering reduction in all directions can be achieved across the entire frequency band from 8 GHz to 15 GHz for x-polarized incidence (similar result is obtained for y-polarization incidence), which demonstrate the powerful ability of the polarization-insensitive coding metasurface in suppressing backward scatterings.

 figure: Fig. 4

Fig. 4 (a) Photograph of the fabricated sample. (b) Simulated and measured reflections of the flat coding metasurface under the normal illumination of a plane wave. Inset shows the measured far-field backward scattering patterns in E-plane of the flat coding metasurface under the illumination of x-polarized incidence.

Download Full Size | PPT Slide | PDF

The robust angular-dependent performance is an important criterion to evaluate the metasurface in practical applications. The mirror reflections of the coding metasurface measured at different oblique incident angles (5° to 55°, with an increment of 10°) for both transverse electric (TE) and transverse magnetic (TM) polarizations are shown in Fig. 5(a)-(d). It clearly shows that the ultrathin metasurface have a good angular performance with the scattering reduction bandwidth nearly unchanged till the incidence angle up to about 40° for all wave polarizations, which further indicates its potential uses in practical applications.

 figure: Fig. 5

Fig. 5 Measured far-field scattering reduction for TE-polarized oblique incidence with electrical field along (a) x- (b) y-direction, and for TM-polarized oblique incidence with electrical field along (c) x- (d) y-direction. (e) Measured far-field RCS (radar cross section) reduction of a metasurface-coated cylinder with different self-rotational angles.

Download Full Size | PPT Slide | PDF

To test the conformal case, two fabricated flexible metasurface sheets with identical pattern are used to conformally wrap the whole metallic cylinder with a diameter of 180 mm. The bare metallic cylinder is also tested as the calibration of the scattering. In the experiment the incidence is polarized along x-direction, and the backward scattering is measured which shows drastic reduction when employing the flexible coding metasurface. For a clear demonstration, we have measured the frequency-dependent backward scattering while rotating the cylinder arbitrarily, and the results for different θ (θ is the self-rotational angle of the cylinder with respect to x-axis, as illustrated in Fig. 3(c)) are plotted in Fig. 5(e). The excellent reduction of backward scattering observed from these results can consistently cover a broad frequency band, more or less, from 8 GHz - 14 GHz, which experimentally demonstrates that the flexible coding metasurface could be readily extended to conformal applications. In general, increasing the cylinder radius could make the phase response distribution become more random, which will benefit the diffusion-like interference. On the contrary, smaller cylinder radius will reduce the degree of disorder of the coding sequence, leading to a less efficient diffusion-like backward scattering.

5. Conclusion

In summary, we have introduced here the concept of ultra-thin optically transparent coding metasurface for backward microwave scattering reduction. The metasurface is constructed by distributing the out-of-phase digital elements made of ITO film on the surface according to the computer-generated randomized coding sequence. We have realized a low backward scattering with at least 10 dB reduction in a broad frequency band when covering the flexible metasurface on flat or curved metallic objects. Experiments have been carried out to validate the simulated predictions, which show stable scattering performance to different incident angles and polarizations. Additional features, for instance, tunability, may be envisaged with tunable optical transparent materials (e.g. graphene) by controlling the external stimulations, which will further extend the impact of this concept [28,29]. In general, we believe that the design methodology is not limited to scattering suppression but can also be applied to other diverse functions, such as anomalous reflection, beam generation, skinny mantle cloak, etc. The proposed design can also be readily scaled to other microwave bands or even terahertz region. With the advantage of flexible implementation and simple design, our proposal may be employed wherever optical field continuity for viewing is necessary, such as in windows, domes and solar panel applications.

Funding

National Nature Science Foundation of China (61671231, 61571218, 61571216, 61301017, 61371034).

Acknowledgments

This work is partially supported by the Research Innovation Program for College Graduates of Jiangsu Province (KYZZ15_0028), PAPD of Jiangsu Higher Education Institutions, and Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves.

References and links

1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef]   [PubMed]  

2. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012). [CrossRef]   [PubMed]  

3. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012). [CrossRef]   [PubMed]  

4. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015). [CrossRef]   [PubMed]  

5. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012). [CrossRef]   [PubMed]  

6. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012). [CrossRef]   [PubMed]  

7. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013). [CrossRef]  

8. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013). [CrossRef]  

9. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014). [CrossRef]  

10. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014). [CrossRef]   [PubMed]  

11. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016). [CrossRef]   [PubMed]  

12. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015). [CrossRef]  

13. L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015). [CrossRef]  

14. L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015). [CrossRef]  

15. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016). [CrossRef]   [PubMed]  

16. J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016). [CrossRef]  

17. Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016). [CrossRef]   [PubMed]  

18. Y. Liu and J. Tan, “Experimental study on a resonance mesh coating fabricated using a UV-lithography technique,” Opt. Express 21(4), 4228–4234 (2013). [CrossRef]   [PubMed]  

19. C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001). [CrossRef]  

20. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014). [CrossRef]  

21. A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009). [CrossRef]  

22. T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014). [CrossRef]  

23. J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016). [CrossRef]  

24. C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010). [CrossRef]  

25. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef]   [PubMed]  

26. P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011). [CrossRef]  

27. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef]   [PubMed]  

28. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015). [CrossRef]  

29. O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015). [CrossRef]   [PubMed]  

References

  • View by:

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  3. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  4. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  5. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  6. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  7. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  8. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
    [Crossref]
  9. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  10. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
    [Crossref] [PubMed]
  11. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
    [Crossref] [PubMed]
  12. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
    [Crossref]
  13. L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  14. L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
    [Crossref]
  15. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
    [Crossref] [PubMed]
  16. J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
    [Crossref]
  17. Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
    [Crossref] [PubMed]
  18. Y. Liu and J. Tan, “Experimental study on a resonance mesh coating fabricated using a UV-lithography technique,” Opt. Express 21(4), 4228–4234 (2013).
    [Crossref] [PubMed]
  19. C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
    [Crossref]
  20. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  21. A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
    [Crossref]
  22. T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
    [Crossref]
  23. J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
    [Crossref]
  24. C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
    [Crossref]
  25. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  26. P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011).
    [Crossref]
  27. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  28. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
    [Crossref]
  29. O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
    [Crossref] [PubMed]

2016 (5)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

2015 (6)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

2014 (4)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

2013 (3)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
[Crossref]

Y. Liu and J. Tan, “Experimental study on a resonance mesh coating fabricated using a UV-lithography technique,” Opt. Express 21(4), 4228–4234 (2013).
[Crossref] [PubMed]

2012 (5)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

2011 (2)

P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

2009 (1)

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

2008 (1)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

2001 (1)

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Abutarboush, H. F.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Akinoglu, E. M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Balci, O.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Cai, B.

Cao, X.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, H. B.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Chen, H.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, H.-T.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Chen, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Chen, K.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, W.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Chen, W. T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Cheng, Q.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cheung, S. W.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Collings, N.

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

Cranton, W. M.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Crossland, W. A.

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

Cui, L.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

Cui, T. J.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Cui, T.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Dong, D. S.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Dudhia, M.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Engheta, N.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Fang, Z.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Fu, X. J.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gaillard, J.-F.

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

Gao, J.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Gao, L. H.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Gao, L.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giersig, M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Han, B.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Han, T.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Hao, Y.

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Hoel, C. A.

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jia, S.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Jiang, T.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

Jiang, W.-X.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, B.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Jin, B.-B.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Kakenov, N.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Kang, L.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Katsounaros, A.

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

Kempa, K.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
[Crossref]

Kocabas, C.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Koutsogeorgis, D. C.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, R.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Liang, L.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Liang, L.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Liew, S. C.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Liu, S.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Liu, W. W.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Liu, W.-W.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, X.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Liu, Y.

Lu, H.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Ma, H.-F.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, S. J.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Ma, S.-J.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Mason, T. O.

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Mias, C.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
[Crossref]

Nilavalan, R.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Patoka, P.

P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Peter, T.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Poeppelmeier, K. R.

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

Polat, E. O.

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Qi, M.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Qi, M. Q.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Rahman, T. A.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Ranson, R. M.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
[Crossref]

Shen, X.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Shi, W.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Su, P.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Sun, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Sun, Y.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Tan, J.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tsai, D. P.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tsakonas, C.

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Vilches, A.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, H.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Wang, X. K.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wen, Q.-Y.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, P.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Wu, P.-H.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, W.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Yang, H.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Yang, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Yang, Z.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

Yao, J.-Q.

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, M. J.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhai, J.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Zhang, C.

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhang, Y.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Zhao, J.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Y.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Zhou, L.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Zhou, X.

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Zhou, Y.

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

Zhu, B.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Adv. Opt. Mater. (3)

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low‐reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3(10), 1405–1410 (2015).
[Crossref]

L. Liang, M. Qi, J. Yang, X. Shen, J. Zhai, W. Xu, B. Jin, W. Liu, Y. Feng, C. Zhang, H. Lu, H.-T. Chen, L. Kang, W. Xu, J. Chen, T. J. Cui, P. Wu, and S. Liu, “Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Adv. Opt. Mater. 3(10), 1374–1380 (2015).
[Crossref]

J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, and T. J. Cui, “Controlling the Bandwidth of Terahertz Low‐Scattering Metasurfaces,” Adv. Opt. Mater. 4(11), 1773–1779 (2016).
[Crossref]

Adv. Phys. (1)

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Chem. Mater. (1)

C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, “Transparent conducting oxides in the ZnO-In2O3-SnO2 system,” Chem. Mater. 22(12), 3569–3579 (2010).
[Crossref]

Electron. Lett. (2)

A. Katsounaros, Y. Hao, N. Collings, and W. A. Crossland, “Optically transparent ultra-wideband antenna,” Electron. Lett. 45(14), 722–723 (2009).
[Crossref]

C. Tsakonas, S. C. Liew, C. Mias, D. C. Koutsogeorgis, R. M. Ranson, W. M. Cranton, and M. Dudhia, “Optically transparent frequency selective window for microwave applications,” Electron. Lett. 37(24), 1464–1466 (2001).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antenn. Propag. 62(4), 1844–1853 (2014).
[Crossref]

J. Mater. Chem. (1)

P. Patoka and M. Giersig, “Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties,” J. Mater. Chem. 21(42), 16783–16796 (2011).
[Crossref]

Light Sci. Appl. (2)

L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, and T.-J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Nano Lett. (3)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Nat. Commun. (3)

O. Balci, E. O. Polat, N. Kakenov, and C. Kocabas, “Graphene-enabled electrically switchable radar-absorbing surfaces,” Nat. Commun. 6, 6628 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 657 (2013).
[Crossref]

Nat. Mater. (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 41027 (2015).
[Crossref]

Sci. Rep. (3)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref] [PubMed]

Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han, and W. Chen, “Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm,” Sci. Rep. 6, 23896 (2016).
[Crossref] [PubMed]

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction,” Sci. Rep. 6, 20387 (2016).
[Crossref] [PubMed]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Digital elements of “0” (upper-left panel) and “1” (upper-right panel) with optimized geometric parameters of, in millimeters, p = 8, r = 3.5, l = 2.2, t = 2.55. Bottom panel shows the overall view of the coding metasurface with a random distribution of digital elements. (b) Simulated reflection spectra of the digital elements “0” and “1”.
Fig. 2
Fig. 2 The 3D backward scattering patterns under the normal illumination of (a)-(c) x-polarized ((b)-(d) for y-polarized incidence) plane wave at 9 GHz, 11 GHz, and 13 GHz, respectively, as well as the (d) corresponding results ((h) for y-polarized incidence) from a same-sized metallic slab at 13 GHz. The 3D backward scattering patterns of the metasurface under y-polarized incidence with different angle of (i) 15°, (j) 30°, and (k) 45° at 13 GHz, respectively, as well as (j) the corresponding result from a same-sized metallic slab with incident angle of 45° at 13 GHz.
Fig. 3
Fig. 3 Calculated 3D backward scattering patterns of (a)-(c) a metasurface-coated cylinder at 9 GHz, 11 GHz and 13 GHz, respectively, as well as (d) bare metallic cylinder at 13 GHz.
Fig. 4
Fig. 4 (a) Photograph of the fabricated sample. (b) Simulated and measured reflections of the flat coding metasurface under the normal illumination of a plane wave. Inset shows the measured far-field backward scattering patterns in E-plane of the flat coding metasurface under the illumination of x-polarized incidence.
Fig. 5
Fig. 5 Measured far-field scattering reduction for TE-polarized oblique incidence with electrical field along (a) x- (b) y-direction, and for TM-polarized oblique incidence with electrical field along (c) x- (d) y-direction. (e) Measured far-field RCS (radar cross section) reduction of a metasurface-coated cylinder with different self-rotational angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E tol = m=1 M n=1 N E m,n (θ,φ) e j φ m,n ,

Metrics