Abstract

Circular dichroism (CD) is useful in molecular chemistry, pharmaceuticals, and bio-sensing. In this paper, twisted Z-shaped nanostructure (TZN) is proposed to achieve giant CD. The TZN is composed of three vertical and twisted nanorods. Given that the resonance of vertical nanorod is only observable for left circularly polarized light excitation but is subdued for right circularly polarized light excitation, which leads to the giant CD effect approaching 88%. The subdued resonance of vertical nanorod can be excited by rotating the bottom nanorod. The CD properties can be tuned by the length of nanorods and the gap between them. These results would guide the design of plasmonic chiral nanostructures for achieving giant CD effect.

© 2017 Optical Society of America

1. Introduction

Circular dichroism (CD) is the different absorption coefficient for left circularly polarized (LCP) and right circularly polarized (RCP) light by chiral objects. Chiral biomolecules naturally exhibit small CD signals that are difficult to detect in experiments [1–3]. Artificial chiral plasmonic nanostructures (ACPNs) exhibit larger CD than chiral biomolecules due to surface plasmonic resonance; ACPNs have been widely applied in biological monitoring [4, 5], circular polarizer [6–8], and negative refractive index media [9–11].

CD may arise from many different modes. 3D helix and helix-like ACPNs typically produce CD owing to the significant interactions between electric and magnetic resonance [12–17]. 2D planar ACPNs, such as gammadions, present relatively small CD resulted from the existence of only electric dipole mode [18, 19]. Some previous studies have considered oblique excitation for enhancing CD [20–23]. Under LCP and RCP excitations, large CD is generated because of the existence of electric and magnetic modes. Bi-layer twisted ACPNs, such as twisted-arc, bi-layer cross, and coupled-oscillator, exhibit larger chirality than single-layer ones, where bonding and anti-bonding modes exist [24–29]. Researchers in recent works have shown that plasmonic Fano resonance can enlarge the optical chirality by 30% in 2D planar metallic nanostructure. In these studies, CD signals appear at the same resonant modes for LCP and RCP excitations [30–33]. If CD signals are designed at different modes for LCP and RCP excitations, giant CD effect would occur.

In this paper, the twisted Z-shaped nanostructure (TZN) arrays are proposed and its optical properties are theoretically investigated by finite element method (FEM) simulations. The absorption spectra exhibit that an off-resonance dip for LCP and an anti-bonding resonance peak for RCP clearly occur at the same wavelength. As a result, a pronounced CD is generated with a maximum of 88%. The current density distributions demonstrate that the resonance of vertical nanorod is only excited for LCP but is subdued for RCP light. The effects of geometric parameters on CD are also studied. These findings can guide the design with strong optical chirality for practical application in bio-sensing.

2. Structure and computational method

The TZN in this study is composed of three mutually vertically displaced and twisted nanorods, as shown in Fig. 1(a). The front and top views with the definition of the associated parameters are displayed in Figs. 1(b) and 1(c). The top and bottom nanorods are in the same geometry parameters with fixed width of 30 nm and height of 30 nm, and varied lengths L. The vertical nanorod has fixed length of 30 nm and widths of 30 nm, and varied height H. G denotes the gap between the vertical nanorod and the top or bottom nanorods; θ expresses the rotary angle of the bottom nanorod with respect to x axis, θ = 90° in the TZN [Fig. 1(c)]. The TZN can be left- or right-handed depending on the rotary angle of the bottom nanorod. In this study, the periods of the TZN arrays are fixed with Px = 300 nm and Py = 300 nm in the x and y directions, respectively.

 

Fig. 1 Configuration of TZN arrays and parameters definition (a), where the unit cell with the associated geometric features are designated in (b) x-z plane and (c) x-y plane.

Download Full Size | PPT Slide | PDF

Three-dimensional finite element method software COMSOL Multiphysics is used to calculate the transmittance of the TZN arrays. The minimum mesh size (3 nm) is 10 times less than the minimum width (30 nm) of the TZN, which satisfies the COMSOL stability criteria (convergence). The refractive index of sliver is taken from Ref [34]. and the refractive index of air is fixed as 1. The excitation sources are RCP and LCP light along the -z direction and the magnitude of the incident electric field is set at 1 V/m. The infinite array is simulated using unit cell with periodic boundary conditions along the x and y directions. The Perfectly Matched Layers are applied at the top and bottom of the computational domain for absorbing light which pass through the Ports. The transmittance is defined as T = Pout / Pin, which is the ratio of output power to incident power. The absorption is defined as A = 1-T-R, where R is reflectivity. The optical chirality is defined as CD = ALCPARCP, where ALCP and ARCP is the absorption under LCP and RCP illumination.

3. Results and discussion

The absorption and CD spectra of structures with different parameters are calculated among the wavelengths from 0.5 µm to 1.0 µm. Figure 2(a) shows that the simulated absorption and CD spectra of the TZN arrays with H = L = 140 nm, G = 20 nm, and θ = 90°. Under LCP illuminations (blue), two peaks of λ = 0.65 µm and λ = 0.79 µm and one broad dip region around λ = 0.71 µm are visibly observed. Under RCP illuminations (green), one narrow peak appears at λ = 0.71 µm. One narrow absorption peak occurs at λ = 0.70 µm for only horizontal nanorod; for the only vertical nanorod, the absorption is almost close to zero in the infrared region (not shown in this paper). At λ = 0.71 µm, the presence of dip and peak in theabsorption spectra of ALCP and ARCP leads to a significantly large CD of 88% (the red line in Fig. 2(a)). For simplicity, the resonance modes are divided into modes I, II, and III (labeled as Mode I, Mode II, and Mode III) in the CD spectrum. The CD spectra for right- and left-handed enantiomer are exactly mirror symmetric to each other. In order to investigate the associated physical dependencies of absorption spectra, the absorption of the TZN arrays under x and y polarization excitations are also studied [Fig. 2(b)]. Three peaks of λ = 0.65 µm, λ = 0.71 µm, and λ = 0.78 µm appear in the absorption spectrum. The absorption of the TZN arrays under x and y polarization excitation are overlap, which is resulted from the same parameters of top and bottom nanorods along x and y directions. Thus, the linear birefringence is negligible [26–28]. Given that a linearly polarized light consists of equivalent LCP and RCP light, the wavelength position of the absorption peaks for circular polarized light are coincident with that of linearly polarized light.

 

Fig. 2 The absorption and CD spectra of TZN arrays (a) under LCP and RCP illuminations; (b) under x and y polarization excitations.

Download Full Size | PPT Slide | PDF

The modes of different peaks are emulated to understand the absorption mechanism of TZN arrays under linear polarization excitation. Figure 3(a) plots the proportional current densities at absorption peaks of the TZN for x polarization excitation. The red arrows denote the direction of current densities. The purple arrows in Fig. 3(b) represent the equivalent electric dipole moments of nanorods. At λ = 0.65 µm, the excited currents occur in the top and vertical nanorods, while the current in the bottom nanorod is relatively weak. As a result, effective electric dipole moments occur in the top and vertical nanorods. The courter-propagating electric dipoles of the top and vertical nanorods create bright anti-bonding mode [35, 36]. Correspondingly, at λ = 0.71 µm, the major current densities are distributed in the top and bottom nanorods and associated electric dipole moments form anti-bonding mode.

 

Fig. 3 The proportional current densities and the equivalent electric dipole moments at the absorption peaks for TZN under x polarizations excitation (a) and (b); under LCP excitation (c) and (d), and RCP excitation (e) and (f). The red arrows denote the direction of current densities; the black arrows reveal the direction of small current densities distributions; the purple arrows represent the equivalent electric dipole moments of nanorods.

Download Full Size | PPT Slide | PDF

Electric dipole mode occurs at λ = 0.70 µm for one horizontal nanorod structure (not shown in this paper). At λ = 0.78 µm, the intense currents in the top and vertical nanorods form an effective electric dipole, which is regarded as the dark bonding mode.

Using this argument, the proportional current densities and the equivalent electric dipole moments at the absorption peaks of the TZN for LCP and RCP excitations are also performed, as depicted in Figs. 3(c)–3(f). For LCP, the current densities of three nanorods reveal bright anti-bonding mode at λ = 0.65 µm and dark bonding mode at λ = 0.79 µm. The pronounced off-resonance dip at λ = 0.71 µm is due to the destructive interference between the narrow bright mode and the broad dark mode. For RCP, at λ = 0.71 µm, the strong effective current densities are concentrated in the top and bottom nanorods. Accordingly, anti-bonding mode is induced. In the vertical nanorod the currents are negligible and the resonance is subdued; this phenomenon differs in LCP and RCP excitations. In other words, the effective charge oscillations in the vertical nanorod are polarization-controlled for circular polarized light, thereby resulting in the different dipoles coupled modes. The giant chirality in the absorption spectra emerges at the distinct resonance modes for LCP and RCP excitations. The chiral system of the TZN can be viewed as a right-handed enantiomer in which resonance is easier to be excited under LCP than under RCP illumination.

To explore the CD effects of TZN arrays for LCP and RCP excitations, rotary angle θ is changed from 0° to 90° with fixed H = L = 140 nm, and G = 20 nm. Under RCP excitation, the subdued resonance in vertical nanorod is excited gradually as θ decreases [Fig. 4(a)]. Figure 4(b) illustrates that the amplitude of the three CD modes weaken distinctly, and the modes exhibit smooth spectrum shift with the decrease in θ. As θ = 0°, the TZN is achiral and the three modes disappear. The shift of Modes I and II is due to the change of the asymmetric resonance line shape. Therefore, rotating the bottom nanorod enables a way to switch on and off the resonance of TZN.

 

Fig. 4 The absorption and CD spectra of TZN arrays with varied θ values.

Download Full Size | PPT Slide | PDF

The spectra of varied parameters of TZN arrays are sequentially investigated to probe the mechanism of resonance in enhancing the CD effect. Gap G is first changed from 20 nm to 40 nm with fixed H = L = 140 nm, and θ = 90° [Fig. 5(a)]. Modes I and II blue shifts, Mode III red shifts, and the magnitudes of CD signals decrease with the increase in G. Mode I is ascribed to the dark bonding mode for LCP, which presents the attraction between electric dipoles. As G increases, the attraction decreases, thereby leading to a decrease in the length of equivalent electric dipole oscillations and blue-shift of Mode I. On the contrary, Mode III is attributed to the bright anti-bonding mode showing repulsion between electric dipoles. An increase in G can decrease the repulsion, thus rendering the increased effective electric dipole moments and red-shift of Mode III. Mode II exhibits blue-shift because of the asymmetric narrowed resonance line shape with the increase in G. The increase in G causes the near-field coupling between the top or bottom nanorods and the vertical nanorod weakened. Accordingly, the resonance strength intensely weakens, thereby leading to the diminishing of CD signals. Figure 5(b) displays the CD spectra of H and L varying synchronously from 120 nm to 160 nm with fixed geometric parameters G = 20 nm and θ = 90°. Modes I, II, and III exhibit linearly red-shift with H and L increasing. This phenomenon is resulted from the extension of the effective electron oscillation length in three nanorods for LCP and RCP. Then the effect of the height of the vertical nanorod H on CD with fixed L = 140 nm, G = 20 nm, and θ = 90° is presented in Fig. 5(c). The obvious red-shifts of Modes I and III are due to the extended electric dipolar moment in resonance for LCP with the increase in H. Mode II originates from the anti-bonding mode of the top and bottom nanorods. The variation in H slightly affects the shift of Mode II compared with the shifts of Modes I and III. Figure 5(d) reveals the influence of the variation in L on CD with fixed H = 140 nm, G = 20 nm, and θ = 90°. As L increases, the three modes all present obvious red shift by reason of the extended electric dipolar moments. In Figs. 5(c) and 5(d), the CD signals are maximal at the off-resonance dip as H = L = 140 nm on account of matching resonant wavelength of nanorods. The value of H and L is relevant to the effective electron oscillation length in three nanorods. When H = L = 140 nm, the wavelength of off-resonance dip for LCP matches that of anti-boding mode peak for RCP, then CD spectrum presents the highest value. In this paper, the period is fixed at Px = 300 nm and Py = 300 nm. With the further increase of the period, the resonant wavelengths exhibit red-shift (not shown in this paper).

 

Fig. 5 The CD spectra of TZN arrays with (a) varied G values, (b) varied H and L values, (c) varied H values, and (d) varied L values.

Download Full Size | PPT Slide | PDF

Experimentally, the TZN arrays can be fabricated through three runs of aligned electron beam lithography. The TZN is composed of three separated nanorods, so the displacement between nanorods layers along the x and y directions are inevitable during experimentation. To demonstrate the effect of the displacement, the CD spectra of different relative displacements are discussed, as shown in Fig. 6. Figure 6(a) reveals the displacement Δx between the vertical and bottom nanorod along the x direction (the top and vertical nanorod layers is well-aligned). Figure 6(b) illustrates the displacement Δy of top nanorod and vertical nanorod along the y direction (the bottom and vertical nanorod are well-aligned). Figure 6 show that the tiny displacement does not affect the CD properties obviously.

 

Fig. 6 The CD spectra of TNZ arrays with different displacements: (a) displacement of vertical nanorod Δx (the vertical nanorod and the top nanorod are well-aligned); (b) displacement of top nanorod Δy (the bottom nanorod and the vertical nanorod are well-aligned).

Download Full Size | PPT Slide | PDF

4. Conclusion

The TZN with three nanorods is proposed to produce giant CD of 88% at the distinct resonance modes. The TZN can be viewed as a right-handed enantiomer in which resonance is easier to be excited under LCP than under RCP illumination as a result of the polarization-controlled feature. The simulations reveal that the chirality in the absorption spectra is attributable to the different dipoles coupled modes of three nanorods for LCP and RCP due to the polarization-controlled characteristic in vertical nanorod. The subdued resonance of vertical nanorod under RCP can be excited by rotating the bottom nanorod, thereby resulting in the on and off switch of the resonance. Moreover, CD properties are intensely dependent on the length and gap of nanorods. These results can be helpful in understanding optical chirality induced by tunable resonance and can also guide the design of artificial chiral plasmonic nanostructures with large chirality.

Funding

National Natural Foundation of China (61575117); Fundamental Research Funds for the Central Universities of Ministry of Education of China (GK201601008); Innovation Funds of Graduate Programs, Shaanxi Normal University (2015CXS033); Fundamental Research Funds For the Central Universities (2016TS037).

References and links

1. S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005). [CrossRef]   [PubMed]  

2. M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967). [CrossRef]   [PubMed]  

3. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012). [CrossRef]   [PubMed]  

4. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010). [CrossRef]   [PubMed]  

5. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013). [PubMed]  

6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef]   [PubMed]  

7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012). [CrossRef]   [PubMed]  

8. Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011). [CrossRef]   [PubMed]  

9. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef]   [PubMed]  

10. T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013). [CrossRef]  

11. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009). [CrossRef]  

12. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012). [CrossRef]   [PubMed]  

13. C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013). [CrossRef]   [PubMed]  

14. Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014). [CrossRef]   [PubMed]  

15. Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016). [CrossRef]   [PubMed]  

16. J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016). [CrossRef]   [PubMed]  

17. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016). [CrossRef]   [PubMed]  

18. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005). [CrossRef]   [PubMed]  

19. W. X. Huang, Y. Zhang, X. M. Tang, L. S. Cai, J. W. Zhao, L. Zhou, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36(17), 3359–3361 (2011). [CrossRef]   [PubMed]  

20. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012). [CrossRef]  

21. X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014). [CrossRef]   [PubMed]  

22. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013). [CrossRef]   [PubMed]  

23. X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014). [CrossRef]  

24. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014). [CrossRef]   [PubMed]  

25. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009). [CrossRef]   [PubMed]  

26. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010). [CrossRef]   [PubMed]  

27. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009). [CrossRef]  

28. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013). [CrossRef]   [PubMed]  

29. Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015). [CrossRef]  

30. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016). [CrossRef]  

31. S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016). [CrossRef]   [PubMed]  

32. M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016). [CrossRef]   [PubMed]  

33. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016). [CrossRef]   [PubMed]  

34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

35. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013). [CrossRef]  

36. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
    [Crossref] [PubMed]
  2. M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
    [Crossref] [PubMed]
  3. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  4. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  5. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
    [PubMed]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
    [Crossref] [PubMed]
  8. Y. Yu, Z. Yang, S. Li, and M. Zhao, “Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials,” Opt. Express 19(11), 10886–10894 (2011).
    [Crossref] [PubMed]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  10. T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
    [Crossref]
  11. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  12. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
    [Crossref] [PubMed]
  13. C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
    [Crossref] [PubMed]
  14. Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
    [Crossref] [PubMed]
  15. Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
    [Crossref] [PubMed]
  16. J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
    [Crossref] [PubMed]
  17. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
    [Crossref] [PubMed]
  18. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref] [PubMed]
  19. W. X. Huang, Y. Zhang, X. M. Tang, L. S. Cai, J. W. Zhao, L. Zhou, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a planar metamaterial with chiral symmetry breaking,” Opt. Lett. 36(17), 3359–3361 (2011).
    [Crossref] [PubMed]
  20. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
    [Crossref]
  21. X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
    [Crossref] [PubMed]
  22. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
    [Crossref] [PubMed]
  23. X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
    [Crossref]
  24. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref] [PubMed]
  25. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
    [Crossref] [PubMed]
  26. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  27. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [Crossref]
  28. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  29. Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
    [Crossref]
  30. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
    [Crossref]
  31. S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
    [Crossref] [PubMed]
  32. M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
    [Crossref] [PubMed]
  33. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
    [Crossref]
  36. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]

2016 (7)

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref] [PubMed]

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

2014 (4)

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

2013 (6)

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

2012 (4)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

2011 (2)

2010 (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

2009 (5)

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

2005 (2)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1967 (1)

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Aizpurua, J.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bai, P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Bao, Y.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Blaber, M. G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Cai, L. S.

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Cao, B.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chai, Z.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Chen, L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Deng, J.

Ding, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Duan, J.

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Fang, Y. R.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Fang, Z.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Fry, H. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Fu, J.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Fu, T.

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Giessen, H.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Gong, Q. H.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

He, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Hendry, E.

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hopkins, B.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Hu, J.

Hu, X. Y.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Huang, C. P.

Huang, W. X.

Huang, Z.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Ingram, W.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jess, T. J.

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kang, L.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Kito, Y.

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Kivshar, Y. S.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Kotov, N. A.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Kuang, H.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Larsen, G. K.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Li, E. P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Li, R.

Li, S.

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lin, Y.

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, H.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Liu, N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lu, X.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Lu, Z.

Ma, W.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Neuman, T.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Ng, J.

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

Ni, W.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Poddubny, A. N.

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Price, N. C.

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Qu, Y.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Rosi, N. L.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Schäferling, M.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Schatz, G. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Shvets, G.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Song, C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Soukoulis, C.

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Takezaki, M.

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

Tang, X. M.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, X. R.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, C.

Wang, G.

Wang, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Wang, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Wang, Q. J.

Wang, Y.

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wu, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Wu, L.

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Xie, Z.

Xu, C.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Xu, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Yang, H.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Yang, Z.

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Yu, Y.

Zhan, L.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhang, B.

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Zhang, P.

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A 30(9), 1714–1718 (2013).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Zhao, G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhao, J.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhao, J. W.

Zhao, M.

Zhao, R.

Zhao, X.

Zhao, Y.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zheng, Y.

Zhou, J.

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, L.

Zhu, A.

Zhu, Q.

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

Zhu, S. N.

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Zhu, X.

Zhu, Y.

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Zhu, Y. Y.

Zu, S.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

ACS Nano (1)

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

X. R. Tian, Y. R. Fang, and B. Zhang, “Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers,” ACS Photonics 1(11), 1156–1164 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhu, X. Y. Hu, Z. Chai, H. Yang, and Q. H. Gong, “Active control of chirality in nonlinear metamaterials,” Appl. Phys. Lett. 106(9), 091109 (2015).
[Crossref]

Biochim. Biophys. Acta (1)

S. M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta 1751(2), 119–139 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Circular dichroism induced by Fano resonances in planar chiral oligomers,” Laser Photonics Rev. 10(1), 137–146 (2016).
[Crossref]

Nano Lett. (6)

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[Crossref] [PubMed]

Nanoscale (3)

J. Deng, J. Fu, J. Ng, and Z. Huang, “Tailorable chiroptical activity of metallic nanospiral arrays,” Nanoscale 8(8), 4504–4510 (2016).
[Crossref] [PubMed]

X. Lu, J. Wu, Q. Zhu, J. Zhao, Q. Wang, L. Zhan, and W. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6(23), 14244–14253 (2014).
[Crossref] [PubMed]

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref] [PubMed]

Nat. Commun. (3)

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(2689), 2689 (2013).
[PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Liu, H. Liu, S. N. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Nature (2)

M. Takezaki and Y. Kito, “Circular dichroism of rhodopsin and isorhodopsin,” Nature 215(5106), 1197–1199 (1967).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, “Revisiting the physics of Fano resonances for nanoparticle oligomers,” Phys. Rev. A 88(5), 053819 (2013).
[Crossref]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

T. J. Davis and E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration of TZN arrays and parameters definition (a), where the unit cell with the associated geometric features are designated in (b) x-z plane and (c) x-y plane.
Fig. 2
Fig. 2 The absorption and CD spectra of TZN arrays (a) under LCP and RCP illuminations; (b) under x and y polarization excitations.
Fig. 3
Fig. 3 The proportional current densities and the equivalent electric dipole moments at the absorption peaks for TZN under x polarizations excitation (a) and (b); under LCP excitation (c) and (d), and RCP excitation (e) and (f). The red arrows denote the direction of current densities; the black arrows reveal the direction of small current densities distributions; the purple arrows represent the equivalent electric dipole moments of nanorods.
Fig. 4
Fig. 4 The absorption and CD spectra of TZN arrays with varied θ values.
Fig. 5
Fig. 5 The CD spectra of TZN arrays with (a) varied G values, (b) varied H and L values, (c) varied H values, and (d) varied L values.
Fig. 6
Fig. 6 The CD spectra of TNZ arrays with different displacements: (a) displacement of vertical nanorod Δx (the vertical nanorod and the top nanorod are well-aligned); (b) displacement of top nanorod Δy (the bottom nanorod and the vertical nanorod are well-aligned).

Metrics