Abstract

We present a technique to excite Raman transitions with minimum phase noise. A phase modulator generates the Raman beams and a long calcite crystal rotates the polarization of the sidebands by 90° with respect to the carrier. That polarization converts the destructive interference of the Raman pairs into constructive interference, opening the possibility to drive both co-propagating and counter-propagating transitions at high detuning with the same setup. The technique has low phase noise and a low sensitivity to vibrations or temperature fluctuations. We apply it to drive velocity insensitive Raman transitions. The crystal can be also configured to filter out one of the sidebands.

© 2017 Optical Society of America

1. Introduction

Atomic interferometers are quite appropriate for a wide range of applications. They are used at the laboratory level to determine the Newtonian constant of gravitation G [1], the fine structure constant α [2, 3], variations of gravity at short distances [4] or to verify the universality of free fall [5, 6], among others. One method to do atomic interferometry makes use of Raman transitions with two phase locked beams with a frequency difference close to the ground state hyperfine transition in the case of alkali atoms [7]. The traditional way to generate these beams is by an optical phase lock loop of two independent lasers [8–13]. This technique is more susceptible to vibrations and air fluctuations since both beams follow independent paths, and the phase noise is determined by the quality of the feedback system. Alternatively, the two frequencies can be generated from a single laser using modulators [14–20]. This technique is gaining popularity since it provides a compact low phase noise Raman system [21–24].

Phase electro-optical modulators introduce more than two co-propagating frequency components with the same polarization, and therefore the interference between all the Raman pairs must be carefully taken into account. In the case of co-propagating Raman transitions for example, there is a cancellation between the Raman pairs produced at high detuning [18, 25]. A high detuning is desirable to minimize decoherence effects from spontaneous emission and AC Stark shifts [26]. The cancellation can be avoided in the case of counter-propagating configurations by changing to circular polarization [20]. Another solution is to convert the phase modulation into amplitude modulation by the use of a Mach-Zehnder interferometer [27]. The stabilization of the interferometer adds extra noise that is improved using a Sagnac interferometer instead [16]. In this work we demonstrate a technique to change the relative polarization of the frequency components so that the carrier becomes perpendicular to the sidebands. This has the effect of transforming the destructive interference in co-propagating Raman transitions into a constructive one. This configuration enables the possibility of driving both co-propagating and counter-propagating Raman transitions with a single setup.

There are ways to remove the extra frequency components altogether in order to eliminate the perturbations they introduce [28]. An elegant solution uses serrodyne modulation to generate only a single sideband when there is enough bandwidth available [29], and narrow optical filters have been also used to eliminate a particular frequency [19]. The system we present can be reconfigured also as a narrow frequency filter. Since the filter is not interferometric, it is less sensitive to vibrations and temperature fluctuations. With an electro-optical modulator it is possible to generate multiple isotope traps [30] and generate the Raman beams required for gravimetry, all with a single laser [31]. The modulator we use allows for high optical power eliminating the need for additional optical amplification stages.

2. Generation of Raman beams with a phase modulator and a birefringent crystal

In this section we explain how to combine a phase modulator with a birefringent crystal to obtain the phase locked beams with the required polarization for Raman transitions. The Rabi frequency of the Raman transition is given by [32]

ΩR=e22nj|E¯1r¯|nk|E¯2r¯|n*2δn,
where j and k represent the two states coupled by the transition, E¯1,2 are the driving fields and the sum runs over all intermediate states n. At a detuning (δn) bigger than the hyperfine splitting the vector component of the Raman transition dominates and the Rabi frequency is approximately given by (See Appendix A)
ΩR[E¯1×E¯2*]M¯,
with
M¯=e242δnj|r¯|n×k|r¯|n*.
E¯1 and E¯2* must have orthogonal polarization to maximize the transition and they need to be counter-propagating to be velocity selective as required for gravimetry applications.

The Raman beams can be generated from a single laser using amplitude or phase modulation [14, 16–20]. Consider a plane wave at a fixed point (z = 0)

E¯=Ecos(ωt+ϕ)x^.
Adding amplitude modulation of the form E(t) = E0(1 + β cos (ωmt)), with ϕ = 0, produces sidebands (only first order) of equal amplitude
E¯=E0[cos(ωt)+β2{cos[(ω+ωm)t]+cos[(ωωm)t]}]x^.
The carrier and the +1 sideband (pair 1) generate the beams required for a Raman transition, but there is another Raman pair coming from the -1 sideband and the carrier (pair 2). The beams in each pair have the same linear polarization and according to Eq. (2) the Raman transition will be suppressed at high detuning. In the case of phase modulation, ϕ = β sin (ωmt), we obtain
E¯=E0[J0(β)cos(ωt)+J1(β){cos[(ωωm)t]cos[(ω+ωm)t]}+]x^,
where Ji are Bessel functions and we focus only on the carrier and first order sidebands. Here we also get two Raman pairs, except that there is a phase difference of π between pair 1 and pair 2 compared to amplitude modulation. This sign difference leads to destructive interference of the two pairs in co-propagating Raman transitions [18, 25].

Figure 1 shows the system for the generation of Raman beams with minimum phase noise. The light from a Ti-sapphire laser goes through an acousto-optical modulator to have pulses from the first diffraction order and then to a phase modulator to generate the sidebands. Then it goes through a long (13.13 cm) birefringent calcite crystal to have a frequency dependent polarization change. The long length of the crystal makes it highly dispersive to produce a different polarization change for the carrier and sidebands. We tune the crystal to keep the same input linear polarization for the carrier and at the same time rotate the polarization of the two first order sidebands (±1) by 90°. This produces the appropriate perpendicular polarization for each Raman pair [Eq. (2)] and, as we show below, it converts the destructive interference between the two co-propagating Raman pairs into constructive interference.

 figure: Fig. 1

Fig. 1 Configuration to generate Raman beams with minimum phase noise. AOM: acousto-optic modulator, FEOM: fiber electro-optic modulator, RF: radio frequency and FPC: Fabry Perot cavity.

Download Full Size | PPT Slide | PDF

To understand the action of the calcite crystal consider a single frequency beam like the one in Eq. (4) (with ϕ=0) going through the crystal with its optical axis perpendicular to the beam propagation and rotated 45° with respect to the input polarization. The electric field at the output is given by

E¯=E0[cos(ωt+φ)cos(φ2)x^+cos(ωt+φπ/2)sin(φ2)y^],
where φ = BLω/c is the retardation introduced by the crystal of length L and birefringence B. The overall propagation phase has been removed since it has no consequences on the present work. The length of the crystal was selected to leave the carrier with the same polarization and rotate the polarization of the two sidebands (±1) by 90°. We keep the carrier polarization the same if φ = BLω/c = 2πn. To obtain a perpendicular polarization for the sideband we also need that BLωm/c = π, with ωm/2π = 6.834 GHz the ground hyperfine splitting of 87Rb. This last condition gives a length of L = 13.13 cm for a calcite crystal that has a big birefringence (B = −0.1673 at λ = 780 nm as interpolated using a dispersion equation from measurements at 768 nm and 795 nm [33]). Calcite crystals this long are hard to obtain; instead we do quadruple pass through a crystal of length L = 3.28 ± 0.01 cm [Fig. 1] corresponding to a retardation of n = 28, 281 complete wavelengths.

Going back to the setup of Fig. 1, we send the phase modulated field of Eq. (6) through the crystal and the field at the output is (considering up to first order sidebands)

E¯=E0[J0(β)cos(ωt)x^+J1(β){cos[(ωωm)tπ/2]cos[(ω+ωm)t+π/2]}y^].
The sign difference between the two sidebands still remains, but now their polarization has been rotated 90°. The cross product in the Rabi frequency [Eq. (2)] of pair 1 is of the form x^×y^=z^ and the one for pair 2 has the two vectors reversed y^×x^=z^. This minus sign compensates the π phase difference between the two pairs and produces constructive interference of the two contributions to the Rabi frequency. There is a π/2 phase difference in Eq. (8) between the +1 sideband and the carrier in pair 1 and also between the carrier and -1 sideband in pair 2, that shows up at the end as the same π/2 phase in the Rabi frequency for both pairs. There is a similar polarization rotation for all the sidebands [Eq. (6)], for example, the +2 sideband gets a polarization along x. The Raman pair formed by the +1 and +2 sidebands (or any other Raman pair between sidebands) also interferes constructively to the total Rabi frequency.

The beams in Fig. 1 are automatically phase locked since they come from a single laser, and given that they follow the same trajectory (except for the final retro-reflecting mirror in the counter-propagating configuration) they are less sensitive to vibrations [34, 35]. The calcite crystal works better than other interferometric solutions [16, 19] in terms of sensitivity to vibrations or changes in temperature as will be shown below. The phase modulator we use (Advr WPM-P78P78-ALO) takes up to 250 mW, providing enough power to drive the transition at high detuning without any subsequent amplification. This avoids the spontaneous emission pedestal introduced by tapered amplifiers [36, 37] or the complications involved in injection locking [38–40]. To make the system as simple as possible, we modulate directly at 780 nm rather than modulating at lower frequencies and then doubling the frequency [20].

3. Calcite crystal characterization

In this section we characterize the performance of the calcite crystal. The crystal works as a multiple order retarder as described by Eq. (7). To measure the polarization change as a function of frequency we use the single frequency polarized light from the laser and we send it through the crystal in quadruple pass. We analyze the polarization by sending the output light through a polarizer that transmits the horizontal component into a detector. Figure 2 shows the fringes we measure as we scan the laser frequency with the optical axis of the crystal rotated by 45° with respect to the input polarization. The signal at the detector is

SS0=cos4(θ)+sin4(θ)+sin2(2θ)cos(φ).
where S and S0 are the intensities with and without the crystal respectively and θ is the optical axis rotation angle of the crystal. For θ =45° the expression reduces to S/S0 = cos2 (φ/2). The maximum and minimum correspond to horizontal and vertical linear polarization.

 figure: Fig. 2

Fig. 2 Transmitted light through the crystal (quadruple pass with θ = 45°) and polarizer as a function of the laser frequency. ν0 is a reference frequency corresponding to a wavelength around 780 nm.

Download Full Size | PPT Slide | PDF

The visibility of the fringes at a particular crystal angle (θ) is given by

V=sin2(2θ)1+cos2(2θ).
Figure 3 shows the measured fringe visibility obtained with the calcite crystal in single (black) and quadruple (red) pass as we rotate the crystal keeping always the optical axis perpendicular to the light propagation. The solid line corresponds to Eq. (10) with an offset and scale factor as fitting parameters, that give a result very close to the ideal case of Eq. (10). From the fit we extract a maximum visibility of 1.00 ± 0.04 (0.88 ± 0.04) for single (quadruple) pass at an angle of θ =45°, indicating that we get a polarization very close to linear with that configuration. Setting the carrier frequency to the maximum of the fringe and the sidebands to the minimum with the crystal at 45° gives us the desired polarization rotation of the light while keeping the polarization linear.

 figure: Fig. 3

Fig. 3 Fringe visibility as a function of the rotation angle of the crystal (θ) for single (black) and quadruple (red) pass. The solid lines correspond to Eq. (10) with a scale factor and offset fit.

Download Full Size | PPT Slide | PDF

We arrange the mirrors used for multiple passes in a way to minimize any tilting on the beams that deteriorates the visibility of the fringes. It is also possible to use a prism to displace and retro-reflect the beam, but it is important to keep the plane of incidence with respect to the prism aligned with the optical axis of the crystal. The crystal has an anti reflection coating to minimize both the power loss after multiple passes and the relative reflection difference at the interface for both polarizations. The transmission after single pass is 98.5 ± 0.1 and 99.1 ± 0.1 for the ordinary and extraordinary modes.

In order to verify the retardation introduced by the crystal (ϕ) we use fringes similar to those in Fig. 2. We calibrate the frequency of the scan by sending part of the light through a Fabry Perot cavity of known Free Spectral Range. The measurement was done in quadruple pass through the crystal and gives a fringe spacing of 12.4 ± 0.1 GHz, that is a little bit smaller than the expected 2 × 6.8 GHz = 13.6 GHz. Most likely this difference comes from an slightly incorrect value for the birefringence of the crystal. The difference is still small and we get beams that are almost perpendicular to each other, for instance, if we set the crystal to have a carrier with linear polarization (x^), then the left and right sidebands have a polarization given by Eq. (7) with φ = ±1.102π. This polarization is a little bit elliptical (ϵ = 0.16) with the long axis perpendicular to the carrier.

The calcite crystal can also be used as a frequency filter to eliminate one of the sidebands when used in double pass. This would give an alternative way to eliminate the extra sideband that introduces the destructive interference. To implement the filter we set the -1 sideband frequency to have vertical linear polarization and in this case the +1 sideband has horizontal linear polarization and the carrier has circular polarization since for double pass it would be at the middle of the fringe of Fig. 2. The -1 sideband is eliminated by sending the beam through a horizontal polarizer, leaving only the carrier and the +1 sideband (pair 1). The highly dispersive nature of the crystal gives a spectrally narrow filter (12.4 GHz wide) but we lose half of the power in the process. The filter reduces the -1 sideband by −19.6 ± 1.5 dB. We send the remaining Raman pair 1 through the crystal again but in quadruple pass to make the linear polarization of two frequencies orthogonal to each other [Fig. 4(a)]. Figure 4(b) shows the spectrum measured in a scanning Fabry Perot cavity (Thorlabs SA200-5B). The lower trace was obtained with a horizontal polarizer in front of the Fabry Perot cavity and we see only the carrier (repeated again after the 1.5 GHz Free Spectral Range of the cavity). The polarizer for the upper trace is vertical and shows only the +1 sideband, whereas the middle trace has the polarizer at 45° and shows both frequencies simultaneously. The +1 sideband is separated from the carrier by 6.8 GHz, but appears closer in a Fabry Perot scan due to the repetition of the signal every Free Spectral Range of the cavity. The -1 sideband is absent from the three traces since it has been filtered out. Figure 4 shows in a clear graphical way both the use of the calcite crystal as a narrow frequency filter and as a device to rotate by 90° the relative polarization of two frequencies separated by 6.8 GHz. We do not put much power on the second order sidebands or higher as can be seen from the absence of those components in Fig. 4(b).

 figure: Fig. 4

Fig. 4 a) Schematic configuration for a narrow frequency filter by sending the beam in double pass through the crystal and through a polarizing cube and then rotating the polarization of the remaining pair by a quadruple pass through the crystal. We show the polarization of carrier and sidebands at each step. b) Spectrum of the light out of the crystal taken with a Fabry Perot cavity with a Free Spectral Range of 1.5 GHz. The polarizer in front of the cavity was at 0, 45 and 90° for the lower, middle and upper traces respectively. The traces have been displaced vertically for clarity.

Download Full Size | PPT Slide | PDF

4. Comparison with other interferometric solutions

A Michelson interferometer can be used as a frequency filter to eliminate one of the sidebands. A small displacement (ΔL) of one of the mirrors translates mainly into amplitude noise in the Raman transition. Any displacement of order λ ≈ 780 nm is enough to change the Raman amplitude considerably. A better choice would be to use a birefringent Sagnac interferometer [16, 41]. Here the beams going in opposite directions have perpendicular polarization and travel at a different speed in the birefringent medium. This introduces a frequency dependence that has been exploited to implement thermometers [42] or vibration sensors [43]. The sensitivity to vibrations in the Sagnac interferometer is suppressed by the birefringence (B) of the material. Using the calcite crystal we avoid the interferometer altogether. Since it is a transmissive element (rather than reflective as in the mirrors of an interferometer) the vibrations would be important only when they have a wavelength of the order of the size of the crystal or smaller. This corresponds to frequencies above 150 kHz that are in the upper acoustic range. The change in temperature introduces an expansion of the material ΔL and a change in birefringence ΔB. This last one dominates in the case of calcite with dB/dT ≈ 10−5/°C [44]. The effect scales with L and we expect a worse sensitivity with low birefringence materials since they need to be longer to keep φ = BLω/c constant.

To compare the filters, we implemented the Michelson and Sagnac interferometers in addition to the calcite crystal we present. The Michelson interferometer had short arms of L1 = 5 cm and L2 = 6.1 cm respectively. The difference in length of 1.1 cm was required to have a Free Spectral Range similar to that of the quadruple pass calcite crystal. The Sagnac interferometer used a polarization maintaining fiber (Thorlabs p1-780pm-fc) with a specified B = 3.5 × 10−4. To obtain the correct Free Spectral Range the required fiber length was 60 m, but we did the measurement with a 15 m long fiber which should have smaller temperature sensitivity. We measured the temperature variation required to shift the optical fringes of the interferometer or the crystal by one complete fringe. We obtained 0.03 ± 0.01, 0.03 ± 0.004 and 0.5 ± 0.08 °C for the Michelson and Sagnac interferometers and calcite crystal respectively. The frequency filter with the calcite crystal gives the best result, it is simpler to use and it allows to also obtain the desired polarization of the beams for a Raman transition.

5. Phase noise measurements

We characterized the phase noise properties of the beams produced by the modulator. To measure the noise we send the light out of the modulator to the calcite crystal in double pass and then through a polarizer to eliminate the -1 sideband (double pass part in Fig. 4(a)). The signal goes into a fast detector (Vescent IDS-160) to measure the beat note between the two frequency components. If the -1 sideband is not eliminated, the beat note of pair 1 and pair 2 cancel each other in a way similar to the Raman transition. We measure the noise spectrum in two ways. First we send the beat note signal directly to an spectrum analyzer (Agilent EXA N9010A) (gray line in Fig. 5). To overcome the limit in sensitivity of the spectrum analyzer we used homodyne detection by mixing the detector signal with the original modulating signal and sending it to an FFT analyzer (SRS SR760) (red line in Fig. 5). The Power Spectral Density (PSD) measured is very similar to the one we obtain by measuring the noise of the microwave source (Phase Matrix FSW-0010) directly. For this last measurement we split the signal of the synthesizer and we mix it back with unequal cable lengths (length difference of 60 cm) before sending it to the FFT analyzer. A better measurement would be obtained if two identical independent synthesizers were available. These measurements use a fixed frequency source, but the frequency tuning required for the counter-propagating Raman transitions can be added by mixing a low frequency signal onto the microwaves [45].

 figure: Fig. 5

Fig. 5 Power Spectral Density (PSD) of the beams generated with the phase modulator. The gray (upper) trace corresponds to the signal measured with the spectrum analyzer, the red (middle) trace is the noise measured with the FFT analyzer, the black lower trace is the noise of the microwave synthesizer and the dashed brown line is the noise floor.

Download Full Size | PPT Slide | PDF

The noise spectrum decreases steadily by about 10 dBrad2/Hz every frequency decade to reach a value of −116 dBrad2/Hz at 100 kHz. The phase variance integrated from 1 Hz to 100 kHz gives 2 × 10−6 rad2. The noise at lower frequencies is the more relevant for interferometry since the atomic response works as a band pass filter [10, 46]. The specified phase noise of the synthesizer [47] stays constant from 100 kHz to 1 MHz and then continues to decrease above 1 MHz, giving an improved integrated variance compared with OPLL that have excess noise at high frequencies [8–13]. Our system is very simple to implement and should allow us to reach a precision in gravimetry of Δg/g ≈ 5 × 10−9 when using 100 μs long π/2 interferometric pulses and 30 ms between them.

6. Raman transitions with co-propagating beams

In this section we use the laser system to induce co-propagating Raman transitions in a sample of laser cooled 87Rb atoms. We perform Rabi oscillations to compare the Rabi frequency obtained using only the carrier and the +1 sideband (pair 1) to that obtained by the constructive interference of the two pairs once they go through the calcite crystal [Eq. (8)]. In order to obtain only pair 1 with perpendicular linear polarizations we use the calcite crystal first in double pass to filter out the -1 sideband and a second time in quadruple pass [Fig. 4(a)]. The crystal is temperature stabilized to better than 0.01 °C to the value needed to eliminate the -1 sideband at a particular detuning. We apply a Raman transition on the F = 1, m = 0 to F = 2, m = 0 clock transition in 87Rb at a magnetic field of 400 mG. We determine the fractional population on the F = 2 level after the Raman pulse using a florescence detection sequence on the free falling atoms. We determine the Rabi frequency as a function of the detuning [Fig. 6] and we find the expected 1/δ scaling for the Raman transition [Eqs. (2) and (3)]. The beam has a total power of 1.2 mW (with 16% of that power in the +1 sideband) and it is focused to a 0.5 cm waist.

 figure: Fig. 6

Fig. 6 Rabi frequency of the Raman transition as a function of detuning (markers) with the expected 1/δ scaling (red solid line).

Download Full Size | PPT Slide | PDF

Using the calcite crystal as proposed in this work [Fig. 1] to create constructive interference between the two pairs, we measured an increase on the Rabi frequency by a factor of 1.15 ± 0.04 with respect to having only one pair at a detuning of 11 GHz, with the same carrier and sideband powers. The increase in ΩR should not be by a factor of 2 but instead by a factor of 1.62 because the detuning of the two Raman pairs is not the same. Also the slightly elliptical polarization inferred from the imperfect visibility [Fig. 3] brings the expected value down to 1.43. The observed ratio of 1.15 is close to the expected value of 1.43, and the deviation might be due to differences in light shifts, even when care was taken to avoid having a resonant higher order sideband. The contributions of higher order sidebands to the Rabi frequency are at the 3% level. Our method introduces several improvements: it gives a bigger Rabi frequency, it avoids the loss of power introduced by the frequency filter, it is less sensitive to vibrations or temperature fluctuations and it gives the appropriate perpendicular polarization required at high detuning. To extend the method to velocity selective Raman transitions one can add a polarizing cube to split the carrier and sidebands to send them in counter-propagating configuration. The system is more robust to vibrations since all the beams travel along the same path for most of their trajectory.

7. Conclusions

We present a technique to generate the phase locked beams required for a Raman transition with minimum phase noise. The system is intrinsically less noisy because both beams come from a common laser. There is no need to have amplification after the modulator since this last one is capable of handling up to 250 mW of power. We use a long calcite crystal to obtain beams with perpendicular polarization to drive Raman transitions and to convert the destructive interference that appears at high detuning into a constructive one. This configuration increases the Rabi frequency of the Raman transition and it is less sensitive than other solutions to vibrations and temperature fluctuations. Given the highly dispersive nature of the crystal, it can be used also as a narrow frequency filter. The system can be arranged in both co-propagating and counter-propagating Raman configurations with minimum sensitive to vibrations since the beams share the same path for most of their trajectory. The phase noise we observe is close to the one measured by the microwave synthesizer alone. With this system it is possible to produce complex excitation patterns that would be impossible to do in the traditional configuration of two independent lasers.

A. Appendix

In this appendix we derive a formula for the Rabi frequency for a Raman transition at a detuning larger than the hyperfine separation but small compared to the fine splitting. We consider a common detuning (δnδ) for all hyperfine levels. We define the matrix element vector as follows

r¯1=j|r¯|n,r¯2=k|r¯|n,
and we write Eq. (1) as
ΩR=e222δE¯1μE¯2ξ*nr¯1μr¯2ξ*.

We apply a separation of the atomic part in the irreducible scalar, vector and second rank tensor components using [48]

[r¯1r¯2*]QK=q1q22K+1(1)Q(11Kq1q2Q)r1,q1r2,q2*,
where we write the vectors in the spherical basis.

We consider a transition between hyperfine levels of an alkali atom |j〉 = |F1, m1〉 and |k〉 = |F2, m2〉. In this case the scalar and the second rank tensor components vanish and only the vector part survives. This last one can be written as a cross product

[r¯1r¯2*]1=r¯12=i2r¯1×r¯2*.
A similar expression holds for the product of the electric fields
[E¯1E¯2*]1=E¯12=i2E¯1×E¯2*.

The Rabi frequency of the Raman transition is obtained by contracting these two last vectors using again Eq. (13)

ΩR=e222δE¯12nr¯12=[E¯1×E¯2*]M¯,
which is the same as Eq. (2). The scalar and second rank tensor components decay as 1/δ2 and they become negligible at high detuning. In contrast to light shifts [26], the scalar part does not contribute here to first order because for the Raman transition there is a change of hyperfine level (ΔF = 1).

Funding

CONACyT (Frontiers of Science, Infrastructure, Catedras and the Research for Education Fund); UASLP; and Marcos Moshinsky Foundation.

Acknowledgments

We thank Alexander Franco and Yasser Jeronimo for useful discussions.

References and links

1. G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014). [CrossRef]   [PubMed]  

2. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011). [CrossRef]   [PubMed]  

3. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013). [CrossRef]  

4. G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006). [CrossRef]  

5. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015). [CrossRef]  

6. D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014). [CrossRef]  

7. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991). [CrossRef]   [PubMed]  

8. S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014). [CrossRef]  

9. J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008). [CrossRef]  

10. P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008). [CrossRef]  

11. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994). [CrossRef]  

12. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005). [CrossRef]  

13. J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009). [CrossRef]  

14. S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013). [CrossRef]   [PubMed]  

15. J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

16. D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010). [CrossRef]  

17. Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016). [CrossRef]  

18. P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. Miller, D. L. Moehring, D. Stick, and C. Monroe, “Atomic qubit manipulations with an electro-optic modulator,” Opt. Lett. 28(17), 1582–1584 (2003). [CrossRef]   [PubMed]  

19. K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015). [CrossRef]  

20. R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012). [CrossRef]  

21. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009). [CrossRef]  

22. F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015). [CrossRef]  

23. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006). [CrossRef]  

24. Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013). [CrossRef]  

25. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17(4), 2319–2325 (2009). [CrossRef]   [PubMed]  

26. I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010). [CrossRef]  

27. D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J.D. Close, “Ramsey interferometry with an atom laser,” Opt. Express 17(23), 20661–=20668 (2009). [CrossRef]   [PubMed]  

28. O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012). [CrossRef]  

29. D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010). [CrossRef]   [PubMed]  

30. V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013). [CrossRef]  

31. A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015). [CrossRef]  

32. K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992). [CrossRef]   [PubMed]  

33. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999). [CrossRef]  

34. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011). [CrossRef]   [PubMed]  

35. J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007). [CrossRef]  

36. V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012). [CrossRef]   [PubMed]  

37. S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016). [CrossRef]  

38. H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013). [CrossRef]   [PubMed]  

39. K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997). [CrossRef]  

40. M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000). [CrossRef]  

41. Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999). [CrossRef]  

42. B. H. Kim, S. H. Lee, A. Lin, C. L. Lee, J. Lee, and W. T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17(3), 1789–1794 (2009). [CrossRef]   [PubMed]  

43. J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014). [CrossRef]  

44. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

45. S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016). [CrossRef]  

46. M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011). [CrossRef]  

47. National Instruments, http://ni-microwavecomponents.com/quicksyn-full#documentation

48. R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Science, 1981).

References

  • View by:

  1. G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
    [Crossref] [PubMed]
  2. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
    [Crossref] [PubMed]
  3. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
    [Crossref]
  4. G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
    [Crossref]
  5. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
    [Crossref]
  6. D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
    [Crossref]
  7. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991).
    [Crossref] [PubMed]
  8. S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
    [Crossref]
  9. J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
    [Crossref]
  10. P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
    [Crossref]
  11. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
    [Crossref]
  12. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
    [Crossref]
  13. J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
    [Crossref]
  14. S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
    [Crossref] [PubMed]
  15. J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).
  16. D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
    [Crossref]
  17. Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
    [Crossref]
  18. P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. Miller, D. L. Moehring, D. Stick, and C. Monroe, “Atomic qubit manipulations with an electro-optic modulator,” Opt. Lett. 28(17), 1582–1584 (2003).
    [Crossref] [PubMed]
  19. K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015).
    [Crossref]
  20. R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
    [Crossref]
  21. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
    [Crossref]
  22. F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
    [Crossref]
  23. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
    [Crossref]
  24. Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
    [Crossref]
  25. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17(4), 2319–2325 (2009).
    [Crossref] [PubMed]
  26. I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010).
    [Crossref]
  27. D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J.D. Close, “Ramsey interferometry with an atom laser,” Opt. Express 17(23), 20661–=20668 (2009).
    [Crossref] [PubMed]
  28. O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
    [Crossref]
  29. D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
    [Crossref] [PubMed]
  30. V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
    [Crossref]
  31. A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
    [Crossref]
  32. K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
    [Crossref] [PubMed]
  33. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
    [Crossref]
  34. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
    [Crossref] [PubMed]
  35. J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
    [Crossref]
  36. V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
    [Crossref] [PubMed]
  37. S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
    [Crossref]
  38. H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
    [Crossref] [PubMed]
  39. K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
    [Crossref]
  40. M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
    [Crossref]
  41. Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
    [Crossref]
  42. B. H. Kim, S. H. Lee, A. Lin, C. L. Lee, J. Lee, and W. T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17(3), 1789–1794 (2009).
    [Crossref] [PubMed]
  43. J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
    [Crossref]
  44. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  45. S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
    [Crossref]
  46. M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
    [Crossref]
  47. National Instruments, http://ni-microwavecomponents.com/quicksyn-full#documentation
  48. R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Science, 1981).

2016 (3)

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

2015 (4)

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015).
[Crossref]

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

2014 (4)

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

2013 (5)

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

2012 (3)

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

2011 (3)

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

2010 (3)

D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
[Crossref] [PubMed]

D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
[Crossref]

I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010).
[Crossref]

2009 (6)

D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J.D. Close, “Ramsey interferometry with an atom laser,” Opt. Express 17(23), 20661–=20668 (2009).
[Crossref] [PubMed]

J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17(4), 2319–2325 (2009).
[Crossref] [PubMed]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

B. H. Kim, S. H. Lee, A. Lin, C. L. Lee, J. Lee, and W. T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express 17(3), 1789–1794 (2009).
[Crossref] [PubMed]

2008 (2)

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

2007 (1)

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

2006 (2)

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

2005 (1)

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

2003 (1)

2000 (1)

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

1999 (2)

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

1997 (1)

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

1994 (1)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

1992 (1)

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

1991 (1)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991).
[Crossref] [PubMed]

Abediyeh, V.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

Albers, H.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Altin, P. A.

Arias, N.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

Bachor, H. A.

D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
[Crossref]

Battelier, B.

Bidel, Y.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Biraben, F.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

Blinov, B. B.

Bonnin, A.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

Bouchendira, R.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

Bourassin-Bouchet, C.

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Bouyer, P.

Bresson, A.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Brickman, K.

Cacciapouti, L.

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

Cacciapuoti, L.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Cadoret, M.

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Canuel, B.

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Carraz, O.

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Cerda-Méndez, E.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

Charrière, R.

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Cheinet, P.

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Chen, S.

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

Chen, X.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Chiow, S. W.

Chu, S.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991).
[Crossref] [PubMed]

Cladé, P.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

Clairon, A.

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Clarion, A.

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

Close, J. D.

D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
[Crossref]

J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17(4), 2319–2325 (2009).
[Crossref] [PubMed]

Close, J.D.

Cognet, L.

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

Cowan, R. D.

R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Science, 1981).

de Angelis, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Debs, J. E.

del Rio, E.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

Deslauriers, L.

Deutsch, I.H.

I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010).
[Crossref]

Dickerson, S. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

Dong, X.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Döring, D.

Dos Santos, F. P.

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

Dos Santos, F. Pereira

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Dos Santos, F.P.

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

Duan, W.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Ertmer, W.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Fattori, M.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Feng, Y.

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

Ferrari, G.

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

Figl, C.

Fu, Z.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Gao, F.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Gauguet, A.

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Geiger, R.

Ghezali, S.

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

Giorgini, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

Gomez, E.

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
[Crossref]

V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Gouët, J. L.

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

Gouët, J.L.

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

Guellati-Khélifa, S.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

Gutiérrez, M.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
[Crossref]

Hamzeloui, S.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
[Crossref]

Han, W. T.

Han, Y.

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

Hartwig, J.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Hemmer, P. R.

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

Hernández, L.

V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Hogan, J. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
[Crossref] [PubMed]

Holleville, D.

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

Jessen, P.S.

I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010).
[Crossref]

Jin, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Johnson, D. M. S.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
[Crossref] [PubMed]

Kang, J.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Kasevich, M.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991).
[Crossref] [PubMed]

Kasevich, M. A.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

D. M. S. Johnson, J. M. Hogan, S. W. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
[Crossref] [PubMed]

Kim, B. H.

Kim, J.

K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015).
[Crossref]

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Kwon, T. Y.

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

Lamporesi, G.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Landragin, A.

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Le Gouët, J.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Lea, S. N.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Lee, C. L.

Lee, J.

Lee, K.

K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015).
[Crossref]

Lee, P. J.

Lee, S. B.

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

Lee, S. H.

Li, Q.

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

Li, R.

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Lienhart, F.

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Lin, A.

Lin, Q.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Liptay, T.

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

Liu, M.

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Liu, W.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Liu, X.

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

Long, S.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Lours, M.

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Madsen, M. J.

Martínez, D.

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

McDonald, G.

D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
[Crossref]

Mehlstäubler, T. E.

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

Ménoret, V.

Merlet, S.

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

Miller, R.

Moehring, D. L.

Moler, K.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

Monroe, C.

Nez, F.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

Palik, E.D.

E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Park, S. E.

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

Peng, W.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Petelski, T.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Peters, A.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

Poli, N.

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

Prevedelli, M.

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Rasel, E. M.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Renon, G.

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Richardson, L. L.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Robins, N. P.

Rosi, G.

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

Roura, A.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Santarelli, G.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Schleich, W. P.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Schlippert, D.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Schmidt, M.

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

Schubert, C.

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

Shahriar, M. S.

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

Sorrentino, F.

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

Stern, G.

Stick, D.

Stuhler, J.

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

Sugarbaker, A.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

Szymaniec, K.

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

Tan, Y.

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

Tang, B.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Therkildsen, K. T.

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

Theron, F.

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

Tino, G. M.

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

Turukhin, A. V.

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

Uruñuela, E.

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

Valenzuela, V. M.

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

V. M. Valenzuela, S. Hamzeloui, M. Gutiérrez, and E. Gomez, “Multiple isotope magneto-optical trap from a single diode laser,” J. Opt. Soc. Am. B 30(5), 1205–1210 (2013).
[Crossref]

Valenzuela, V.M.

V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Wang, J.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Wang, Q.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Wang, X.

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

Wang, Z.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Weiss, D. S.

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

Xiong, Z.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Xue, H.

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

Yim, S. H.

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

Yver-Leduc, F.

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

Zahzam, N.

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36(21), 4128–4130 (2011).
[Crossref] [PubMed]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

Zhan, M.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Zhang, Y.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhong, J.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhou, B.

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

Zhou, L.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Zhou, Z.

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

Zhu, Y.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Zhuang, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Ann. Phys. (1)

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “State of the art in the determination of the fine structure constant: test of Quantum Electrodynamics and determination of h/mu,” Ann. Phys. 525, 484 (2013).
[Crossref]

Appl. Phys. B (6)

S. H. Yim, S. B. Lee, T. Y. Kwon, and S. E. Park, “Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry,” Appl. Phys. B 115(4), 491–495 (2014).
[Crossref]

J. L. Gouët, T. E. Mehlstäubler, J. Kim, S. Merlet, A. Clairon, A. Landragin, and F. P. Dos Santos, “Limits to the sensitivity of a low noise compact atomic gravimeter,” Appl. Phys. B 92(2), 133–144 (2008).
[Crossref]

O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom Interferometry,” Appl. Phys. B 97, 405–411 (2009).
[Crossref]

F. Theron, O. Carraz, G. Renon, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Narrow linewidth single laser source system for onboard atom interferometry,” Appl. Phys. B 118(1), 1–5 (2015).
[Crossref]

P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K. T. Therkildsen, A. Clairon, and A. Landragin, “Compact laser system for atom interferometry,” Appl. Phys. B 84(4), 643–646 (2006).
[Crossref]

M. Schmidt, M. Prevedelli, A. Giorgini, G. M. Tino, and A. Peters, “A portable laser system for high-precision atom interferometry experiments,” Appl. Phys. B 102(1), 11–18 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y. Bidel, O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, and A. Bresson, “Compact cold atom gravimeter for field applications,” Appl. Phys. Lett. 102, 144107 (2013).
[Crossref]

Eur. Phys. J. D (1)

J.L. Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clarion, A. Landragin, and F.P. Dos Santos, “Influence of lasers propagation delay on the sensitivity of atom interferometers,”Eur. Phys. J. D 44, 419–425 (2007).
[Crossref]

IEEE Phot. Tech. Lett. (1)

Y. Han, Q. Li, X. Liu, and B. Zhou, “Architecture of High-Order All-Fiber Birefringent filters by the Use of the Sagnac Interferometer,” IEEE Phot. Tech. Lett. 11(1), 90–92 (1999).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. Cheinet, B. Canuel, F. P. Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
[Crossref]

J. Kor. Phys. Soc. (1)

K. Lee and J. Kim, “A Phase-modulated Laser System of Ultra-low Phase Noise for Compact Atom Interferometers,”J. Kor. Phys. Soc. 67, 318 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

S. Hamzeloui, N. Arias, V. Abediyeh, D. Martínez, M. Gutiérrez, E. Uruñuela, E. del Rio, E. Cerda-Méndez, and E. Gomez, “Towards Precision Measurements at UASLP,” J. Phys. Conf. Ser. 698, 012011 (2016).
[Crossref]

Nature (1)

G. Rosi, F. Sorrentino, L. Cacciapouti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518 (2014).
[Crossref] [PubMed]

Opt. Commun. (8)

J. L. Gouët, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, and F. P. Dos Santos, “Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator,” Opt. Commun. 282(5), 977–980 (2009).
[Crossref]

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, “Heterodyne optical phase-locking of extended-cavity semi-conductor lasers at 9 GHz,” Opt. Commun. 104, 339–344 (1994).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1–3), 95–102 (1999).
[Crossref]

I.H. Deutsch and P.S. Jessen, “Quantum control and measurement of atomic spins in polarization spectroscopy,” Opt. Commun. 283(5), 681–694 (2010).
[Crossref]

K. Szymaniec, S. Ghezali, L. Cognet, and A. Clairon, “Injection locking of diode lasers to frequency modulated source,” Opt. Commun. 144(1–3), 50–54 (1997).
[Crossref]

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, “Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband,” Opt. Commun. 184(5–6), 457–462 (2000).
[Crossref]

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization mantaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. China (1)

J. Wang, L. Zhou, R. Li, M. Liu, and M. Zhan, ”Cold atom interferometers and their applications in precision measurements,” Phys. China 4, 179 (2009).

Phys. Rev. A (6)

D. Döring, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H. A. Bachor, N. P. Robins, and J. D. Close, “Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup,” Phys. Rev. A 81, 043633 (2010).
[Crossref]

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle,” Phys. Rev. A 92, 023626 (2015).
[Crossref]

K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342 (1992).
[Crossref] [PubMed]

O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation,” Phys. Rev. A 86, 033605 (2012).
[Crossref]

R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Local gravity measurement with the combination of atom interferometry and Bloch oscillations,” Phys. Rev. A 85, 013639 (2012).
[Crossref]

S. Hamzeloui, D. Martínez, V. Abediyeh, N. Arias, E. Gomez, and V. M. Valenzuela, “Dual atomic interferometer with a tunable point of minimum magnetic sensitivity,” Phys. Rev. A 94, 033634 (2016).
[Crossref]

Phys. Rev. Lett. (6)

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref] [PubMed]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref] [PubMed]

G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale,” Phys. Rev. Lett. 97, 060402 (2006).
[Crossref]

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8 Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203002 (2014).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181 (1991).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, and G. M. Tino, “Analog + digital phase and frequency detector for phase locking of diode lasers,” Rev. Sci. Instrum. 76, 053111 (2005).
[Crossref]

H. Xue, Y. Feng, X. Wang, S. Chen, and Z. Zhou, “Note: Generation of Raman laser beams based on a sideband injection-locking technique using a fiber electro-optical modulator,” Rev. Sci. Instrum. 84, 046104 (2013).
[Crossref] [PubMed]

V.M. Valenzuela, L. Hernández, and E. Gomez, “High power rapidly tunable system for laser cooling,” Rev. Sci. Instrum. 83, 015111 (2012).
[Crossref] [PubMed]

Other (3)

E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

National Instruments, http://ni-microwavecomponents.com/quicksyn-full#documentation

R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series in Basic and Applied Science, 1981).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration to generate Raman beams with minimum phase noise. AOM: acousto-optic modulator, FEOM: fiber electro-optic modulator, RF: radio frequency and FPC: Fabry Perot cavity.
Fig. 2
Fig. 2 Transmitted light through the crystal (quadruple pass with θ = 45°) and polarizer as a function of the laser frequency. ν0 is a reference frequency corresponding to a wavelength around 780 nm.
Fig. 3
Fig. 3 Fringe visibility as a function of the rotation angle of the crystal (θ) for single (black) and quadruple (red) pass. The solid lines correspond to Eq. (10) with a scale factor and offset fit.
Fig. 4
Fig. 4 a) Schematic configuration for a narrow frequency filter by sending the beam in double pass through the crystal and through a polarizing cube and then rotating the polarization of the remaining pair by a quadruple pass through the crystal. We show the polarization of carrier and sidebands at each step. b) Spectrum of the light out of the crystal taken with a Fabry Perot cavity with a Free Spectral Range of 1.5 GHz. The polarizer in front of the cavity was at 0, 45 and 90° for the lower, middle and upper traces respectively. The traces have been displaced vertically for clarity.
Fig. 5
Fig. 5 Power Spectral Density (PSD) of the beams generated with the phase modulator. The gray (upper) trace corresponds to the signal measured with the spectrum analyzer, the red (middle) trace is the noise measured with the FFT analyzer, the black lower trace is the noise of the microwave synthesizer and the dashed brown line is the noise floor.
Fig. 6
Fig. 6 Rabi frequency of the Raman transition as a function of detuning (markers) with the expected 1/δ scaling (red solid line).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Ω R = e 2 2 n j | E ¯ 1 r ¯ | n k | E ¯ 2 r ¯ | n * 2 δ n ,
Ω R [ E ¯ 1 × E ¯ 2 * ] M ¯ ,
M ¯ = e 2 4 2 δ n j | r ¯ | n × k | r ¯ | n * .
E ¯ = E cos ( ω t + ϕ ) x ^ .
E ¯ = E 0 [ cos ( ω t ) + β 2 { cos [ ( ω + ω m ) t ] + cos [ ( ω ω m ) t ] } ] x ^ .
E ¯ = E 0 [ J 0 ( β ) cos ( ω t ) + J 1 ( β ) { cos [ ( ω ω m ) t ] cos [ ( ω + ω m ) t ] } + ] x ^ ,
E ¯ = E 0 [ cos ( ω t + φ ) cos ( φ 2 ) x ^ + cos ( ω t + φ π / 2 ) sin ( φ 2 ) y ^ ] ,
E ¯ = E 0 [ J 0 ( β ) cos ( ω t ) x ^ + J 1 ( β ) { cos [ ( ω ω m ) t π / 2 ] cos [ ( ω + ω m ) t + π / 2 ] } y ^ ] .
S S 0 = cos 4 ( θ ) + sin 4 ( θ ) + sin 2 ( 2 θ ) cos ( φ ) .
V = sin 2 ( 2 θ ) 1 + cos 2 ( 2 θ ) .
r ¯ 1 = j | r ¯ | n , r ¯ 2 = k | r ¯ | n ,
Ω R = e 2 2 2 δ E ¯ 1 μ E ¯ 2 ξ * n r ¯ 1 μ r ¯ 2 ξ * .
[ r ¯ 1 r ¯ 2 * ] Q K = q 1 q 2 2 K + 1 ( 1 ) Q ( 1 1 K q 1 q 2 Q ) r 1 , q 1 r 2 , q 2 * ,
[ r ¯ 1 r ¯ 2 * ] 1 = r ¯ 12 = i 2 r ¯ 1 × r ¯ 2 * .
[ E ¯ 1 E ¯ 2 * ] 1 = E ¯ 12 = i 2 E ¯ 1 × E ¯ 2 * .
Ω R = e 2 2 2 δ E ¯ 12 n r ¯ 12 = [ E ¯ 1 × E ¯ 2 * ] M ¯ ,

Metrics