Abstract

We report on a Holmium micro-laser passively Q-switched by a semiconductor saturable absorber (SSA), for the first time to the best of our knowledge. It is based on a 1 at.% Ho:YAG ceramic with good energy storage capability and several commercial transmission-type SSAs with 0.24% modulation depth. Under in-band pumping by a Tm fiber laser at 1910 nm, the Ho micro-laser generated 450 mW at 2089 nm with 37% slope efficiency. Stable 89 ns, 3.2 μJ pulses are achieved at a repetition rate of 141 kHz. Further shortening of the laser pulses is feasible with the increase of the modulation depth of the SSA while power scaling may lead to Q-switching at MHz-range repetition rates.

© 2017 Optical Society of America

1. Introduction

Nowadays, the transparent ceramics technology becomes a competitor of the single-crystal growth because ceramics possess high optical quality, are cost-effective and size-scalable. In particular, the fabrication of ceramics based on cubic Y3Al5O12 (YAG) doped with various rare-earth ions, e.g. Nd3+ or Yb3+, is well-established for efficient lasers at ~1 μm [1,2]. At ~2 μm, the research focused on doping of YAG ceramics with Tm3+ [3] and, recently, also with Ho3+ ions [4,5]. The Ho3+ ion is known for its 5I75I8 eye-safe emission occurring at wavelengths slightly above 2 μm with high relevance for medical applications. Efficient and power-scalable laser operation with Ho:YAG ceramics has been recently reported using in-band pumped configurations (Tm laser pumping into the upper laser level (5I7) of Ho3+) [4–6]. This scheme is known for reaching high efficiency of the Ho lasers [7].

Passive Q-switching (PQS) of a solid-state laser by the introduction of an appropriate saturable absorber (SA) is a relatively simple approach to generate nanosecond pulses and to design such all-solid-state and compact coherent sources. The latter feature can be even more efficiently exploited in microchip lasers with both the laser element and the SA placed in a short plano-plano laser cavity providing a very short cavity round trip time [8]. Well recognized “slow” SAs for ~1 μm and ~2 μm lasers are dielectric crystals doped with transition-metal ions, e.g. Cr4+:YAG [1] and Cr2+:ZnS [9,10], respectively. Such SAs enable the generation of high pulse energies (from hundreds of μJ up to few mJ) at low repetition rates. As for “fast” SAs at ~1 μm, the most widespread and commercialized are the Semiconductor Saturable Absorbers (SSAs) providing low saturation intensity, fast (ps-long) recovery time of the initial absorption, low non-saturable losses and acceptable laser-induced damage threshold (LIDT) [11]. SSAs employed in microchip lasers at ~1 μm enabled the generation of sub-ns pulses at high repetition frequencies (hundreds of kHz – few MHz) while the pulse energy was about few μJ [12,13]. In addition, such microchip lasers are very attractive for seeding high-pulse-energy amplifiers [14].

The application of SSAs at ~2 μm is still not well established [15]. This is partially related to the more complex technology of their manufacturing for operation in this spectral range, lower LIDT and higher non-saturable losses. Thus, an active search of alternative materials is still ongoing. Most promising at ~2 μm seem “fast” SAs based on carbon nanostructures such as graphene or single-walled carbon nanotubes (SWCNTs) [16,17]. A reflection-type SSA (SESAM) has been recently employed in a passively Q-switched Tm microchip laser generating 0.11 μJ / 2.4 ns pulses at 1905 nm with a repetition rate of 1.2 MHz [18]. The application of graphene- and SWCNT-SAs in Tm microchip lasers led to higher pulse energies (few μJ) but longer pulse durations [19,20], e.g., for SWCNT-SA, 25-40 ns pulses were generated [20].

In the present work, we aimed to realize the first Ho microchip-type laser Q-switched by a commercial transmission-type SSA and to exploit the potential of such SAs for the generation of ns pulses at ~2.1 μm.

2. Experimental

2.1 Ho:YAG laser ceramics

The 1 at.% Ho:YAG transparent ceramics (NHo = 1.4 × 1020 cm−3) was prepared by a solid-state reaction and vacuum sintering method using commercial Y2O3, α-Al2O3 and Ho2O3 as starting powders, see [21,22] for details. The 1 at.% Ho doping was selected to prevent the deterioration of the laser efficiency due to upconversion losses [4]. The laser element was 4-mm thick, with both faces (3 × 3 mm2) polished to laser quality and uncoated. This thickness of the laser element was selected in order to benefit from the short geometrical cavity length and, hence, short cavity roundtrip time in a passively Q-switched laser. At first, we determined the absorption, σabs, and stimulated-emission, σSE, cross-sections of Ho3+ in the YAG ceramics corresponding to the 5I85I7 transition, as shown in Fig. 1(a). The σabs was determined as α/NHo where α is the measured absorption coefficient and σSE was determined with the reciprocity method using the reported Stark splitting for the Ho:YAG single-crystal in [23]. The maximum σabs is 0.98 × 10−20 cm2 at 1906.5 nm (full width at half maximum, FWHM, of this peak is 5.6 nm) and the maximum σSE is 1.44 × 10−20 cm2 at 2090.1 nm. The radiative lifetime of Ho3+ in the upper laser level, τrad(5I7) = 7.7 ms was estimated from the Judd-Ofelt modeling.

 figure: Fig. 1

Fig. 1 Spectroscopy of 1 at.% Ho:YAG ceramics: (a) absorption, σabs, and stimulated-emission, σSE, cross-section spectra and (b) gain, σg = βσSE – (1–β)σabs, cross-section spectra, β is the inversion ratio, arrows denote pump (a) and laser (b) wavelengths for the Ho:YAG ceramic laser; inset of (a) – photograph of the studied sample; (c) Low intensity absorption spectrum of the transmission-type semiconductor saturable absorber (SSA), inset: image of the studied SSA mounted on a Cu-holder.

Download Full Size | PPT Slide | PDF

The Ho3+ ion represents a quasi-three-level laser scheme. Thus, we have also determined the gain cross-sections, σg = βσSE – (1–β)σabs, where β = N(5I7)/NHo is the inversion ratio, Fig. 1(b). For low β < 0.15, local maxima at 2121 and 2128 nm are observed in the gain spectra. For higher inversion levels, laser operation is expected at 2096 nm (β < 0.2) and at 2090 nm (β > 0.2). The studied Ho:YAG ceramic has a slight rose coloration due to the Ho3+ dopant, with high optical quality. The loss coefficient estimated from modeling of the continuous-wave (CW) laser performance [24] was δloss = 0.0056 cm−1 at ~2090 nm.

2.2 Laser set-up

The laser performance of the Ho:YAG ceramic was studied in a plano-plano (microchip-type) laser cavity. The laser cavity consisted of a flat pump mirror (PM) coated for high reflection (HR) at 2.0-2.15 µm and high transmission (HT) around 1.91 µm, and a flat output coupler (OC) with a transmission of 10% at 1.9-2.15 µm. The laser element was wrapped with Indium foil and mounted in a Cu-holder providing heat removal from all four lateral faces. The holder was water-cooled to 12 °C. The SA was inserted between the laser element and the OC. All optical elements were positioned as close as possible to reduce the cavity round trip time. The total geometrical cavity length was ~7 mm. The laser element was pumped through the PM with a CW Tm fiber laser (IPG Photonics) emitting up to 5.1 W at 1.91 µm with a spectral linewidth of 0.7 nm. The Tm fiber laser provided a collimated unpolarized output beam, 4.5 mm in diameter, a full divergence angle of 0.58 mrad and M2 = 1.05. The pump beam was focused into the sample by a 50 mm focal length lens. The mean radius of the pump beam in the sample was wp = 150 ± 10 µm (it was placed slightly out of focus to ensure better mode-matching). The total pump absorption under lasing conditions was ~33 ± 2%, as determined based on the small-signal pump-transmission measurements and rate-equation modelling accounting for ground-state bleaching, see details in [24].

Commercial SSAs (BATOP, model SA-2000-1-25.4g) were used for PQS, see inset in Fig. 1(c). The transmission-type SSAs were AR/AR-coated around 2 μm. Each SSA was mounted on a passively-cooled Cu-holder. The specified characteristics of the SSAs were as follows: small-signal absorption at 2000 nm α'0 = 1%, fraction of the saturable losses α'S/α'0 = 0.5, saturation fluence Fsat = 300 μJ/cm2 and recovery time τSA = 7, 13 or 21 ps for different SSAs. At the emission wavelength of the Ho:YAG ceramic, according to the absorption spectrum, Fig. 1(c), the actual α'S = 0.24%. The radius of the laser mode in the laser element and SA was ~145 ± 5 µm, calculated with the ABCD method using a value for the sensitivity factor of the thermal lens of 2.2 m−1/W [24]. The absorption of the SSAs at the pump wavelength (for the residual pump) in the bleached state was ~0.24%.

A fast (~30 ps) InGaAs PIN photodetector and a 1 GHz digital oscilloscope were used for detection of the Q-switched pulses.

3. Results and discussion

At first, we studied the CW performance of the Ho:YAG ceramic laser (when removing the SA from the laser cavity and moving the OC closer to the laser element). It generated a maximum output power of 1180 mW at 2090.4 nm with a slope efficiency η = 88% with respect to the absorbed pump power, Pabs, Fig. 2. The laser threshold was at Pabs = 0.35 W and the optical-to-optical efficiency with respect to the incident power was 23%.

 figure: Fig. 2

Fig. 2 CW and SSA passively Q-switched Ho:YAG ceramic laser: (a) input-output dependences, η - slope efficiency, τSA – specified recovery time of the SSAs: #1 (7 ps), #2 (13 ps) or #3 (21 ps); (b) typical laser emission spectra, Pabs = 1.59 W, the spectrum in the PQS regime corresponds to the SSA with τSA = 7 ps.

Download Full Size | PPT Slide | PDF

Inserting the SSAs into the laser cavity, stable PQS was achieved. For the SA with a specified τSA = 7 ps, the maximum average output power reached 610 mW at 2089.4 nm corresponding to η = 51%. The conversion efficiency with respect to the CW operation mode ηconv amounted to 52%. The laser threshold was at Pabs = 0.40 W and the optical-to-optical efficiency with respect to the incident power ηopt amounted to 13%. Using the SA with τSA = 13 ps and 21 ps, the laser performance was slightly inferior, Fig. 2(a), namely 450 mW with η = 37% and 520 mW with η = 42%, respectively. The input-output dependences for the Ho:YAG ceramic laser are clearly linear indicating no detrimental thermal effects. The measured laser emission spectra, Fig. 2(b), are in agreement with the gain spectra, Fig. 1(b). The laser output was unpolarized for both, the CW and PQS regimes. The output mode of the laser corresponded to TEM00.

The use of SSAs with different τSA resulted in similar pulse characteristics, Fig. 3, with clear dependence on the absorbed power. This effect is typical for “fast” SAs and related to the different bleaching of the SA with an increase of Pabs. In particular for the SA with τSA = 13 ps, the pulse duration Δτ (determined as FWHM) decreased from 250 to 89 ns with Pabs and the pulse repetition frequency (PRF) increased almost linearly from 7 to 141 kHz. The pulse energy Eout at the maximum pump power was ~3 μJ. Consequently, the maximum peak power, Ppeak = Eoutτ, reached 36 W.

 figure: Fig. 3

Fig. 3 SSA passively Q-switched Ho:YAG ceramic laser: pulse duration Δτ (FWHM) (a), pulse repetition frequency (PRF) (b), pulse energy Eout = Pout/PRF (c) and peak power Ppeak = Eoutτ (d), τSA – recovery time of the SSAs.

Download Full Size | PPT Slide | PDF

The oscilloscope traces of single Q-switched pulses obtained using the SSA with a specified τSA = 13 ps at various Pabs and the corresponding pulse train for the maximum Pabs = 1.59 W are shown in Fig. 4. The intensity instabilities in the pulse train were <15% and the pulse-to-pulse timing jitter was ~10%. These instabilities are primarily attributed to the heating of the SSA due to absorption of the residual pump power.

 figure: Fig. 4

Fig. 4 Passively Q-switched Ho:YAG ceramic laser using the SSA with τSA = 13 ps: oscilloscope traces of the single pulses at various Pabs (a) and the corresponding pulse train for Pabs = 1.59 W (b).

Download Full Size | PPT Slide | PDF

No damage of the SSAs was observed during operation (the intracavity fluence on the SA reached 0.2 J/cm2 and the corresponding intracavity intensity ~2.1 MW/cm2).

In Table 1, we compared the output characteristics of the passively Q-switched Ho:YAG ceramic lasers reported so far. The SSAs provide pulse characteristics similar to the “fast” SAs based on carbon nanostructures (graphene and SWCNTs) [24,25] with the same saturable absorption (0.2-0.4%) and to the semiconductor (PbS) quantum dots (QDs) in glass as the one described in [26] whilst the technology of the latter SAs is still far from being mature. Further shortening of the pulse duration when using SSAs for PQS of Ho lasers is possible by increasing their modulation depth which may lead to the generation of pulses with Δτ of few ns and Eout of few tens of μJ reaching kW peak powers. Further power scaling of such Ho lasers (which was limited in the present work by the available pump power and the low Ho doping) may potentially lead to PRFs in the MHz-range. The reduction of the Q-switching instabilities can be provided by eliminating the residual pump power, e.g. by increasing the Ho doping or applying dichroic coatings on the output face of the laser element.

Tables Icon

Table 1. Comparison of Output Characteristics of the Ho:YAG Ceramic Lasers Passively Q-switched by “Fast” SAs Reported so Far

4. Conclusion

We report on the first holmium micro-laser PQS by semiconductor saturable absorbers (SSA). We have employed a Ho:YAG transparent ceramic in-band-pumped by a Tm fiber laser at 1.91 μm, and a commercial transmission-type SSA designed for the 2 μm spectral range. This laser generated pulses as short as ~100 ns at repetition rates of 140-210 kHz with maximum output powers of 610 mW at 2089 nm corresponding to a maximum slope efficiency of 51%. Further pulse shortening and scaling of the pulse energy seem to be feasible with the increase of the modulation depth of the SSA at 2.1 μm. Among others, SSA passively Q-switched Ho microchip lasers are attractive for seeding of high-pulse-energy Ho-doped amplifiers.

Funding

National Natural Science Foundation of China (61405171); Science and Technology Program of the Shandong Higher Education Institutions of China (J13LJ05); European Union’s Horizon 2020 research and innovation programme under grant agreement No 654148 Laserlab-Europe and under the Marie Skłodowska-Curie grant agreement No 657630.

Acknowledgments

P.L. acknowledges financial support from the Government of the Russian Federation (Grant 074-U01) through ITMO Post-Doctoral Fellowship scheme.

References and links

1. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007). [CrossRef]   [PubMed]  

2. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995). [CrossRef]  

3. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012). [CrossRef]   [PubMed]  

4. T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013). [CrossRef]  

5. H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012). [CrossRef]  

6. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011). [CrossRef]   [PubMed]  

7. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015). [CrossRef]   [PubMed]  

8. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994). [CrossRef]   [PubMed]  

9. B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015). [CrossRef]   [PubMed]  

10. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015). [CrossRef]   [PubMed]  

11. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]  

12. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997). [CrossRef]   [PubMed]  

13. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001). [CrossRef]  

14. F. Di Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30(24), 3299–3301 (2005). [CrossRef]   [PubMed]  

15. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016). [CrossRef]  

16. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012). [CrossRef]  

17. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010). [CrossRef]  

18. M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016). [CrossRef]  

19. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015). [CrossRef]   [PubMed]  

20. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016). [CrossRef]  

21. J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

22. J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014). [CrossRef]  

23. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006). [CrossRef]  

24. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016). [CrossRef]   [PubMed]  

25. T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014). [CrossRef]  

26. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  2. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  3. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref] [PubMed]
  4. T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
    [Crossref]
  5. H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
    [Crossref]
  6. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [Crossref] [PubMed]
  7. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
    [Crossref] [PubMed]
  8. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  9. B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
    [Crossref] [PubMed]
  10. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
    [Crossref] [PubMed]
  11. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  12. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [Crossref] [PubMed]
  13. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
    [Crossref]
  14. F. Di Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30(24), 3299–3301 (2005).
    [Crossref] [PubMed]
  15. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]
  16. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  17. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
    [Crossref]
  18. M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
    [Crossref]
  19. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
    [Crossref] [PubMed]
  20. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
    [Crossref]
  21. J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).
  22. J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
    [Crossref]
  23. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
    [Crossref]
  24. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
    [Crossref] [PubMed]
  25. T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
    [Crossref]
  26. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
    [Crossref]

2016 (4)

2015 (5)

2014 (2)

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

2013 (1)

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

2012 (4)

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

2011 (1)

2010 (1)

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

2007 (1)

2006 (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

2005 (1)

2001 (1)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1994 (1)

Agnesi, A.

Aguiló, M.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Ba, X. W.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Braun, B.

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brooks, C. D.

Chen, H.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Cho, W. B.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Choi, S. Y.

Cui, Z.

Dai, T.

Di, J.

Di Teodoro, F.

Díaz, F.

Dill, C.

Dong, J.

Duan, X.

Feng, X. Q.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Gao, W. L.

Gaponenko, M.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Griebner, U.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Guina, M.

Guo, J. K.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Härkönen, A.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Ikesue, A.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Jiang, B. X.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kärtner, F. X.

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kim, K.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Kim, M. H.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kuleshov, N.

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Lan, R.

Lee, S.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Li, J.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
[Crossref] [PubMed]

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Liu, B. L.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, J.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, Q.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, W. B.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Loiko, P.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Luo, D. W.

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Lv, P.

Ma, J.

Malyarevich, A.

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Mateos, X.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

Onushchenko, A.

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Pan, Y.

Pan, Y. B.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Petrov, V.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Qian, L. J.

Qin, X. P.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Qin, Z.

Rotermund, F.

Schmidt, A.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Serres, J. M.

Shen, D.

Shen, D. Y.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Shen, Y.

Shirakawa, A.

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Steinmeyer, G.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Südmeyer, T.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Suomalainen, S.

Tang, D.

Tang, D. Y.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

Ueda, K.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Wang, J. Y.

Wang, Y.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Xie, G.

Xie, G. Q.

Xie, T. F.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Xu, X.

Yagi, H.

Yanagitani, T.

Yang, H.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Yang, X.

Yang, X. F.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Yao, B.

Yasukevich, A.

Yeom, D.-I.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Yim, J. H.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Yu, H. H.

Yuan, J.

Yuan, P.

Yumashev, K.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

Zayhowski, J. J.

Zeng, Y. P.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Zhang, G.

Zhang, H. J.

Zhang, J.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Zhang, Q. T.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Zhang, W. X.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Zhao, T.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Adv. Funct. Mater. (1)

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Eur. Ceram. Soc. (1)

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

F. Di Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30(24), 3299–3301 (2005).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

Opt. Mater. (1)

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

Opt. Mater. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Spectroscopy of 1 at.% Ho:YAG ceramics: (a) absorption, σabs, and stimulated-emission, σSE, cross-section spectra and (b) gain, σg = βσSE – (1–β)σabs, cross-section spectra, β is the inversion ratio, arrows denote pump (a) and laser (b) wavelengths for the Ho:YAG ceramic laser; inset of (a) – photograph of the studied sample; (c) Low intensity absorption spectrum of the transmission-type semiconductor saturable absorber (SSA), inset: image of the studied SSA mounted on a Cu-holder.
Fig. 2
Fig. 2 CW and SSA passively Q-switched Ho:YAG ceramic laser: (a) input-output dependences, η - slope efficiency, τSA – specified recovery time of the SSAs: #1 (7 ps), #2 (13 ps) or #3 (21 ps); (b) typical laser emission spectra, Pabs = 1.59 W, the spectrum in the PQS regime corresponds to the SSA with τSA = 7 ps.
Fig. 3
Fig. 3 SSA passively Q-switched Ho:YAG ceramic laser: pulse duration Δτ (FWHM) (a), pulse repetition frequency (PRF) (b), pulse energy Eout = Pout/PRF (c) and peak power Ppeak = Eoutτ (d), τSA – recovery time of the SSAs.
Fig. 4
Fig. 4 Passively Q-switched Ho:YAG ceramic laser using the SSA with τSA = 13 ps: oscilloscope traces of the single pulses at various Pabs (a) and the corresponding pulse train for Pabs = 1.59 W (b).

Tables (1)

Tables Icon

Table 1 Comparison of Output Characteristics of the Ho:YAG Ceramic Lasers Passively Q-switched by “Fast” SAs Reported so Far

Metrics