Abstract

Two-dimensional (2D) materials, especially transition-metal dichalcogenides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2), have attracted great interests due to their exceptional optical properties as saturable absorbers in laser systems. In this work, at first, we presented a diode-pumped passively Q-switched laser with MoS2 saturable absorber (MoS2-SA). At an incident pump power of 6.54 W, a maximum output power of 1.15 W with a minimum pulse duration of 70.6 ns was obtained, which is the shortest pulse duration of diode pumped passively Q-switched laser with MoS2-SA to the best of our knowledge. Then, by using a hybrid Q-switched laser with a MoS2-SA and an acousto-optic modulator (AOM) as pumping fundamental laser, a sub-nanosecond KTiOPO4 (KTP) based intracavity optical parametric oscillation (IOPO) was realized. With an incident pump power of 10.2 W and AOM repetition rate of 10 kHz, the maximum output power of 183 mW with minimum pulse duration of 850 ps was obtained. The experimental results indicate that the IOPO pumped by the hybrid Q-switched laser with AOM and MoS2-SA can generate signal wave with shorter pulse duration than those IOPOs pumped by hybrid Q-switched laser with AOM and Cr4+:YAG or single-walled carbon nanotube saturable absober (SWCNT-SA) or monolayer graphene SA.

© 2017 Optical Society of America

1. Introduction

Short-pulse eye-safe coherent sources in the spectral region of 1.5-1.6 µm have drawn great attentions due to their practical applications in the fields of remote sensing, telemetry, laser radar, etc. Traditional methods to obtain these kinds of laser sources included employing erbium (Er)-doped laser system or utilizing the stimulated Raman scattering of media [1–5]. However, due to the small nonlinearities χ(3) [3–5], the method of stimulated Raman scattering has high threshold and low efficiency. As is well-known, optical parametric oscillation (OPO), especially intracavity OPO (IOPO), is a widely used method to obtain the tunable near-infrared (NIR) light sources owing to its advantages of compactness, low threshold and high efficiency [6–15]. With respect to coherent sources in the spectral region of 1.5-1.6 µm, one can acquire them by employing a nonlinear crystal such as KTiOPO4 (KTP) or KTiOAsO4 (KTA) pumped by Nd-doped Q-switched laser [6–10]. The wide pulse width of fundamental laser resulted in the common signal pulse waves with pulse durations at least several nanosecond [6–8]. Therefore, in order to obtain OPOs with shorter pulse durations, it is essential to choose a high-quality fundamental laser with shorter pulse duration. As respect to Nd-doped Q-switched laser, traditional Q-switching method include active Q-switches and passive Q-switches, such as electro-optic modulator (EOM), acousto-optic modulator (AOM), Cr4+:YAG [16], V3+:YAG [17], Co2+:LMA [18], SESAM [19], GaAs [20]) etc. Especially, hybrid Q-switching technique combining active and passive Q-switches can generate shorter pulse width and higher peak power with high stability [21–25]. With such hybrid Q-switched lasers to pump IOPOs, signal wave pulses with short pulse durations and stable pulse repetition rates as well as high peak powers can be achieved [26–28].

In recent years, nanosheets materials such as carbon nanotubes (CNTs) [29, 30], topological insulators (TIs) [31, 32] and graphene [33, 34] have received much attention due to the advantages of ultra-broadband saturable absorption, relatively easy and low cost fabrication processes. As another kind of nanosheets material, molybdenum disulfide (MoS2) has been verified to be an ideal 2D material for its exotic electronic and optical properties, such as broadband saturable absorption, high third-order nonlinear susceptibility and ultrafast carrier dynamics. As we know well now, the bulk MoS2 has a bandgap ~1.29 eV (corresponding to ~1 μm) [35], while the bandgap of a monolayer MoS2 reaches a larger value of 1.8 eV (around 0.7 μm in terms of optical wavelength) [36]. Even so, layered MoS2 has been successfully used as optical SAs for generating short pulses around 1 μm [36–41], which may be attributed to the presence of edge-state absorption [42–45]. Roxlo et al. [42, 43] found that at sub-bandgap wavelength-equivalent energies, small flakes of few-layered MoS2 (~1 μm across) showed up to two orders of magnitude greater absorption than a single crystal and texturing of single crystals has also been shown to increase sub-bandgap absorption by a factor of ten. Smaller or textured flakes possess a larger edge to surface-area ratio, suggesting a greater contribution to the absorption spectra from edge states that form quasi-energy levels within the forbidden energy gap of the pristine crystal band structure. Furthermore, Woodward et al. [44, 45] proposed that appearance of edge sites in the bandgap could explain the absorption at photon energies lower than the single MoS2 crystal bandgap, when saturated at high intensities by Pauli blocking, leading to SA behaviors. Wang et al. [36] firstly observed the saturable absorption phenomenon of MoS2 at 800 nm. Then, Woodward et al. [37] and Zhang et al. [38] investigated the Q-switched laser operation and mode-locked laser operation of Yb3+-doped fiber laser by using MoS2-SA in 2014, respectively. In addition, Huang et al. [39] and Liu et al. [40] demonstrated the MoS2 as SA at Er3+-doped fiber laser, respectively. Xu et al. [41] also realized the Q-switched Nd:YAlO3 laser at 1079.5 nm by using MoS2-SA, from which the minimum pulse width of 227 ns was obtained. As an excellent SA, it is expected to use MoS2-SA in a hybrid Q-switched laser system for pumping IOPO.

In this paper, at first, a diode-pumped passively Q-switched laser with our self-made MoS2-SA was presented. At an incident pump power of 6.54 W, a maximum output power of 1.15 W with a minimum pulse duration of 70.6 ns was obtained. Then, a sub-nanosecond KTP-based IOPO pumped by a hybrid Q-switched laser with a MoS2-SA and an AOM was realized. With an incident pump power of 10.2 W and AOM repetition rate of 10 kHz, the maximum output power of 183 mW with minimum pulse duration of 850 ps was obtained.

2. Fabrication and optical characteristics of MoS2-SA

We obtain the few-layer MoS2 by employing a liquid-phase exfoliation method. At first, the bulk MoS2 was put into a dimethyl formamide (DMF) solution and through a 24-hour sonication the few-layer MoS2 suspension was centrifuged for 90 minutes at 1500 rpm to remove the residual bulk MoS2. Then, the MoS2 solution was dripped onto the quartz substrate and rotated the quartz substrate at a low speed to disperse the solution uniformly. At last, the quartz substrate was dried inside an oven with a constant temperature of 70°C for two hours.

The distribution of flake thickness and lateral dimensions of MoS2 is measured via atomic force microscopy (AFM), which is shown in Figs. 1(a) and 1(b), from which we can see that the thickness of MoS2 is about 1.4-1.9 nm. Since the height of a single layer of MoS2 is 0.65 nm [44], the average numbers of MoS2 layers in the quartz substrate is in the range of 2-3. Figure 1(c) gives the scanning electron microscopy (SEM) image of the MoS2 piece, from which a layered structure could be recognized at the edge of the sample. The Raman spectrum of the MoS2-SA is shown in Fig. 1(d). It can be seen from Fig. 1(d) that the E2g1mode of the few-layer MoS2 sample was measured to be 384 cm−1, in comparison with the Raman spectrum of the bulk MoS2 with the E2g1mode of 380 cm−1 [38], a red shift about 4 cm−1 was obtained. As we know, the E2g1mode of MoS2 is related to an in-plane motion of S and Mo atoms and it reflects the relative motion between adjacent two mono-layers. Hence, the obvious red shift of E2g1mode of few-layer MoS2 sample indicates a successful exfoliation from the bulk MoS2.

 figure: Fig. 1

Fig. 1 Characterization of MoS2: (a) AFM image, (b) height variation, (c) SEM image, (d) Raman spectra.

Download Full Size | PPT Slide | PDF

In order to confirm the saturable absorption capability of the MoS2-SA sample near 1 μm, the nonlinear optical characteristics was measured by the balanced twin-detector measurement technique. The laser source was an AOM Q-switched solid-state laser at 1.06 μm. We recorded the corresponding optical transmittances through the sample with respect to different input pulse fluence and the related transmittance curve was shown in Fig. 2. We can see from Fig. 2 that the modulation depth, saturation intensity, and initial transmittance were measured to be 7.9%, 11.6 mJ/cm2 and 87.5%, respectively.

 figure: Fig. 2

Fig. 2 Nonlinear transmittance curve of the MoS2-SA versus the input pulse fluence.

Download Full Size | PPT Slide | PDF

3. Experimental setup

The experimental set-up of the KTP-based IOPO pumped by a hybrid Q-switched laser with AOM and MoS2-SA is reported in Fig. 3. The pump source is a 30 W commercial fiber-coupled diode laser (FAP-I system, Coherent Inc.) with a core diameter of 400 µm and emitting wavelength of 808 nm. M1 was a plane mirror with high-reflectivity (HR) coated at 1064 nm (R>99.8%) and high-transmission (HT) coated at 808 nm (T = 85%). The laser gain medium was a 4 × 4 × 10 mm3 (10 mm in thickness) a-cut Nd:YVO4 crystal with 0.5 at.% Nd3+ concentration. One surface of Nd:YVO4 crystal was antireflection (AR) coated at 808 and 1064 nm, and the opposite face was AR coated at 1064 nm. The KTP crystal, with a length of 20 mm and cut for type-II non-critically phase-matching (θ = 90°, φ = 0°) configuration was adopted as the nonlinear parametric converter. The input face of the KTP crystal was HR coated at 1572 nm (R>99.7%) and AR coated at 1064 nm (R<0.2%), while the other face was AR coated both at 1064 and 1572 nm (R<0.5%). In order to alleviate the heat deposition, both the KTP crystal and the Nd:YVO4 crystal were wrapped with indium foil and mounted in copper holders maintained at 17°C. The 47-mm-long AO Q-switch (GSQ27-3, the 26th institute, CETC, China) was AR coated at 1064 nm (R<0.2%) on both surfaces and the modulation rate could be tuned from 1 kHz to 50 kHz. A MoS2 sample was used as SA, whose fabrication process and characterization could be found at part 2. M2 was a plane mirror with partial-reflectivity (PR) coated at 1572 nm (T = 15%). M3 is a plane mirror with T = 10% at 1064 nm. The OPO and fundamental wave cavity length were 22 and 92 mm, respectively. A DPO 7104C digital oscilloscope (1 GHz bandwidth and 20 GS/s sampling rate, Tektronix Inc., USA) and a fast InGaAs photo detector with a rising time of 0.4 ns (New Focus, 1611) were used to measure the pulse characteristics of the laser. A wavescan laser spectrometer (Resolution: 0.4 nm, APE GmbH, Germany) and a MAX 500AD laser power meter (Coherent Inc., USA) were employed to measure the laser spectrum and yielded average output power, respectively.

 figure: Fig. 3

Fig. 3 Experimental configuration of the IOPO pumped by a hybrid Q-switched Nd:YVO4 laser with AOM and MoS2-SA.

Download Full Size | PPT Slide | PDF

4. Experimental results and discussions

4.1 Fundamental laser operation

At the fundamental laser operation, we investigated laser characteristics of the diode pumped passively Q-switched laser with MoS2-SA and the hybrid Q-switched laser with MoS2-SA and AOM, respectively. As shown in Fig. 3, when the KTP was removed from the cavity and the output mirror was replaced by M3, the laser operation was a hybrid Q-switched laser with AOM and MoS2-SA, while it was passively Q-switched laser with MoS2-SA when the AOM was removed sequentially. Figure 4(a) shows the average output powers of these two kinds of lasers versus the incident pump power. Figure 4(b)-(c) give the pulse durations of these two kinds of lasers and the pulse repetition rates of MoS2-SA Q-switched laser with respect to the incident pump power. As shown in Fig. 4(a)-(c), for the passively Q-switched laser with MoS2-SA, at the maximum incident pump power of 6.54 W, the maximum output power of 1.15 W and the minimum pulse duration of 70.6 ns were obtained. As far as we concerned, this is the shortest pulse duration of diode pumped MoS2-SA Q-switched laser at 1.06 μm. Furthermore, we can see that from the threshold pump power of 1.2 W to the maximum pump power of 6.54 W, the pulse repetition rate increased from 162 kHz to 435 kHz. For the hybrid Q-switched laser with AOM and MoS2-SA, at the maximum incident pump power of 6.54 W, the maximum output powers at different AOM repetition rates of 10, 20 and 30 kHz are 0.88, 0.96, 1.02 W, corresponding to the minimum pulse durations of 5.3, 6.1, and 7.3 ns, respectively. Figure 4(d) gives a typical temporal pulse trains of passively Q-switched laser with MoS2-SA at incident pump power of 6.54 W. Figure 4(e)-(f) show the typical temporal single pulse shapes of passively Q-switched laser with MoS2-SA and hybrid Q-switched laser with AOM and MoS2-SA with an AOM repetition rate of 10 kHz at the incident pump power of 6.54 W. It can be seen from Fig. 4(e)-(f) that in comparison with passively Q-switched laser with MoS2-SA, the hybrid Q-switched laser has a significant pulse duration compression at the same pump power. In the hybrid Q-switched laser system with AOM and MoS2-SA, the active Q-switch AOM controlled the pulse repetition rate and allowed the laser medium to store energy in the gain medium, while the MoS2-SA acting as passive Q-switch further shaped the pulses by extra losses introduced. Thus, the rising and falling edges of the pulses experienced dual modulation losses, resulting in pulse shortening effect. Although the pulse duration obtained from passively Q-switched laser with MoS2-SA was wider than some traditional SAs such as GaAs [46] and Cr4+:YAG [47], MoS2-SA is wavelength insensitive and shows broadband saturable absorption from the visible to the near-infrared spectral band, which makes it more suitable for supplying extra losses to shape the pulses in hybrid Q-switched modulation regime in a broad spectral band than the traditional SAs such as GaAs and Cr4+:YAG SAs. In addition, we believe the present dual-loss modulation lasing performance can be further improved by optimizing the laser cavity parameters, the layer structure and sizes of MoS2 sample.

 figure: Fig. 4

Fig. 4 Laser characteristics of the passively Q-switched laser with MoS2-SA and hybrid Q-switched laser with MoS2-SA and AOM.

Download Full Size | PPT Slide | PDF

4.2 OPO characteristics

The IOPO pumped by the singly passively Q-switched with MoS2-SA has not been achieved, which may be that because the power density of singly passively Q-switched with MoS2-SA can’t reach the threshold of the OPO operation. Hence, we investigated the laser characteristics of IOPO pumped by the hybrid Q-switched laser with MoS2-SA and AOM (HIOPO). Figure 5 shows the average output powers of signal waves for the HIOPO configuration with respect to pump powers at three different AOM repetition rates of 10, 20 and 30 kHz, respectively. From Fig. 5, we can see that the average output power of HIOPO increased with the increase of the repetition rates of AOM. The power threshold of HIOPO at the different AOM repetition rates of 10, 20 and 30 kHz was around 5.5 W. Under a maximum incident pump power of 10.2 W, the average output powers of HIOPO signal waves at the AOM repetition rates of 10, 20 and 30 kHz were measured to be 183, 196 and 218 mW, respectively. Figure 6 gives the typical output spectra for the singly MoS2 Q-switched laser and HIOPO. As shown in Fig. 6, the wavelength of singly MoS2 Q-switched laser was measured to be 1064 nm, while the wavelengths of fundamental and signal waves of HIOPO were located at 1064 and 1572 nm, respectively.

 figure: Fig. 5

Fig. 5 Average output powers of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 (a) A typical spectrum of singly MoS2 Q-switched laser at incident pump of 6.54 W. (b) A typical of spectrum of HIOPO at incident pump power of 10.2 W and AOM repetition rate of 10 kHz.

Download Full Size | PPT Slide | PDF

Figure 7 shows the dependence of the pulse durations of HIOPO on the incident pump power at three different AOM repetition rates. Under the same pump power, one can see that the higher of the AOM repetition rates, the wider of the pulse durations of HIOPO signal waves would be. At the maximum pump power of 10.2 W, the shortest pulse durations for the signal waves at AOM repetition rates of 10, 20 and 30 kHz were measured to be 0.85, 0.92 ns and 0.98 ns, respectively.

 figure: Fig. 7

Fig. 7 Pulse durations of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.

Download Full Size | PPT Slide | PDF

Figure 8 depicts a typical temporal pulse shapes of depleted fundamental wave and signal wave for HIOPO at the incident pump power of 10.2 W and AOM repetition rate of 10 kHz. The temporal pulse shapes of IOPO signal wave were measured by placing a HR mirror coated at 1064 nm before the probe to eliminate the pump light, while the temporal pulse shape of the depleted fundamental wave was measured from the reflected light by the same HR mirror at 1064 nm. It can be seen from Fig. 8 that the pulse durations of depleted fundamental and signal wave were 1.95 and 0.85 ns, respectively.

 figure: Fig. 8

Fig. 8 Temporal pulse shapes of signal and fundamental lights at the incident pump power of 10.2 W and AOM repetition rate of 10 kHz.

Download Full Size | PPT Slide | PDF

According to the average output powers and the pulse durations, the single pulse energies and peak powers of signal wave can be calculated by E=Ps/fandPp=E/τ, where E, Ps, Pp and τ are the single pulse energy, the average output power, the peak power and the pulse duration of signal wave, respectively, and f is the repetition rate of AOM. Figure 9 shows the single pulse energies and peak powers of signal wave for HIOPO versus incident pump powers. The highest single pulse energy of 18.3 μJ and the highest peak power of 21.6 kW was obtained at the incident pump power of 10.2 W with the AOM repetition rate of 10 kHz. In addition, at the incident pump power of 10.2 W, the M2 factor of the HIOPO at the AOM repetition rates of 10, 20 and 30 kHz was all found to be less than 1.2, which indicate the good beam quality of the HIOPO.

 figure: Fig. 9

Fig. 9 Single pulse energies and peak powers of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.

Download Full Size | PPT Slide | PDF

Moreover, we compare these results with those ever obtained in our previous works [26–28] as shown in Table 1, in which different saturable absorbers Cr4+:YAG, monolayer graphene and SWCNT were used in IOPOs pumped by hybrid Q-switched lasers. From Table 1, we can see that IOPO pumped by hybrid Q-switched laser with MoS2-SA can generate higher output power, shorter pulse duration and higher peak power at a lower incident pump power in comparison with IOPO pumped by hybrid Q-switched laser with graphene, which is attributed to the fact that MoS2-SA has better saturable absorption response than graphene [36]. Although IOPO pumped by hybrid Q-switched laser with SWCNT generated higher output power and peak power, the IOPO pumped by hybrid Q-switched laser with MoS2-SA can generate the shortest pulse duration among the above mentioned different combinations. In addition, the disadvantages of SWCNT such as impurities and the influence of cluster-induced losses [29] can be sidestepped for MoS2-SA, of which does not form bundles and can be solution processed and coated onto different types of substrate. Furthermore, the number of layers of MoS2 can be controlled, thus varying the light absorption strength and the modulation depth. Due to the limitation of the time resolution of our experimental facilities, the measured pulse duration in this work is wider than the real pulse duration [48]. However, considering the similar measurement conditions of the pulse durations in the previous results, we highly believe that the MoS2-SA has promising potential in generating high-performance solid-state Q-switched lasers and OPOs.

Tables Icon

Table 1. Comparisons of OPOs pumped by hybrid Q-switched lasers with AOM and different SAs.

5. Conclusions

In conclusion, a diode-pumped passively Q-switched laser with MoS2-SA was presented. At an incident pump power of 6.54 W, a maximum output power of 1.15 W and a minimum pulse duration of 70.6 ns were obtained. To the best of knowledge, this is the shortest pulse duration of diode pumped solid-state passively Q-switched laser with MoS2-SA at 1.06 μm. By a hybrid Q-switched laser with a MoS2-SA and an AOM as pump laser, a sub-nanosecond KTP-based IOPO was realized. With an incident pump power of 10.2 W and AOM repetition rate of 10 kHz, the maximum output power of 183 mW and minimum pulse duration of 850 ps was obtained. The experimental results show us that the IOPO pumped by the hybrid Q-switched laser with AOM and MoS2-SA can generate signal wave with shorter pulse width. Our works indicate that the MoS2-SA is a promising candidate for high-performance solid-state Q-switched lasers and OPO operations.

Funding

National Natural Science Foundation of China (61378022, 61475088); Young Scholars Program of Shandong University (2015WLJH38).

References and links

1. A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000). [CrossRef]  

2. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010). [CrossRef]   [PubMed]  

3. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, “Generation of 1.5 µm radiation through intracavity solid-state Raman shifting in Ba(NO3)2,” Opt. Lett. 20(9), 1017–1019 (1995). [CrossRef]   [PubMed]  

4. N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.

5. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008). [CrossRef]   [PubMed]  

6. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003). [CrossRef]  

7. Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004). [CrossRef]  

8. W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008). [CrossRef]  

9. R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, “Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO,” Opt. Express 8(13), 694–698 (2001). [CrossRef]   [PubMed]  

10. W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011). [CrossRef]  

11. G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012). [CrossRef]  

12. C. Kieleck, A. Berrou, B. Donelan, B. Cadier, T. Robin, and M. Eichhorn, “6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm(3+)-doped single-oscillator fiber laser,” Opt. Lett. 40(6), 1101–1104 (2015). [CrossRef]   [PubMed]  

13. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007). [CrossRef]   [PubMed]  

14. N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013). [CrossRef]  

15. V. Petrov, J. J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. D. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010). [CrossRef]  

16. T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997). [CrossRef]  

17. S. A. Zolotovskaya, K. V. Yumashev, N. V. Kuleshov, and A. V. Sandulenko, “Diode-pumped Yb,Er:glass laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 44(9), 1704–1708 (2005). [CrossRef]   [PubMed]  

18. H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007). [CrossRef]  

19. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013). [CrossRef]   [PubMed]  

20. K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007). [CrossRef]  

21. Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

22. F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007). [CrossRef]  

23. P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO(4) oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004). [CrossRef]   [PubMed]  

24. K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005). [CrossRef]  

25. G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007). [CrossRef]  

26. J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007). [CrossRef]  

27. J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015). [CrossRef]  

28. J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016). [CrossRef]  

29. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005). [CrossRef]   [PubMed]  

30. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008). [CrossRef]   [PubMed]  

31. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]  

32. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013). [CrossRef]   [PubMed]  

33. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. Y. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012). [CrossRef]  

34. C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010). [CrossRef]  

35. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010). [CrossRef]   [PubMed]  

36. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013). [CrossRef]   [PubMed]  

37. R. I. Woodward, E. J. Kelleher, T. Runcorn, S. V. Popov, F. Torrisi, R. C. Howe, and T. Hasan, “Q-switched fiber laser with MoS2 saturable absorber,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SM3H.6.

38. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014). [CrossRef]   [PubMed]  

39. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014). [CrossRef]   [PubMed]  

40. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014). [CrossRef]   [PubMed]  

41. B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014). [CrossRef]   [PubMed]  

42. C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986). [CrossRef]  

43. C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986). [CrossRef]  

44. R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014). [CrossRef]   [PubMed]  

45. R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015). [CrossRef]  

46. X. Chen, L. Wang, W. Han, Y. Guo, H. Xu, H. Yu, H. Zhang, and J. Liu, “High-energy passively Q-switched operation of Yb:GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber,” Opt. Express 23(23), 30357–30363 (2015). [CrossRef]   [PubMed]  

47. J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003). [CrossRef]  

48. T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
    [Crossref]
  2. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [Crossref] [PubMed]
  3. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, “Generation of 1.5 µm radiation through intracavity solid-state Raman shifting in Ba(NO3)2,” Opt. Lett. 20(9), 1017–1019 (1995).
    [Crossref] [PubMed]
  4. N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.
  5. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
    [Crossref] [PubMed]
  6. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
    [Crossref]
  7. Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
    [Crossref]
  8. W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
    [Crossref]
  9. R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, “Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO,” Opt. Express 8(13), 694–698 (2001).
    [Crossref] [PubMed]
  10. W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
    [Crossref]
  11. G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
    [Crossref]
  12. C. Kieleck, A. Berrou, B. Donelan, B. Cadier, T. Robin, and M. Eichhorn, “6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm(3+)-doped single-oscillator fiber laser,” Opt. Lett. 40(6), 1101–1104 (2015).
    [Crossref] [PubMed]
  13. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
    [Crossref] [PubMed]
  14. N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
    [Crossref]
  15. V. Petrov, J. J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. D. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
    [Crossref]
  16. T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997).
    [Crossref]
  17. S. A. Zolotovskaya, K. V. Yumashev, N. V. Kuleshov, and A. V. Sandulenko, “Diode-pumped Yb,Er:glass laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 44(9), 1704–1708 (2005).
    [Crossref] [PubMed]
  18. H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
    [Crossref]
  19. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
    [Crossref] [PubMed]
  20. K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
    [Crossref]
  21. Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).
  22. F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
    [Crossref]
  23. P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO(4) oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004).
    [Crossref] [PubMed]
  24. K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
    [Crossref]
  25. G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
    [Crossref]
  26. J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
    [Crossref]
  27. J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
    [Crossref]
  28. J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
    [Crossref]
  29. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
    [Crossref] [PubMed]
  30. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [Crossref] [PubMed]
  31. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  32. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
    [Crossref] [PubMed]
  33. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. Y. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  34. C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
    [Crossref]
  35. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [Crossref] [PubMed]
  36. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
    [Crossref] [PubMed]
  37. R. I. Woodward, E. J. Kelleher, T. Runcorn, S. V. Popov, F. Torrisi, R. C. Howe, and T. Hasan, “Q-switched fiber laser with MoS2 saturable absorber,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SM3H.6.
  38. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  39. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
    [Crossref] [PubMed]
  40. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
    [Crossref] [PubMed]
  41. B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
    [Crossref] [PubMed]
  42. C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
    [Crossref]
  43. C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
    [Crossref]
  44. R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
    [Crossref] [PubMed]
  45. R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
    [Crossref]
  46. X. Chen, L. Wang, W. Han, Y. Guo, H. Xu, H. Yu, H. Zhang, and J. Liu, “High-energy passively Q-switched operation of Yb:GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber,” Opt. Express 23(23), 30357–30363 (2015).
    [Crossref] [PubMed]
  47. J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003).
    [Crossref]
  48. T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
    [Crossref] [PubMed]

2016 (1)

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

2015 (4)

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

C. Kieleck, A. Berrou, B. Donelan, B. Cadier, T. Robin, and M. Eichhorn, “6.5 W ZnGeP2 OPO directly pumped by a Q-switched Tm(3+)-doped single-oscillator fiber laser,” Opt. Lett. 40(6), 1101–1104 (2015).
[Crossref] [PubMed]

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

X. Chen, L. Wang, W. Han, Y. Guo, H. Xu, H. Yu, H. Zhang, and J. Liu, “High-energy passively Q-switched operation of Yb:GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber,” Opt. Express 23(23), 30357–30363 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (4)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, and U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38(19), 3842–3845 (2013).
[Crossref] [PubMed]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref] [PubMed]

2012 (3)

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. Y. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

2011 (1)

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

2010 (5)

2008 (3)

2007 (6)

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
[Crossref] [PubMed]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

2005 (3)

2004 (3)

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO(4) oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004).
[Crossref] [PubMed]

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

2003 (2)

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003).
[Crossref]

2001 (1)

2000 (1)

A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
[Crossref]

1997 (1)

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997).
[Crossref]

1995 (1)

1986 (2)

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Acosta, G.

C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
[Crossref]

Agnesi, A.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO(4) oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004).
[Crossref] [PubMed]

An, J.

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

Armstrong, D.

Austin, W.

Bai, F.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Berrou, A.

Bidault, O.

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Bunch, J. S.

C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
[Crossref]

Cadier, B.

Cai, Z.

Chang, N. W. H.

Chang, Y. T.

Che, K.

Chen, S. W.

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

Chen, W. D.

Chen, X.

Chen, Y.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Chen, Y. C.

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

Chen, Y. F.

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

Cheng, H.

Cheng, W. Y.

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

Cheng, Y.

Chernov, A. I.

Chianelli, R. R.

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Chien, C. H.

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

Chu, H. W.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Dagge, M.

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

Dallocchio, P.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Das, S.

Dascalu, T.

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997).
[Crossref]

Datta, P.

Degiorgio, V.

Dergachev, A.

Dianov, E. M.

Diebold, A.

Ding, A.

Donelan, B.

Drake, T.

Du, C. L.

Du, J.

Dubois, M.

Eichhorn, M.

Emaury, F.

Erhard, J.

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Gao, W. L.

Golling, M.

Guo, Y.

Hajiesmaeilbaigi, F.

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

Han, W.

Hasan, T.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hendaoui, N.

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Hosken, D. J.

Hou, X. Y.

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

Howe, R. C.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Hu, G.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Huang, D. X.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Huang, W. L.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Huang, Y.

Huang, Y. P.

Isaenko, L.

Itoga, E.

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Jin, G. F.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Kannari, F.

N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.

Kataura, H.

Kazaoui, S.

Kelleher, E. J.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Keller, U.

Kieleck, C.

Kolker, D.

Konov, V. I.

Kuleshov, N. V.

Lai, K. S.

Lan, Y. P.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

Lau, E.

Laurell, F.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Lee, C.-C.

C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
[Crossref]

Leta, D. P.

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Levoshkin, A.

A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
[Crossref]

Li, D.

Li, D. C.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

Li, G.

Li, G. Q.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Li, L.

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

Li, M.

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

Li, T.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

Li, Y.

Li, Y. F.

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

Li, Z. G.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Liang, K. S.

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Lim, G. C.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Lim, Y.

Lin, Z.

Liu, H.

Liu, J.

Liu, J. H.

Liu, M.

Liu, S.

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

Liu, X. D.

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

Liu, Z. J.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Lobach, A. S.

Lobanov, S.

Loh, K. P.

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Lu, J. R.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

Lu, S. B.

Luan, C.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

Luo, A. P.

Luo, Z.

Luo, Z. C.

Lv, P.

Ma, J.

Mahdizadeh, M.

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Marchev, G.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

V. Petrov, J. J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. D. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

Meng, X. L.

Minami, N.

Minoshima, K.

Miyashita, K.

Moghaddam, M. R. A.

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

Moncorgé, R.

Montagne, J. E.

A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
[Crossref]

Moore, N.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Mukhopadhyay, S.

Munch, J.

Murray, J. T.

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Obraztsova, E. D.

Ottaway, D. J.

Ozygus, B.

Pasiskevicius, V.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Peng, J.

Peremans, A.

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

Petrov, A.

A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
[Crossref]

Petrov, V.

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

V. Petrov, J. J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. D. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

Peyghambarian, N.

Philipps, G.

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997).
[Crossref]

Pirzio, F.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Popov, S. V.

Powell, R. C.

Qi, H. J.

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

Qi, X.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qian, L. Y.

Qiao, J. P.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

Qiao, W. C.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

Qin, L. J.

Razzaghi, H.

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

Reali, G.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Rice, S.

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Robin, T.

Roxlo, C. B.

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Rupper, A. F.

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Sakakibara, Y.

Sandulenko, A. V.

Saraceno, C. J.

Schibli, T.

Schibli, T. R.

C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
[Crossref]

Schriber, C.

Schunemann, P. G.

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

Seelig, U.

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Shao, Z. S.

Simakov, N.

Smith, A.

Smith, D.

Solodyankin, M. A.

Song, P.

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Stolzenberger, R. A.

Su, K. W.

Südmeyer, T.

Sun, W. J.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Sun, Y. M.

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

Sun, Y. X.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Suzuki, S.

N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.

Takei, N.

N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.

Tang, D. Y.

Tang, R.

Tao, X. T.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Tartara, L.

Tausenev, A. V.

Taylor, J. R.

Thilmann, N.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Tokumoto, M.

Torrisi, F.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Tsai, L. Y.

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

Tsai, S. W.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

Tyazhev, A.

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

V. Petrov, J. J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. D. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electrical, damage, and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27(9), 1902–1927 (2010).
[Crossref]

Vedenyapin, V.

Veitch, P. J.

Wan, X. B.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Wang, F. Z.

Wang, G.

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

Wang, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

Wang, J. Y.

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, L.

Wang, Q. P.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Wang, Y.

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

Wang, Y. G.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

Wang, Z. T.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Weber, H.

Wen, S. C.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Weng, J.

Wong, H.

Woodward, R. I.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

Wu, R. F.

Wu, W.

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Xie, G. Q.

Xie, W. J.

Xiong, Z.

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Xu, B.

Xu, H.

Xu, W. C.

Xu, X. G.

Yang, K.

Yang, K. J.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Yang, S. H.

Yelisseyev, A.

Yu, H.

Yu, H. H.

Yuan, P.

Yumashev, K. V.

Zawilski, K. T.

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

Zhang, H.

Zhang, H. J.

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, M.

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

Zhang, X.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, X. M.

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

Zhang, X. Y.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

Zhao, C. J.

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Zhao, J.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhao, S.

Zhao, S. Z.

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Zheng, J.

Zhong, M.

Zhu, L.

Zhuo, Z.

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

Zolotovskaya, S. A.

Zondy, J. J.

Zou, J.

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

ACS Nano (1)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (5)

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, F. Bai, X. B. Wan, G. F. Jin, X. T. Tao, and Y. X. Sun, “High efficiency KTiOAsO4 optical parametric oscillator within a diode-side-pumped two-rod Nd:YAG laser,” Appl. Phys. B 104(1), 87–91 (2011).
[Crossref]

G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, “Sub-nanosecond, 1-10 kHz, low-threshold, non-critical OPOs based on periodically poled KTP crystal pumped at 1064 nm,” Appl. Phys. B 109(2), 211–214 (2012).
[Crossref]

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “High-repetition-rate eye-safe optical parametric oscillator intracavity pumped by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(3), 263–266 (2003).
[Crossref]

Y. F. Chen, S. W. Chen, L. Y. Tsai, Y. C. Chen, and C. H. Chien, “Efficient sub-nanosecond intracavity optical parametric oscillator pumped with a passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B 79(7), 823–825 (2004).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, J. Zou, P. Song, and W. Wu, “Pulse compression in AO Q-switched diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” Appl. Phys. B 80(6), 687–692 (2005).
[Crossref]

Appl. Phys. Lett. (1)

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. P. Qiao, S. Z. Zhao, K. J. Yang, J. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, J. R. Lu, Y. G. Wang, H. W. Chu, and C. Luan, “Doubly Q-switched laser with AOM and SWCNT-SA-Driven KTP intracavity OPO,” IEEE Photonics Technol. Lett. 28(21), 2455–2458 (2016).
[Crossref]

J. Catal. (1)

C. B. Roxlo, M. Dagge, A. F. Rupper, and R. R. Chianelli, “Optical absorption and catalytic activity of molybdenum sulfide edge surfaces,” J. Catal. 100(1), 176–184 (1986).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

C.-C. Lee, T. R. Schibli, G. Acosta, and J. S. Bunch, “Ultra-short optical pulse generation with single-layer graphene,” J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

J. Wang, S. Z. Zhao, G. Q. Li, K. J. Yang, D. C. Li, J. An, and M. Li, “Pulse compression in laser-diode-pumped doubly Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities,” Jpn. J. Appl. Phys. 46(4), 1505–1510 (2007).
[Crossref]

Laser Phys. (2)

G. Wang, S. Liu, L. Li, S. Liu, M. Liu, and J. Liu, “Diode-pumped doubly Q-switched Nd:GdVO4 laser,” Laser Phys. 17(12), 1349–1352 (2007).
[Crossref]

N. Hendaoui, A. Peremans, P. G. Schunemann, K. T. Zawilski, and V. Petrov, “Synchronously pumped OPO for picoseond pulse generation in the mid-infrared near 6.45 µm using AgGaS2 and CdSiP2: a comparative study,” Laser Phys. 23(8), 085401 (2013).
[Crossref]

Laser Phys. Lett. (2)

H. J. Qi, X. D. Liu, X. Y. Hou, Y. F. Li, and Y. M. Sun, “A c-cut Nd:GdVO4 solid-state laser passively Q-switched with Co2+:LaMgAl11O19 lasing at 1.34 μm,” Laser Phys. Lett. 4(8), 576–579 (2007).
[Crossref]

F. Hajiesmaeilbaigi, H. Razzaghi, M. Mahdizadeh, and M. R. A. Moghaddam, “High-average-power diode-side-pumped doubly Q-switched Nd:YAG laser,” Laser Phys. Lett. 4(4), 261–264 (2007).
[Crossref]

Opt. Commun. (2)

A. Levoshkin, A. Petrov, and J. E. Montagne, “High efficiency diode pumped Q-switched Yb:Er:glass laser,” Opt. Commun. 185(4–6), 399–405 (2000).
[Crossref]

Z. G. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, “Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler,” Opt. Commun. 237(4–6), 411–416 (2004).

Opt. Express (13)

B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, and R. Moncorgé, “Passively Q-switched Nd:YAlO3nanosecond laser using MoS2as saturable absorber,” Opt. Express 22(23), 28934–28940 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref] [PubMed]

R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
[Crossref] [PubMed]

T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18(10), 10315–10322 (2010).
[Crossref] [PubMed]

X. Chen, L. Wang, W. Han, Y. Guo, H. Xu, H. Yu, H. Zhang, and J. Liu, “High-energy passively Q-switched operation of Yb:GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber,” Opt. Express 23(23), 30357–30363 (2015).
[Crossref] [PubMed]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[Crossref] [PubMed]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

R. F. Wu, K. S. Lai, H. Wong, W. J. Xie, Y. Lim, and E. Lau, “Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO,” Opt. Express 8(13), 694–698 (2001).
[Crossref] [PubMed]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
[Crossref] [PubMed]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO(4) oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004).
[Crossref] [PubMed]

T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
[Crossref] [PubMed]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

T. Dascalu, G. Philipps, and H. Weber, “Investigation of a Cr4+:YAG passive Q-switched in CW pumped Nd:YAG laser,” Opt. Laser Technol. 29(3), 145–149 (1997).
[Crossref]

Opt. Lasers Eng. (1)

W. Y. Cheng, S. Z. Zhao, Z. Zhuo, X. M. Zhang, and Y. Wang, “Laser-diode side-pumped actively Q-switched eye-safe intracavity optical parametric oscillator,” Opt. Lasers Eng. 46(1), 12–17 (2008).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (2)

J. P. Qiao, J. Zhao, K. J. Yang, S. Z. Zhao, G. Q. Li, D. C. Li, T. Li, W. C. Qiao, and H. W. Chu, “Intracavity KTP OPO pumped by a doubly Q-switched laser with AOM and a monolayer graphene saturable absorber,” Opt. Mater. 50, 234–237 (2015).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, M. Li, D. C. Li, J. Wang, and J. An, “Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO4 laser with a GaAs coupler,” Opt. Mater. 29(9), 1153–1158 (2007).
[Crossref]

Opt. Mater. Express (1)

Photonics Res. (1)

R. I. Woodward, R. C. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. Kelleher, “Few-layer saturable absorbers for short-pulse laser technology: current status and future perspectives,” Photonics Res. 3(2), A30–A42 (2015).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[Crossref] [PubMed]

Solid State Ion. (1)

C. B. Roxlo, M. Dagge, D. P. Leta, K. S. Liang, S. Rice, A. F. Rupper, and R. R. Chianelli, “Catalytic defects at molybdenum disulfide “edge” planes,” Solid State Ion. 22(1), 97–104 (1986).
[Crossref]

Other (2)

R. I. Woodward, E. J. Kelleher, T. Runcorn, S. V. Popov, F. Torrisi, R. C. Howe, and T. Hasan, “Q-switched fiber laser with MoS2 saturable absorber,” in CLEO: Science and Innovations (Optical Society of America, 2014), paper SM3H.6.

N. Takei, S. Suzuki, and F. Kannari, “Compensation of thermal lensing in an eye-safe cascade Raman laser with Ba(NO3)2 crystal,” in Conference on Lasers and Electro-Optics, Pacific Rim (1999), pp. 744–755.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Characterization of MoS2: (a) AFM image, (b) height variation, (c) SEM image, (d) Raman spectra.
Fig. 2
Fig. 2 Nonlinear transmittance curve of the MoS2-SA versus the input pulse fluence.
Fig. 3
Fig. 3 Experimental configuration of the IOPO pumped by a hybrid Q-switched Nd:YVO4 laser with AOM and MoS2-SA.
Fig. 4
Fig. 4 Laser characteristics of the passively Q-switched laser with MoS2-SA and hybrid Q-switched laser with MoS2-SA and AOM.
Fig. 5
Fig. 5 Average output powers of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.
Fig. 6
Fig. 6 (a) A typical spectrum of singly MoS2 Q-switched laser at incident pump of 6.54 W. (b) A typical of spectrum of HIOPO at incident pump power of 10.2 W and AOM repetition rate of 10 kHz.
Fig. 7
Fig. 7 Pulse durations of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.
Fig. 8
Fig. 8 Temporal pulse shapes of signal and fundamental lights at the incident pump power of 10.2 W and AOM repetition rate of 10 kHz.
Fig. 9
Fig. 9 Single pulse energies and peak powers of HIOPO versus incident pump power at AOM repetition rates of 10, 20 and 30 kHz.

Tables (1)

Tables Icon

Table 1 Comparisons of OPOs pumped by hybrid Q-switched lasers with AOM and different SAs.

Metrics