Abstract

In this paper, we perform an investigation of terabit-scale data transmission in silicon subwavelength grating (SWG) waveguides for wavelength-division multiplexing (WDM) optical signals. Silicon SWG waveguide is capable of decreasing the light confinement in silicon core by engineering the geometry, leading to relatively lower optical nonlinearity compared to silicon wire waveguide. We demonstrate ultrahigh-bandwidth 2.86 Tb/s data transmission through the fabricated 2-mm-long silicon SWG waveguide over a wide range of launch powers. In the experiment, 75 WDM channels are utilized with each carrying 38.12 Gb/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. With the benefit of efficient reduction on optical nonlinearity, the optimum launch power is increased by 8 dB in SWG waveguide, indicating higher tolerance to the nonlinear impairments, compared to a silicon wire waveguide with identical length. With the optimum launch power, all 75 channels exhibit bit-error rate (BER) values less than 4e-5 after SWG waveguide transmission. We also evaluate the terabit-scale data transmission performance through four silicon SWG waveguides with different lengths (1 mm, 2 mm, 4 mm and 12 mm). The required optical signal-to-noise ratios (OSNRs) to achieve BER level of 1e-3 are around 15.27, 15.47, 16.66 and 20.38 dB, respectively.

© 2017 Optical Society of America

1. Introduction

In the progress toward high performance computing systems, considerable effort has been invested into exploring the solutions to the ever increasing bandwidth and energy challenges in chip-scale interconnection networks [1]. Optical interconnects are identified as a promising technology to improve the performance of future interconnection networks owing to its reduced transmission latency, lower power consumption and wider available bandwidth compared to the state-of-the-art copper based electrical interconnects [2,3]. Over the past decades, silicon-based photonic integrated circuits (PICs) have been developed as a competitive candidate for the chip-scale optical interconnects considering its potential to realize monolithic integration of photonics and electronics [4,5]. Monolithic electro-optical integration enables the reduction of power consumption and increment of interconnection bandwidth. The inherent properties of high refractive index contrast and complementary metal-oxide-semiconductor (CMOS) compatibility on the silicon-on-insulator (SOI) platform allow for the high-density integration and low-cost mass production. Motivated by these unique benefits, silicon photonics has grown as a very active and productive research field [6,7]. Significant progress has been made in the development of SOI-based building blocks for chip-scale optical interconnects, including light sources [8], modulators [9], detectors [10], and waveguides [11]. Silicon wire waveguide which features low propagation loss and sub-micrometer dimension is generally regarded as the ideal transmission medium for the integrated silicon photonic networks [12]. However, considering its attribute of tight light confining, the optical nonlinear effects may cause impairments to the signal pulses at high data rates when propagating in long optical links.

A potential approach to utilize unprecedented bandwidth scalability of optical interconnects is based on the wavelength-division multiplexing (WDM) scheme to enable wavelength parallelism. In 2008, transmission of a 1.28 Tb/s (32 × 40 Gb/s) non-return-to-zero (NRZ) on-off-keying (OOK) WDM data stream through a silicon wire waveguide has been demonstrated and the impairment induced by nonlinearities was evaluated [11]. Several solutions have been investigated to alleviate the nonlinear transmission impairment. In [13], silicon vertical slot waveguide with high light confinement in the low-index air slot region was proposed for chip-scale data transmission. Advanced modulation format with high spectral efficiency was adopted to further increase the transmission capacity (1.8 Tb/s aggregate data rate). In spite of the reduced nonlinearities, the relatively high propagation loss demonstrated by the slot waveguides might set limitations for the data transmission [14,15]. Thus, a preferred choice is the interconnection medium with low loss and weak nonlinearity. Silicon subwavelength grating (SWG) waveguide which confines light as an index-guided structure allows for the equivalent refractive index engineering of the waveguide core by tailoring the grating geometry [16]. Thus, an optimized SWG waveguide with decreased light confinement in the silicon core area could also be employed for the nonlinearity reduction. Additionally, this type of waveguide has been demonstrated to achieve a propagation loss comparable to that of the conventional silicon wire waveguide [16,17]. Combination of these features enables the silicon SWG waveguide to be a potential medium for the chip-scale optical interconnects.

Recently, the optical components based on SWG waveguide encountered intense research efforts in a variety of applications [18]. However, to our best knowledge, the SWG waveguide has not yet been investigated for high-speed data transmission. In this paper, we experimentally study the transmission performance of silicon SWG waveguide for ultrahigh-bandwidth WDM orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The transmission of 2.86 Tb/s aggregate traffic (75 WDM channels, 38.12 Gb/s OFDM 16-QAM) through the 2-mm-long silicon SWG and wire waveguides are demonstrated and compared with the launch powers varying in a wide range. The bit-error-rate (BER) tests for the comprehensive evaluation of transmission performance are conducted. We also demonstrate the WDM transmission through the fabricated 1-mm, 4-mm and 12-mm-long silicon SWG waveguides. Compared to silicon wire waveguides, SWG waveguides exhibit significant tolerance on the optical launch power.

2. Device structure

Generally, SWG waveguides are longitudinally periodic. However, unlike Bragg grating waveguides, no optically resonant behavior occurs at the wavelength of propagating light. A very intriguing feature provided by SWG waveguides is the ability to tailor the effective refractive index by tuning the width, period and duty cycle of gratings. As a result, optical mode properties of the waveguide can be adjusted and optimized for a given application. In our case, mode delocalization away from the silicon core is pursued to achieve nonlinearity reduction. However, it is also important to note that there is an upper limit on the mode delocalization considering the leakage loss to the substrate.

Figure 1(a) shows the schematic diagram of the silicon SWG waveguide, where two tapers are added at each end of the SWG waveguide to enable adiabatic mode conversion between silicon wire and SWG waveguides. Due to the large mode mismatch at the wire to SWG interface, a custom-designed taper structure is required to facilitate smooth and low-loss mode transition [18,19]. The geometrical parameters of the mode converter and SWG waveguide, including wire width ww, taper length L, SWG width wg, grating period Λ and silicon segment length a, are defined in Fig. 1(b). With ww = 400 nm, L = 50 μm, wg = 300 nm, Λ = 300 nm and a = 150 nm, the simulated propagating field along the SWG waveguide is shown in Fig. 1(c) [20]. The grating period Λ = 300 nm is selected to avoid the formation of Bragg reflection [21]. The width of the SWG waveguide wg = 300 nm is chosen as a tradeoff between the light confinement in the silicon core area and the leakage loss to the substrate. Using the MIT photonic bands (MPB) software, the calculated effective index value of the SWG waveguide mode is about 1.586, which is capable of providing a low substrate leakage loss [22]. Figures 1(d) and 1(e) depict the simulated electric field distributions of the SWG waveguide at the center of a silicon segment and the wire waveguide, respectively. As seen, the optical mode is more delocalized from the silicon core in the SWG waveguide. Besides, the SWG waveguide core is discontinuous. Light also propagates in the SU-8 polymer regions between silicon segments which feature a negligible third order nonlinearity [23,24]. The above two aspects lead to the efficient nonlinearity reduction in silicon SWG waveguide. Based on the simulated mode profiles in Figs. 1(d) and 1(e), one can calculate the effective nonlinear coefficients of the SWG waveguide at silicon segment and the wire waveguide, respectively. Following the full vectorial nonlinear analysis in ref [25], the generalized definition of the effective nonlinear coefficient γ is given by

γ=2πλn2¯Aeff,
where Aeff is the effective area of the propagating mode and‾n2 represents the effective nonlinear refractive index which is averaged over the waveguide’s inhomogeneous cross section and weighted by the field distribution. Denoting the electric and magnetic field vectors of the waveguide mode as ev and hv, respectively, Aeff and‾n2 can be expressed by [25]
Aeff=|(ev×hv*)x^dA|2|(ev×hv*)x^|2dA,
n2¯=1Z02n2(y,z)n2(y,z)(2|ev|4+|ev2|2)dA3|(ev×hv*)x^|2dA.
Z0=μ0/ε0 = 377 Ω is the free-space wave impedance, and x^ is the unit vector in propagation direction. The normalized distributions of modal power in various material regions can also be computed to gain insight into the field confinement behavior of the waveguide [26]. We define the normalized optical power as
Nm=12DmRe{(ev×hv*)x^}dA12DtotRe{(ev×hv*)x^}dA,
where the total domain Dtot denotes the total cross section of the waveguide and Dm represents the considered individual material region which could be the silicon core, silicon dioxide undercladding layer or SU-8 polymer region. Figures 2(a) and 2(b) show the calculated normalized power distributions and effective nonlinear coefficients of the wire waveguide and SWG waveguide at the silicon segment, respectively. The SWG waveguide exhibits significantly lower power fraction in the silicon region and thus remarkable reduction of the nonlinear coefficient compared to those of the wire waveguide. Additionally, it is important to mention again that the SU-8 segment of the composite SWG waveguide core features negligible nonlinear contribution, which further decreases the effective nonlinearity of the silicon SWG waveguide.

 figure: Fig. 1

Fig. 1 (a) Schematic diagram of the silicon SWG waveguide structure. (b) Mode converter. (c) Simulated field propagating along the SWG waveguide. (d)-(e) Mode profiles of the SWG and wire waveguides, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 (a) Normalized optical power in silicon (Psi) and SU-8 polymer regions (Psu8) and (b) effective nonlinear coefficients of the wire waveguide and SWG waveguide at the silicon segment, respectively.

Download Full Size | PPT Slide | PDF

3. Fabrication and experimental setup

The silicon SWG waveguide that we used in the experiment is fabricated on a commercial SOI wafer (SOITEC) with a 220-nm-thick silicon device layer and a 2-μm-thick buried oxide layer. Fabrication is carried out by first using electron-beam lithography (Vistec EBPG 5000 Plus) and induced coupled plasma (ICP) etching to define patterns on silicon device layer and then spin coating a 2.4-μm-thick SU-8 covering layer (n ~1.577 at λ = 1.55 μm). In addition to being the upper cladding, low-index SU-8 polymer material is interleaved with small high-index silicon segments which forms the composite SWG waveguide core. By adjusting the geometrical parameters of subwavelength gratings, the effective index of the composite waveguide core can be engineered. Additionally, the covering material itself is one degree of freedom in waveguide design. Silicon dioxide and air claddings have also been demonstrated for SWG devices [18,27]. Here, SU-8 polymer material is employed considering its fabrication simplicity and device protection ability. Figure 3 shows the SEM images of the fabricated device before SU-8 coating, including SWG waveguide (a) and SWG to wire mode converter (b). The minimum width of the silicon bridging segments in the mode converter structure is about 85 nm. The mode converter loss and SWG waveguide propagation loss are assessed to be 0.45 dB and 4.2 dB/cm. Compared with the experimental results reported previously [16,27], our fabricated SWG waveguide exhibits a higher propagation loss value, which is likely due to the imperfections in the fabrication process, such as the increased roughness of etched surfaces and larger dimensional fluctuations of silicon grating segments.

 figure: Fig. 3

Fig. 3 SEM images of the fabricated device: (a) SWG waveguide and (b) mode converter between SWG and wire waveguides.

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the experimental setup for investigating the terabit-scale WDM data transmission through the fabricated silicon SWG waveguides. At the transmitter side, three external cavity lasers (ECLs) at 1544.82, 1549.82 and 1554.84 nm are firstly divided into two sets. Then each set is fed into a phase modulator (PM), which is driven by a strong RF clock signal at frequency of 25 GHz. After passing through the PMs, each ECL is capable of generating 25 optical carriers with 25-GHz frequency spacing. A programmable wavelength selective switch (WSS) is then employed to combine the outputs of PMs and reshape the generated optical carriers. After the spectrum reshaping, the generated 75 optical carriers are amplified by an erbium-doped fiber amplifier (EDFA). The output spectrum shown in Fig. 4(b) confirms that 75 flattened optical carriers are obtained. Then all the generated carriers are modulated by an optical I/Q modulator to carry 38.12 Gb/s OFDM 16-QAM signal. The I/Q RF signal is produced by an arbitrary waveform generator (AWG) running at 12 GS/s. After the I/Q modulator, the generated 2.86 Tb/s WDM OFDM 16-QAM signal shown in Fig. 4(c) is coupled into and out of the fabricated silicon device assisted by vertical grating couplers [28]. The optical signal propagating through the device is sent into a variable optical attenuator (VOA) and then boosted by an EDFA to adjust the optical signal-to-noise ratio (OSNR) before entering the receiver. An optical tunable filter (OTF) selects the desired single wavelength channel from the broadband signal. At the receiver side, another ECL is utilized as the local oscillator (LO) to mix with the received signal in the optical hybrid. The signal is detected by two pairs of balanced detectors. The two RF signals corresponding to the I/Q components are then acquired by a Tektronix real-time oscillator scope at 50 GS/s and processed off-line with a Matlab program.

 figure: Fig. 4

Fig. 4 (a) Experimental setup for terabit-scale 75 WDM OFDM 16-QAM signal transmission. PMOC: polarization maintaining optical coupler, PC: polarization controller. (b)-(c) are measured optical spectra of the generated carriers and modulated signals, respectively.

Download Full Size | PPT Slide | PDF

4. Experimental results

To evaluate the data transmission performance of a 2-mm-long silicon SWG waveguide for an ultrahigh-bandwidth 2.86 Tb/s WDM data stream, we first conduct a BER versus launch power measurement to determine the optimum operating point. The carrier channel at 1549.82 nm is selected for measurement in the case of WDM transmission. As seen in Fig. 5(a), the best BER performance (about 5e-6) is achieved at the optimum launch power of 11.5 dBm for the silicon SWG waveguide. Here, the launch power value represents the total optical power of all 75 channels. Figure 5(b) shows the corresponding RF spectrum of the received OFDM 16-QAM signal after demodulation. Data transmission through a silicon wire waveguide with identical length and 400 nm width is also experimentally investigated for comparison. The results show that for the wire waveguide, the BER reaches a minimum value of 1.2e-5 at 3.5 dBm launch power and then dramatically increases due to the nonlinear impairments. An 8-dB improvement in optimum launch power when using SWG waveguide is ascribed to its efficient nonlinearity reduction compared to the wire waveguide. In the low launch power region, where nonlinear effects are not severe and benefit provided by SWG waveguide is negligible, the two types of silicon waveguides exhibit similar BER performances.

 figure: Fig. 5

Fig. 5 (a) BER performances versus launch power for signal transmission through the 2-mm-long wire and SWG waveguides. (b) RF spectrum of the received OFDM 16-QAM signal after demodulation.

Download Full Size | PPT Slide | PDF

With the launch power fixed at the optimum operating point, we then carry out the BER measurement for all 75 WDM channels through the fabricated 2-mm-long SWG waveguide. The result is shown in Fig. 6(a), from which one can observe that all 75 channels achieve BER values less than 4e-5, indicating the suitability of the SWG waveguide for ultrahigh-bandwidth WDM transmission. Figure 6(b) shows the measured output spectrum after the SWG waveguide transmission. Next, we study the BER performance as a function of received OSNR for three wavelength channels at 1544.82, 1549.82 and 1554.84 nm. The BER curves shown in Fig. 6(c) exhibit almost negligible differences between these WDM channels. As we can see, the required OSNR for the BER level of 1e-3 is around 15.5 dB.

 figure: Fig. 6

Fig. 6 (a) Measured BER performances for all 75 WDM channels. (b) Output spectrum of the 2.86 Tb/s OFDM 16-QAM signal after SWG waveguide transmission. (c) BER versus received OSNR at three different wavelength channels.

Download Full Size | PPT Slide | PDF

Finally, we examine the BER performances for the 2.86 Tb/s WDM signal transmission through four silicon SWG waveguides with different lengths (1 mm, 2 mm, 4 mm and 12 mm) at 11.5 dBm launch power. Single channel measurement for the optical carrier at 1549.82 nm is conducted. From the experimental results shown in Fig. 7(a), one can observe that the OSNR sensitivities to achieve BER of 1e-3 are about 15.27, 15.47, 16.66 and 20.38 dB for the data transmission through four SWG waveguides, respectively. Figure 7(b) shows the measured constellations for the four SWG waveguides around the BER level of 1e-3.

 figure: Fig. 7

Fig. 7 (a) BER performances versus received OSNR and (b) constellations around BER level of 1e-3 for the data transmission through 1-mm (SWG 1), 2-mm (SWG 2), 4-mm (SWG 3), and 12-mm-long (SWG 4) silicon SWG waveguides, respectively.

Download Full Size | PPT Slide | PDF

Although efficient nonlinearity reduction can be realized in the SWG waveguide, the small part of guided mode existing in the silicon region still contributes to the nonlinear interactions. The observed increment in OSNR penalty under a long SWG waveguide is most likely attributed to the transmission impairments induced by optical nonlinearity. However, it should be noted that the signal transmission performance through the longest SWG waveguide (12 mm) at 11.5 dBm launch power is still superior to that of the 2-mm-long wire waveguide, which can be observed from the Fig. 5(a) and Fig. 7(a), indicating the benefit of silicon SWG waveguide as the medium for optical interconnects. In addition to decreased mode confinement in the silicon core region, the reduced free-carrier lifetime might contribute to the subdued nonlinear distortion in silicon SWG waveguide. The presence of interface states at increased etched surfaces accelerates the recombination of free carriers [29]. Shortening of carrier lifetime is profitable for alleviating the free-carrier absorption (FCA) and dispersion (FCD) effects [30,31].

For the silicon SWG waveguides, one possible concern is the fabrication with the facilities in a CMOS line. Recent report demonstrates the reliable fabrication of SWG waveguides by using 193 nm stepper lithography [32]. Based on the subwavelength gratings, extremely low-loss waveguide crossings and broadband power splitters with wavelength-flattened response have been experimentally demonstrated, which are capable of facilitating the chip-scale optical interconnects based on the SWG waveguides [19,33].

5. Conclusion

In summary, we experimentally investigate ultrahigh-bandwidth terabit-scale data transmission performance through silicon SWG waveguides. Using the 2.86 Tb/s optical signal composed of 75 WDM channels each carrying 38.12 Gb/s OFDM 16-QAM signal, we demonstrate the data transmission through the fabricated 2-mm-long SWG and wire waveguides. Compared to the wire waveguide, an 8 dB higher launch power is achieved in the SWG waveguide, which indicates higher nonlinearity tolerance. With the optimum launch power, BER values less than 4e-5 are acquired for all 75 channels after SWG waveguide transmission. We also evaluate the signal transmission performance through four silicon SWG waveguides with different lengths (1 mm, 2 mm, 4 mm and 12 mm). To achieve the BER level of 1e-3, the required OSNRs are about 15.27, 15.47, 16.66 and 20.38 dB, respectively. The experimental results show that silicon SWG waveguide could be a promising enabler of chip-scale optical interconnects.

Funding

National Natural Science Foundation of China (NSFC) (61335002); Major State Basic Research Development Program of China (2013CB632104, 2013CB933303); National High Technology Research and Development Program of China (2015AA016904); 2015 Key Projects of Natural Science Foundation of Hubei Province (2015CFA056).

References and links

1. 2015 International Technology Roadmap for Semiconductors (ITRS), http://www.itrs2.net/itrs-reports.html.

2. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

3. R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280. [CrossRef]  

4. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015). [CrossRef]   [PubMed]  

5. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014). [CrossRef]  

6. P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-on-chip [Invited],” J. Opt. Commun. Netw. 7(1), A37–A43 (2015). [CrossRef]  

7. X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu2E. 6. [CrossRef]  

8. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015). [CrossRef]  

9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]  

10. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEEE, 2012), pp. 33.8.1–33.8.3. [CrossRef]  

11. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008). [CrossRef]  

12. X. Chen, B. G. Lee, X. Liu, B. A. Small, I. Hsieh, J. Dadap, K. Bergman, R. M. Osgood, F. Xia, and W. Green, “Demonstration of 300 Gbps error-free transmission of WDM data stream in silicon photonic wires,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuQ5. [CrossRef]  

13. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015). [CrossRef]   [PubMed]  

14. H. Sun, A. Chen, D. Abeysinghe, A. Szep, and R. S. Kim, “Reduction of scattering loss of silicon slot waveguides by RCA smoothing,” Opt. Lett. 37(1), 13–15 (2012). [CrossRef]   [PubMed]  

15. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]  

16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010). [CrossRef]   [PubMed]  

17. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015). [CrossRef]  

18. V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014). [CrossRef]   [PubMed]  

19. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010). [CrossRef]   [PubMed]  

20. Lumerical Solutions, Inc., http://www.lumerical.com.

21. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010). [CrossRef]   [PubMed]  

22. J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016). [CrossRef]   [PubMed]  

23. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015). [CrossRef]   [PubMed]  

24. C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22(19), 22820–22830 (2014). [CrossRef]   [PubMed]  

25. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). [CrossRef]   [PubMed]  

26. J. A. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

27. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014). [CrossRef]   [PubMed]  

28. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013). [CrossRef]   [PubMed]  

29. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005). [CrossRef]  

30. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010). [CrossRef]   [PubMed]  

31. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007). [CrossRef]   [PubMed]  

32. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th3F. 3. [CrossRef]  

33. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. 2015 International Technology Roadmap for Semiconductors (ITRS), http://www.itrs2.net/itrs-reports.html .
  2. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).
  3. R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280.
    [Crossref]
  4. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  5. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
    [Crossref]
  6. P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-on-chip [Invited],” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
    [Crossref]
  7. X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu2E. 6.
    [Crossref]
  8. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  10. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEEE, 2012), pp. 33.8.1–33.8.3.
    [Crossref]
  11. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
    [Crossref]
  12. X. Chen, B. G. Lee, X. Liu, B. A. Small, I. Hsieh, J. Dadap, K. Bergman, R. M. Osgood, F. Xia, and W. Green, “Demonstration of 300 Gbps error-free transmission of WDM data stream in silicon photonic wires,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuQ5.
    [Crossref]
  13. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [Crossref] [PubMed]
  14. H. Sun, A. Chen, D. Abeysinghe, A. Szep, and R. S. Kim, “Reduction of scattering loss of silicon slot waveguides by RCA smoothing,” Opt. Lett. 37(1), 13–15 (2012).
    [Crossref] [PubMed]
  15. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
    [Crossref]
  16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
    [Crossref] [PubMed]
  17. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  18. V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
    [Crossref] [PubMed]
  19. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
    [Crossref] [PubMed]
  20. Lumerical Solutions, Inc., http://www.lumerical.com .
  21. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [Crossref] [PubMed]
  22. J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
    [Crossref] [PubMed]
  23. V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
    [Crossref] [PubMed]
  24. C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22(19), 22820–22830 (2014).
    [Crossref] [PubMed]
  25. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref] [PubMed]
  26. J. A. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  27. J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
    [Crossref] [PubMed]
  28. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  29. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
    [Crossref]
  30. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [Crossref] [PubMed]
  31. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [Crossref] [PubMed]
  32. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th3F. 3.
    [Crossref]
  33. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (6)

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-on-chip [Invited],” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (1)

2010 (5)

2009 (1)

2008 (1)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

2007 (1)

2005 (2)

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

2004 (1)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Abeysinghe, D.

Aers, G. C.

Afshar V, S.

Agrawal, G. P.

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Alonso-Ramos, C.

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Apsel, A. B.

R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280.
[Crossref]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Assefa, S.

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

Baks, C. W.

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Barwicz, T.

Bergman, K.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Bock, P. J.

Buhl, L. L.

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Cheben, P.

Chen, A.

Chen, L. R.

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Chen, Y.-K.

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Chrostowski, L.

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Delâge, A.

Densmore, A.

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Ding, Y.

Dokania, R. K.

R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280.
[Crossref]

Dong, P.

Donnelly, C.

Donzella, V.

Durán-Valdeiglesias, E.

Fard, S. T.

Fédéli, J.-M.

Flueckiger, J.

Foster, M. A.

Gaeta, A. L.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Glesk, I.

Green, W. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Green, W. M. J.

Grist, S. M.

Gu, T.

Gui, C.

Halir, R.

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Hall, T. J.

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Jaeger, N. A.

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Janz, S.

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Khater, M. H.

Kiewra, E.

Kim, R. S.

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Kuchta, D. M.

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lamontagne, B.

Lapointe, J.

Lee, B. G.

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
[Crossref]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Levy, J. S.

Li, C.

Lin, S.

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Lipson, M.

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Lu, Z.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Molina-Fernández, Í.

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Monro, T. M.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Neilson, D. T.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ortega-Moñux, A.

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ou, H.

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Peucheret, C.

Poitras, C. B.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Reinholm, C.

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Rimolo-Donadio, R.

Robertson, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Rylyakov, A. V.

Salem, R.

Sarmiento-Merenguel, J. D.

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

Schmid, J. H.

Schow, C. L.

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Shank, S. M.

Sherwali, A.

Sinsky, J. H.

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sun, H.

Szep, A.

Talebi Fard, S.

Tan, D. T.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Turner-Foster, A. C.

Vlasov, Y. A.

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32(4), 743–751 (2014).
[Crossref]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

Wang, J.

Wang, Y.

Wangüemert-Pérez, J. G.

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J.-M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Woo, J.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Xu, D.-X.

Yang, Q.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Yin, L.

Young, I.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Yun, H.

Zhang, F.

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Appl. Phys. Lett. (2)

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
[Crossref]

Intel Tech. Jour. (1)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-Chip Optical Interconnects,” Intel Tech. Jour. 8(2), 129–141 (2004).

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Laser Photonics Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Opt. Express (9)

V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt. Express 22(17), 21037–21050 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18(15), 16146–16155 (2010).
[Crossref] [PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[Crossref] [PubMed]

J. Wang, I. Glesk, and L. R. Chen, “Subwavelength grating filtering devices,” Opt. Express 22(13), 15335–15345 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18(19), 20251–20262 (2010).
[Crossref] [PubMed]

V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, and L. Chrostowski, “Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides,” Opt. Express 23(4), 4791–4803 (2015).
[Crossref] [PubMed]

C. Donnelly and D. T. Tan, “Ultra-large nonlinear parameter in graphene-silicon waveguide structures,” Opt. Express 22(19), 22820–22830 (2014).
[Crossref] [PubMed]

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (8)

X. Chen, B. G. Lee, X. Liu, B. A. Small, I. Hsieh, J. Dadap, K. Bergman, R. M. Osgood, F. Xia, and W. Green, “Demonstration of 300 Gbps error-free transmission of WDM data stream in silicon photonic wires,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuQ5.
[Crossref]

Lumerical Solutions, Inc., http://www.lumerical.com .

2015 International Technology Roadmap for Semiconductors (ITRS), http://www.itrs2.net/itrs-reports.html .

R. K. Dokania and A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” in Proceedings of the 19th ACM Great Lakes symposium on VLSI (2009), pp. 275–280.
[Crossref]

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” in 2012 IEEE International Electron Devices Meeting (IEEE, 2012), pp. 33.8.1–33.8.3.
[Crossref]

X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper Tu2E. 6.
[Crossref]

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, S. Martel, S. Engelmann, J. S. Orcutt, and P. Fortier, “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” in Optical Fiber Communication Conference (Optical Society of America, 2015), paper Th3F. 3.
[Crossref]

J. A. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the silicon SWG waveguide structure. (b) Mode converter. (c) Simulated field propagating along the SWG waveguide. (d)-(e) Mode profiles of the SWG and wire waveguides, respectively.
Fig. 2
Fig. 2 (a) Normalized optical power in silicon (Psi) and SU-8 polymer regions (Psu8) and (b) effective nonlinear coefficients of the wire waveguide and SWG waveguide at the silicon segment, respectively.
Fig. 3
Fig. 3 SEM images of the fabricated device: (a) SWG waveguide and (b) mode converter between SWG and wire waveguides.
Fig. 4
Fig. 4 (a) Experimental setup for terabit-scale 75 WDM OFDM 16-QAM signal transmission. PMOC: polarization maintaining optical coupler, PC: polarization controller. (b)-(c) are measured optical spectra of the generated carriers and modulated signals, respectively.
Fig. 5
Fig. 5 (a) BER performances versus launch power for signal transmission through the 2-mm-long wire and SWG waveguides. (b) RF spectrum of the received OFDM 16-QAM signal after demodulation.
Fig. 6
Fig. 6 (a) Measured BER performances for all 75 WDM channels. (b) Output spectrum of the 2.86 Tb/s OFDM 16-QAM signal after SWG waveguide transmission. (c) BER versus received OSNR at three different wavelength channels.
Fig. 7
Fig. 7 (a) BER performances versus received OSNR and (b) constellations around BER level of 1e-3 for the data transmission through 1-mm (SWG 1), 2-mm (SWG 2), 4-mm (SWG 3), and 12-mm-long (SWG 4) silicon SWG waveguides, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 π λ n 2 ¯ A e f f ,
A e f f = | ( e v × h v * ) x ^ d A | 2 | ( e v × h v * ) x ^ | 2 d A ,
n 2 ¯ = 1 Z 0 2 n 2 ( y,z ) n 2 ( y,z ) ( 2 | e v | 4 + | e v 2 | 2 ) d A 3 | ( e v × h v * ) x ^ | 2 d A .
N m = 1 2 D m Re { ( e v × h v * ) x ^ } d A 1 2 D t o t Re { ( e v × h v * ) x ^ } d A ,

Metrics