Abstract

Mode coupling from the fundamental vector mode (HE11x) to the cylindrical vector beams (CVBs) and optical vortex beams (OVBs) of a few-mode fiber excited by two acoustic flexural waves with orthogonal perturbations is achieved by using a composite acoustic transducer. The HE11x mode is converted to TM01 and TE01 modes, which have radial and azimuthal polarizations, by using the lowest-order acoustic flexural modes of F11x and F11y, respectively. Furthermore, HE11x mode can also be converted to the ± 1-order OVBs of HE21even±iHE21odd through the combined acoustic modes of F11x±iF11y. This technique provides a useful way of generating CVBs and OVBs in optical fiber with conveniently electrically-controlled mode conversion characteristics.

© 2017 Optical Society of America

1. Introduction

In recent years, the structured light beams have attracted much attention. Due to possessing the features of the exotic spatial polarization or phase singularities [1,2], potential applications have been explored in areas of the stimulated emission depletion (STED) microscopy [3,4], optical tweezers [5,6], micro/nano fabrication [7,8], surface plasmon polariton (SPP) excitation [9,10], nonlinear optics [11,12], quantum optics [13,14], and high-capacity optical communication [15,16], etc.

To date, many methods, including the spatial light modulators (SLMs) [17], q-plates [18], spiral phase plates [19], plasmonic metasurfaces [20], and silicon integrated devices [21], have been adopted to generate the structured light beams in free space. It is especially noteworthy that the most common method is the SLMs, which are used to generate a wide variety of structure light beams with arbitrary polarization and phase distribution in free space. Meanwhile, due to the advantages of long-distance/high-capacity transmission for the optical communication system, the fiber-based generation techniques are also developing rapidly. However, the structured light beams in optical fiber is the vector solution of the eigenvalue equation [22], thus the types of the structured light beams in optical fiber are not as abundant as in free space.

In an optical fiber, cylindrical vector beams (CVBs) and optical vortex beams (OVBs) are two kinds of typical structured light beams possessing the spatial polarization and phase singularities, respectively. So far, several methods of direct generation in optical fiber have been proposed [23–28], and the CVBs and OVBs have been experimentally generated by exploiting the fiber gratings produced by mechanical micro-bend [23], laser writing [25], etc. In these approaches, it is not convenient to actively tune the wavelength of the CVBs and OVBs because the period of the fabricated grating elements are fixed. In contrast, wavelength tunability and mode conversion was achieved in our previous works by exploiting the highly polarization-dependent vector mode coupling characteristic of an acoustically induced fiber grating [29–31]. In the CVBs generator [29], the output CVBs can be switched between radial and azimuthal polarizations by changing the linear polarization direction of the input mode of HE11 through a half-wave plate. In the OVBs generator [30,31], the OVBs output can be switched between opposite signs of the topological charge by changing the sign of the circular polarization input mode of HE11x±iHE11y using a quarter-wave plate.

In this paper, we propose and demonstrate a method to generate the CVBs and OVBs in a few-mode fiber (FMF). The mode conversion is operated via setting radio frequency (RF) driving signals instead of mechanically rotating a waveplate, which eases the operation. In the experiment conducted at 633 nm, the linearly polarized optical mode HE11x is converted to the TM01 or TE01 modes for radially or azimuthally polarized CVBs by correspondingly exploiting the acoustic flexural modes of F11x or F11y, whose vibrations are perpendicular to each other. Furthermore, the HE11x mode can also be converted to the ± 1-order OVBs of HE21even±iHE21odd through the combined acoustic modes F11x±iF11y, for which the acoustic flexural modes of F11x and F11y are set with the same frequency and a ± π/2 phase difference.

2. Principle

Figure 1(a) is the sketch of the composite transducer constructed with two shear mode piezoelectric transducers (PZTs), which are stacked on top of each so that their vibration directions are perpendicular to each other. With an RF driving signal applied to PZT1 or PZT2, a lowest-order acoustic flexural mode F11x or F11y, with vibration along the x- or y-axis, can be excited and then propagates along the unjacketed fiber [32]. The mode fields of F11x and F11y are antisymmetric along their vibration directions, as shown in Fig. 1(b), the corresponding refractive index modulation induced by the F11x and F11y modes are also antisymmetric and can be written as [30,33]

Δnx(x,y)=N0x,
and
Δny(x,y)=N0y,
where, N0 = n0(1 + χ)K2u0, n0 is the refractive index of the fiber core, χ = −0.22 is the elasto-optical coefficient of silica, K and u0 are the wavevector and amplitude of the acoustic flexural wave, respectively. θ denotes the crossing angle between the polarizations of the optical mode HE11x and the acoustic mode F11, which are both linearly polarized, as shown the inset in Fig. 1(c). The mode coupling coefficient κij between the vector modes i (HE11x) and j (TE01, HE21even/odd, TM01) of the acoustically induced fiber grating can be expressed as [34]
κij=πλε0μ0n0Ei*(x,y)Δn(x,y)Ej(x,y)dxdy,
where, Ei(x, y) and Ej(x, y) are the transverse electric fields of the fundamental vector modes (HE11x) and a high-order vector mode (TE01, HE21even/odd and TM01), respectively.

 figure: Fig. 1

Fig. 1 (a) Sketch of the composite acoustic transducer constructed with two shear mode PZTs vibrating along the x- and y-axis, respectively; (b) Field patterns of the fundamental vector mode of HE11 and the lowest-order acoustic flexural modes of F[REMOVED EQ FIELD] on the cross-section of FMF. The arrows indicate the vibration directions of the acoustic and optical modes; (c) Coupling coefficient κij between the first four high-order vector modes (TE01, HE21even/odd, TM01) and the fundamental mode HE[REMOVED EQ FIELD] versus θ for F11. The inset shows the mode field overlap between the linearly-polarized F11 and HE11 modes on the cross section of FMF, θ denotes the crossing angle between the acoustic and optical modes; (d) Acoustic wave frequency as functions of the resonance wavelength for acoustically induced fiber grating.

Download Full Size | PPT Slide | PDF

The mode coupling coefficient κij in Eq. (2) is numerically calculated for the adopted step-index FMF at 633 nm, which supports transmission of fundamental vector modes (HE11x/y) and high-order vector modes (TE01, HE21even/odd and TM01). The transverse electric field distributions of the vector modes Ei(x, y) and Ej(x, y) are calculated using the finite element method (Comsol). Then, with the grid data of Ei(x, y) and Ej(x, y), the mode coupling coefficient κij is calculated using Eq. (2) with varying θ in Fig. 1(c). Here, the constant N0 in Eq. (1) is set to ~10−5, and the calculation result of κij is shown in Fig. 1(c), which denotes the dependence of vector mode coupling on the polarization direction of the acoustic flexural mode. In the condition of θ = 90°, the HE11x can be coupled only to TE01 and HE21odd via the acoustic flexural mode F11y, as shown the black and blue dots curves in Fig. 1(c). Whereas at θ = 0°, HE11x can be converted only to HE21even and TM01 by the acoustic flexural mode F11x, as shown the red and green dots curves in Fig. 1(c), respectively.

Furthermore, to guarantee the success of the vector mode conversion, the phase matching condition of the acoustically induced fiber grating [35]

LB=Λ,
should be satisfied, simultaneously. LB = λnij is the beat length of the two coupled vector modes, where λ is the resonance wavelength and Δnij is the effective modal refractive index difference. Λ = (πRCext/f)1/2 is the acoustic wave dispersion equation [36], where R is the fiber radius and Cext = 5760 m/s is the phase velocity of the acoustic wave in silica. Based on Eq. (3) and the acoustic wave dispersion equation, the phase matching condition can be given by [29]

f=πRCext(Δnij/λ)2.

According to Eq. (4), the relationship between the resonance wavelength λ and the acoustic frequency f is plotted in Fig. 1(d). As seen in Fig. 1(d), the RF driving frequencies are different for different output vector modes due to the effective refractive index differences between the high-order vector modes. The frequency difference is

Δf=2πRCextλ2ΔnijΔnjj',
where Δnjj'is the effective refractive index difference between the high-order vector modes. Therefore, the mode selection at the same wavelength is achievable via tuning the frequency of the RF driving signal. In the example shown in Fig. 1(d), the generation of TE01, HE21even/odd, and TM01 modes at λ = 633 nm requires a setting of f = 0.8227, 0.8270 and 0.8289 MHz, respectively. Thus the HE11x mode can be converted to TE01 mode via the acoustic flexural mode F11y with f = 0.8227 MHz. By changing F11y as F11x mode with f = 0.8289 MHz, the HE11xmode can be converted to TM01 mode. Furthermore, when two RF driving signals, with same frequency of f = 0.8270 MHz and a ± π/2 phase shift, are simultaneously applied to PZT1 and PZT2, F11x and F11y mode can be generated and also has a ± π/2 phase shift between them. Thus the HE11x modes can be converted to HE21even and HE21odd modes through F11x and F11y modes, respectively. Meanwhile, there is also a ± π/2 phase difference between HE21even and HE21odd modes, thus the combined result is the ± 1-order OVBs of HE21even±iHE21odd [37]. Note that the frequency difference of ~kHz can be easily controlled with the RF driving source. Therefore, this approach is highly advantageous with the electronically-controlled tunability for the phase matching in generating different types of CVBs and OVBs at the same wavelength.

3. Experimental results and discussions

The experimental configuration of the CVBs and OVBs generation is depicted in Fig. 2. The light beam emitted from a 20 mW laser at λ = 633 nm is polarized to horizontal linear polarization by the polarizer (P1) with polarization orientation adjusted by the half-wave plate (HWP). The linearly polarized light with power of 17 mW is coupled into the FMF by the micro-objective (MO1). Moreover, to further eliminate the effects of the unwanted high-order vector modes before the two acoustically induced fiber gratings, a mode tripper (MS), which is made of 7 turns of FMF wound on a 5 mm diameter rod, is used to ensure a pure HE11x mode launching. When the light propagates through the mode stripper (MS) [38], there is only the linearly polarized mode HE11x with a power of 7 mW left in the fiber core. The unjacketed optical fiber used in the experiment has a core with radius ρco = 4.5 μm, a cladding with radius ρco = 62.5 µm, and a step index of ∆ = 0.32%. The diameter of the optical fiber for forming the acoustically induced grating was etched down to 22 µm by the hydrofluoric (HF) acid in order to adjust the resonant wavelength according to the phase matching condition and enhance the overlap between the acoustic and optical waves, thus increasing the acousto-optic coupling efficiency of the two acoustically induced fiber gratings within the 40 mm long etched segment [39]. One end of the unjacketed fiber was glued with epoxy to the tip of the horn acoustic transducer, and the other end was fixed on the optical fiber clamps.

 figure: Fig. 2

Fig. 2 Experimental configuration of the CVBs and OVBs generation and examination. P: polarizer; HWP: half-wave plate; M: mirror; MO: micro-objective; FMF: Few-mode fiber; MS; Mode stripper; RF: radio frequency; NPBS: non-polarization beam splitter; CCD: charge coupled device.

Download Full Size | PPT Slide | PDF

By tuning the frequency of RF driving signal applied to the acoustic transducer and adjusting the input polarization state through the half-wave plate (HWP), the input HE11x mode is converted to the CVBs or OVBs when the phase matching condition in Eq. (3) is satisfied. The FMF output terminal is collimated using a 40× micro-objective (MO2) and the CVBs or OVBs mode intensity patterns are recorded using a charge coupled device (CCD1).

For generating the radial polarization vector mode of TM01, an acoustic flexural wave is generated on the PZT1 being actuated by an RF driving source with frequency of f = 0.8289 MHz, and amplified at the tip of the horn-like transducer. The propagating acoustic flexural wave with vibration along the x-axis produce a dynamic micro-bend grating with Λ = 693 μm. The linear polarization mode HE11x is then converted to the TM01 mode along the acousto-optic coupling region. By adjusting the RF driving frequency as f = 0.8227 MHz and applied to the PZT2, an acoustic flexural wave is generated and propagated with vibration along the y-axis. Thus the dynamic micro-bend grating with Λ = 695.6 μm is induced and converted the HE11x mode to TE01 mode. To examine the modal field patterns of the generated CVBs, the beams are projected on the CCD1 covered by a linear polarizer after the NPBS2 [40]. The intensity patterns at various polarizations are shown in Figs. 3(a) and 3(b).

 figure: Fig. 3

Fig. 3 (a1) and (b1) Images of TM01 and TE01 modes taken by the CCD1 in absence of polarizer; (a2-a5) and (b2-b5) Images of TM01 and TE01 modes in presence of polarizer at different polarization orientations.

Download Full Size | PPT Slide | PDF

For generating the ± 1-order OVBs, two RF driving signal, with frequency f = 0.8270 MHz and a ± π/2 phase shift, are applied to the PZT1 and PZT2, simultaneously. Thus the two acoustically induced fiber gratings, which have the same period of Λ = 693.8 μm and a ± π/2 phase shift, are generated by PZT1 and PZT2, with vibration direction along the x and y-axis. The HE11x mode is coupled to HE21even and HE21odd modes through the two acoustically induced gratings induced by F11x and F11y modes, respectively. It is noted that there is also a ± π/2 phase shift between HE21even and HE21odd mode due to the two acoustic flexural modes with a ± π/2 phase difference. Thus the combined results is ± 1-order OVBs of HE21even±iHE21odd. As shown in Figs. 4(a1) and 4(b1), the images taken by the charge-coupled device (CCD1) displayed annular intensity patterns for the ± 1-order OVBs output [23,26]. Furthermore, the helical phase exp( ± iℓθ) of the ± 1-order OVBs signifying OAM = ± ħ per photon is verified by examining its interference pattern with a linearly polarized Gaussian beam. Note that the frequency of the ± 1-order OVBs is down-shifted from that of the HE11x mode by an amount equal to the frequency of the acoustic flexural wave, the reference light could not be directly taken from the laser. Instead, part of the vortex mode output from the FMF is reflected using a non-polarization beam splitting prism (NPBS1), and then coupled into a segment of 630 HP fiber to convert the ± 1-order OVBs back to a fundamental mode because the 630 HP is a single-mode fiber in the wavelength range of 600–770 nm. The fundamental mode output from 630 HP fiber is aligned to a parallel light by MO4 and converted to a linearly polarized Gaussian beam using P2. A polarizer (P3) after the NPBS2 is used to convert the circular polarization of the ± 1-order OVBs to linear polarization. Then the reference light and the linearly polarized optical vortex mode are combined through NPBS3, and the interference pattern is recorded by CCD2. As the signature of the OVBs with a topological charge, the forklike fringes are observed in off-axial interference, as shown in Figs. 4(a2) and 4(b2). As another signature of the ± 1-order OVBs in coaxial interference, the spiral patterns are observed, as shown in Figs. 4(a3) and 4(b3), with opposite chirality for the left- and right-handed circular polarization, respectively.

 figure: Fig. 4

Fig. 4 (a1) and (b1) Mode intensity distributions of the ± 1-order OVBs, respectively; (a2-b2) and (a3-b3) Images of the ± 1-order OVBs output when the off-axial and coaxial interfered with a Gaussian beam, respectively.

Download Full Size | PPT Slide | PDF

Furthermore, the mode conversion efficiency of the acoustically induced fiber grating is also measured by using the difference of the critical bend loss between the HE11x mode and the high-order vector modes [41]. At the output terminal of the FMF, the other mode stripper, is made to filter out the generated CVBs and OVBs, and leave only the HE11x mode in the core of FMF. Take the case of TM01 mode, without RF driving signal loaded on the PZT1, the acoustically induced grating is not generated in the FMF, thus the HE11x mode can output from the terminal of the FMF without loss. With the RF driving voltage increases, an acoustically induced grating with vibration along the x-axis is produced in FMF and its refractive index modulation depth is gradually increasing. Thus, more and more HE11x mode is converted to the TM01 mode in the acousto-optic interaction region. After the two vector modes passing through the mode stripper, the generated TM01 mode is filtered out, only the HE11x mode is left in the FMF and received by the CCD1. In the condition of the critical coupling, the HE11x mode is almost coupled to TM01 mode the by acoustically induced fiber grating. Therefore, no HE11x mode is received by the CCD1. Figure 5(a) are the modes intensity patterns of HE11x mode with different RF driving voltage applied on PZT1. Figure 5(b) are the corresponding horizontal intensity profiles of the HE11x modes through the center of the Fig. 5(a), respectively. Note that the intensity of the HE11x modes decrease from 255 and 14, with increasing the RF driving voltage from Vpp = 0 V to Vpp = 8 V, respectively. Therefore, the mode conversion efficiency of the acoustically induced fiber grating can be deduced as ~94.5%.

 figure: Fig. 5

Fig. 5 . Mode conversion efficiency analysis of the acoustically induced fiber grating. (a) Mode intensity patterns of the HE[REMOVED EQ FIELD] modes with the increasing of the RF driving voltage from Vpp=0 V to Vpp=8 V; (b) Horizontal intensity profiles of the HE[REMOVED EQ FIELD] modes through the center of mode intensity patterns in (a), respectively.

Download Full Size | PPT Slide | PDF

4. Conclusions

In summary, we propose and demonstrate a method to generate the CVBs and OVBs in an FMF based on two acoustically induced gratings with orthogonal vibration directions. The HE11x mode is converted to TM01 and TE01 modes, which have radial and azimuthal polarizations, by exploiting the lowest-order acoustic flexural modes of F11x and F11y, respectively. Furthermore, the HE11x mode can also be converted to the ± 1-order OVBs by using the combined acoustic modes of F11x±iF11y. The experiment was conducted at 633 nm and the mode conversion efficiency of 94.5% was reached. This work provides a useful way for generating CVBs and OVBs in FMF with conveniently electric-control tunable mode conversion characteristics.

Fundings

This work is financially supported by the Natural Science Foundation of China (NSFC) (11404263, 61675169, 11634010, 61377055, 61675171, 61405161, and 11574161).

Acknowledgments

The authors would like to thank Wei Gao in Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Science for the helpful discussions.

References and links

1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009). [CrossRef]  

2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [CrossRef]  

3. B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [CrossRef]   [PubMed]  

4. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012). [CrossRef]   [PubMed]  

5. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

6. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef]   [PubMed]  

7. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012). [CrossRef]   [PubMed]  

8. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013). [CrossRef]   [PubMed]  

9. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013). [CrossRef]   [PubMed]  

10. L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013). [CrossRef]   [PubMed]  

11. X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015). [CrossRef]   [PubMed]  

12. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003). [CrossRef]   [PubMed]  

13. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010). [CrossRef]   [PubMed]  

14. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef]   [PubMed]  

15. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]   [PubMed]  

16. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

17. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006). [CrossRef]   [PubMed]  

18. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016). [CrossRef]  

19. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]  

20. J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015). [CrossRef]  

21. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012). [CrossRef]   [PubMed]  

22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

23. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013). [CrossRef]  

24. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012). [CrossRef]   [PubMed]  

25. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016). [CrossRef]   [PubMed]  

26. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015). [CrossRef]   [PubMed]  

27. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013). [CrossRef]   [PubMed]  

28. B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, “Fiber propagation of vector modes,” Opt. Express 23(13), 17330–17336 (2015). [CrossRef]   [PubMed]  

29. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016). [CrossRef]   [PubMed]  

30. W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, and J. Zhao, “Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating,” Opt. Express 24(17), 19278–19285 (2016). [CrossRef]   [PubMed]  

31. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion,” Opt. Lett. 41(21), 5082–5085 (2016). [CrossRef]   [PubMed]  

32. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009). [CrossRef]   [PubMed]  

33. T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996). [CrossRef]  

34. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997). [CrossRef]  

35. W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015). [CrossRef]   [PubMed]  

36. T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996). [CrossRef]  

37. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012). [CrossRef]   [PubMed]  

38. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006). [CrossRef]   [PubMed]  

39. W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37(7), 1241–1243 (2012). [CrossRef]   [PubMed]  

40. J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015). [CrossRef]  

41. K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  3. B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
    [Crossref] [PubMed]
  4. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012).
    [Crossref] [PubMed]
  5. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  6. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  7. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
    [Crossref] [PubMed]
  8. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  9. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  10. L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
    [Crossref] [PubMed]
  11. X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
    [Crossref] [PubMed]
  12. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
    [Crossref] [PubMed]
  13. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
    [Crossref] [PubMed]
  14. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  15. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  16. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  17. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
    [Crossref] [PubMed]
  18. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  19. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [Crossref]
  20. J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
    [Crossref]
  21. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
    [Crossref] [PubMed]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  23. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
    [Crossref]
  24. Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
    [Crossref] [PubMed]
  25. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  26. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [Crossref] [PubMed]
  27. H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
    [Crossref] [PubMed]
  28. B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, “Fiber propagation of vector modes,” Opt. Express 23(13), 17330–17336 (2015).
    [Crossref] [PubMed]
  29. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
    [Crossref] [PubMed]
  30. W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, and J. Zhao, “Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating,” Opt. Express 24(17), 19278–19285 (2016).
    [Crossref] [PubMed]
  31. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion,” Opt. Lett. 41(21), 5082–5085 (2016).
    [Crossref] [PubMed]
  32. M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009).
    [Crossref] [PubMed]
  33. T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
    [Crossref]
  34. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  35. W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015).
    [Crossref] [PubMed]
  36. T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
    [Crossref]
  37. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [Crossref] [PubMed]
  38. P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
    [Crossref] [PubMed]
  39. W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37(7), 1241–1243 (2012).
    [Crossref] [PubMed]
  40. J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
    [Crossref]
  41. K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
    [Crossref]

2016 (5)

2015 (6)

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref] [PubMed]

B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, “Fiber propagation of vector modes,” Opt. Express 23(13), 17330–17336 (2015).
[Crossref] [PubMed]

W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015).
[Crossref] [PubMed]

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

2013 (6)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

H. Xu and L. Yang, “Conversion of orbital angular momentum of light in chiral fiber gratings,” Opt. Lett. 38(11), 1978–1980 (2013).
[Crossref] [PubMed]

2012 (7)

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
[Crossref] [PubMed]

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37(7), 1241–1243 (2012).
[Crossref] [PubMed]

2011 (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2010 (1)

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

2006 (2)

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1997 (1)

1996 (2)

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Barnett, S. M.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Beversluis, M. R.

Birks, T. A.

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Biss, D. P.

Bo, F.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, R. W.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Brown, T. G.

Brüning, R.

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Chen, H. T.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Chen, S. Q.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Cheng, H.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Chiang, K. S.

J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Culverhouse, D. O.

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dolinar, S. J.

Dong, J. L.

J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Du, C.

Du, L.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Duparré, M.

Erdogan, T.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012).
[Crossref] [PubMed]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, “Fiber propagation of vector modes,” Opt. Express 23(13), 17330–17336 (2015).
[Crossref] [PubMed]

Franke-Arnold, S.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Gao, F.

Gao, W.

Golowich, S.

Gu, B.

Gu, C. Z.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Haakestad, M. W.

Harke, B.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

Hell, S. W.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

Hong, K. S.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Hu, X.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, L.

Hwang, I. K.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Ireland, D. G.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jack, B.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jha, A. K.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jiang, B.

Jin, W.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Johnson-Morris, B.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Ju, J.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Keller, J.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

Kim, B. Y.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Leach, J.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

Lei, D. Y.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Li, J. J.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Li, J. X.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Li, P.

Li, S.

Li, Y.

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Liu, Y.

Lou, K.

Maier, S. A.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Mao, D.

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

McLaren, M.

Mei, T.

Min, C.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Mo, Q.

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Ndagano, B.

Novotny, L.

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Park, H. C.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Qian, S. X.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romero, J.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Russell, P. S. J.

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Russell, P. St. J.

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Shen, B.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shi, Y.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Skaar, J.

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Stranick, S. J.

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tang, D.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Tian, J. G.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tu, C.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ullal, C. K.

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wang, H. T.

Wang, J.

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, Q.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Wang, T.

Wang, W.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Wang, X.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Wang, X. L.

Wegener, M.

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012).
[Crossref] [PubMed]

Wei, K.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wen, J.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Xu, H.

Xu, J.

Xu, Z.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Xuan, L.

Yan, Y.

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, D.

Yang, H. F.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Yan, L. Zhang, J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, A. E. Willner, and S. J. Dolinar, “Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes,” Opt. Lett. 37(16), 3294–3296 (2012).
[Crossref] [PubMed]

Yang, L.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Yeom, D. I.

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

Yi, L.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Yu, P.

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Yuan, G.

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhan, Q.

Zhan, Q. W.

Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, C.

Zhang, G.

Zhang, L.

Zhang, W.

Zhang, X.

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. X. Li, S. Q. Chen, H. F. Yang, J. J. Li, P. Yu, H. Cheng, C. Z. Gu, H. T. Chen, and J. G. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25(5), 704–710 (2015).
[Crossref]

Adv. Mater. (1)

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater. 24(10), OP65–OP69 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (2)

Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Phys. Lett. (1)

K. S. Hong, H. C. Park, B. Y. Kim, I. K. Hwang, W. Jin, J. Ju, and D. I. Yeom, “1000 nm tunable acousto-optic filter based on photonic crystal fiber,” Appl. Phys. Lett. 92(3), 031110 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. L. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

J. Lightwave Technol. (2)

T. A. Birks, P. St. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, “The acousto-optic effect in single–mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008).
[Crossref] [PubMed]

Nanophotonics (1)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincar sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Opt. Express (9)

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20(1), 120–127 (2012).
[Crossref] [PubMed]

B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, “Fiber propagation of vector modes,” Opt. Express 23(13), 17330–17336 (2015).
[Crossref] [PubMed]

W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
[Crossref] [PubMed]

W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, and J. Zhao, “Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating,” Opt. Express 24(17), 19278–19285 (2016).
[Crossref] [PubMed]

W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, “Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter,” Opt. Express 23(13), 17576–17583 (2015).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref] [PubMed]

M. W. Haakestad and J. Skaar, “Slow and fast light in optical fibers using acoustooptic coupling between two co-propagating modes,” Opt. Express 17(1), 346–357 (2009).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (3)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

P. Z. Dashti, F. Alhassen, and H. P. Lee, “Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber,” Phys. Rev. Lett. 96(4), 043604 (2006).
[Crossref] [PubMed]

X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
[Crossref] [PubMed]

Science (3)

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338(6105), 363–366 (2012).
[Crossref] [PubMed]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of the composite acoustic transducer constructed with two shear mode PZTs vibrating along the x- and y-axis, respectively; (b) Field patterns of the fundamental vector mode of HE11 and the lowest-order acoustic flexural modes of F[REMOVED EQ FIELD] on the cross-section of FMF. The arrows indicate the vibration directions of the acoustic and optical modes; (c) Coupling coefficient κij between the first four high-order vector modes (TE01, HE 21 even/odd , TM01) and the fundamental mode HE[REMOVED EQ FIELD] versus θ for F11. The inset shows the mode field overlap between the linearly-polarized F11 and HE11 modes on the cross section of FMF, θ denotes the crossing angle between the acoustic and optical modes; (d) Acoustic wave frequency as functions of the resonance wavelength for acoustically induced fiber grating.
Fig. 2
Fig. 2 Experimental configuration of the CVBs and OVBs generation and examination. P: polarizer; HWP: half-wave plate; M: mirror; MO: micro-objective; FMF: Few-mode fiber; MS; Mode stripper; RF: radio frequency; NPBS: non-polarization beam splitter; CCD: charge coupled device.
Fig. 3
Fig. 3 (a1) and (b1) Images of TM01 and TE01 modes taken by the CCD1 in absence of polarizer; (a2-a5) and (b2-b5) Images of TM01 and TE01 modes in presence of polarizer at different polarization orientations.
Fig. 4
Fig. 4 (a1) and (b1) Mode intensity distributions of the ± 1-order OVBs, respectively; (a2-b2) and (a3-b3) Images of the ± 1-order OVBs output when the off-axial and coaxial interfered with a Gaussian beam, respectively.
Fig. 5
Fig. 5 . Mode conversion efficiency analysis of the acoustically induced fiber grating. (a) Mode intensity patterns of the HE[REMOVED EQ FIELD] modes with the increasing of the RF driving voltage from Vpp=0 V to Vpp=8 V; (b) Horizontal intensity profiles of the HE[REMOVED EQ FIELD] modes through the center of mode intensity patterns in (a), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n x ( x,y )= N 0 x,
Δ n y ( x,y )= N 0 y,
κ ij = π λ ε 0 μ 0 n 0 E i * ( x,y )Δn( x,y ) E j ( x,y )dxdy,
L B =Λ,
f = π R C e x t ( Δ n i j / λ ) 2 .
Δf= 2πR C ext λ 2 Δ n ij Δ n jj' ,

Metrics