Abstract

We systematically analyze the ambient contrast ratio (ACR) of liquid crystal displays (LCDs) and organic light-emitting diode (OLED) displays for smartphones, TVs, and public displays. The influencing factors such as display brightness, ambient light illuminance, and surface reflection are investigated in detail. At low ambient light conditions, high static contrast ratio plays a key role for ACR. As the ambient light increases, high brightness gradually takes over. These quantitative results set important guidelines for future display optimization. Meanwhile, to improve an OLED’s ACR at large oblique angles, we propose a new broadband and wide-view circular polarizer consisting of one linear polarizer and two biaxial films. Good performance is realized.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Contrast ratio (CR) is a key display metric to achieve supreme image quality [1–4], especially, to enable high dynamic range (HDR) [2, 5]. For an emissive display, like organic light-emitting diode (OLED), its CR can approach 1,000,000:1 or even higher [6–8]. Whereas for a non-emissive liquid crystal display (LCD), its CR is limited due to the depolarization effects from thin film transistors, LC layer, and color filters. For example, the CR of a commercial multi-domain vertical alignment (MVA) LCD TV is about 5000:1 [9]. For other LCD modes, such as twisted nematic [10] and fringe field switching [11], it is about 2000:1. As a result, it is generally perceived that OLED shows much better performance than LCD in terms of contrast ratio. This is true at dark ambient. However, in reality, no matter indoor or outdoor, ambient light is inevitable. Thus, how these two display technologies perform under different ambient lighting conditions is a practically important concern.

To evaluate a display’s performance in the presence of ambient light, a metric called ambient contrast ratio (ACR) should be considered for real working scenarios [12–15]. In fact, ACR has already been widely used to evaluate the sunlight readability of transflective LCDs [16]. Recently, this concept is also extended to OLED displays [17–19]. But a detailed comparison between LCD and OLED has not been reported. Also, most of previous studies focused on the ACR at normal viewing direction. For a wide-view display such as TV, ACR at oblique angles is equally important.

In this paper, we perform a systematic analysis about ACR for both LCD and OLED. Three applications are emphasized: mobile displays, TVs, and public displays. The influencing factors like display brightness, ambient light illuminance, and surface reflection are investigated in detail. Also, the ambient isocontrast contour is plotted for the first time. It reveals quantitative information about LCD/OLED performance at all viewing directions. Through our analyses, we find high static contrast ratio plays a key role in low ambient light conditions. As the ambient light increases, higher display brightness takes over. This finding sets important guidelines for future display optimization.

2. Modeling of ambient contrast ratio

As mentioned earlier, ambient contrast ratio (ACR) is an important parameter to quantitatively evaluate a display performance. It is generally defined as [12, 17]:

ACR=Lon+LambientRLLoff+LambientRL,
where Lon (Loff) represents the on-state (off-state) luminance value of an LCD or OLED, and Lambient is ambient luminance. Mostly, illuminance (unit: lux) is used to quantify the ambient light. Here, to be compatible with display luminance (unit: nits), we convert the illuminance to luminance by dividing a factor of π in Eq. (1) [16]. Another parameter RL in Eq. (1) is the luminous reflectance of the display panel. It is defined as [17]:
RL=λ1λ2V(λ)S(λ)R(λ)dλλ1λ2V(λ)S(λ)dλ,
where V(λ) is the photopic human eye sensitivity function, R(λ) is the spectral reflectance of the display device, and S(λ) is the spectrum of the ambient light (CIE standard D65 source is used in this work). Thus, the obtained ACR hereafter is not for a single wavelength; instead, it is for the whole visible region. Next, we will model the ACR of LCD and OLED separately, as they exhibit quite different device configurations. Please note that here we use the same definition of ACR [Eq. (1)] to establish our simulation model, but with two improvements: 1) we extend this concept to different viewing angles, and 2) we also consider the light leakage from the employed circular polarizer for OLED displays. Details will be discussed later.

2.1 ACR of an LCD

Figure 1 shows the schematic diagram of an LCD, where the main reflections occur at the front surface of display device, denoted as R1. The ambient light entering LCD panel is mostly absorbed by the crossed polarizers and other optical components. As a result, we assume no light is reflected back. Then its ACR can be described as:

ACRLCD(θ,ϕ)=Lon(θ,ϕ)+R1Loff(θ,ϕ)+R1,R1=LambientRL_surface(θ,ϕ).
Here, we try to simulate the ACR for the entire viewing zone. Therefore, θ and φ are chosen to represent the polar angle and azimuthal angle, respectively.

 figure: Fig. 1

Fig. 1 Schematic diagram of an LCD.

Download Full Size | PPT Slide | PDF

2.2 ACR of an OLED

Unlike LCD, OLED uses metal (e.g. Ag or Al) as the cathode electrode; hence, OLED itself is a highly reflective device [6, 20]. To block the reflected light from cathode, a broadband circular polarizer is commonly used, as shown in Fig. 2. However, this broadband circular polarizer (consisting of a linear polarizer, a half-wave plate, and a quarter-wave plate) works well only at normal angle. At large oblique angles, the light leakage (denoted as CPleak) is relatively severe, as will be discussed later. Thus, in addition to the surface reflection, the light leakage from circular polarizer should be considered as well for OLED:

 figure: Fig. 2

Fig. 2 Schematic diagram of an OLED.

Download Full Size | PPT Slide | PDF

ACROLED(θ,ϕ)=Lon(θ,ϕ)+R1+R2Loff(θ,ϕ)+R1+R2,R=1LambientRL_surface(θ,ϕ),R2=Lambient[1RL_surface(θ,ϕ)]RL_OLED(θ,ϕ)CPleak(θ,ϕ).

3. Simulation results

With the introduction of ACR for both LCD and OLED, now we could perform the calculations. Firstly, we investigate how ACR changes as a function of ambient light. Then we focus on the ACR at different viewing angles, represented by ambient isocontrast contour. In our simulations, three different display applications: mobile displays, large-sized TVs, and public displays, are considered separately. Please be reminded that both LCD and OLED technologies are still advancing rapidly. Especially for OLED, its efficiency has been improved noticeably in the past three decades [19]. Therefore, to make a fair comparison, we mainly focus on the state-of-the-art LCD and OLED displays as examples.

3.1 Simulated ACR

a) Mobile displays

In this category, we choose smartphone as an example to do the comparison. For touch screen operations, normally anti-reflection (AR) coating is not used. As a result, the outer surface of display is a cover glass. Here, we assume it is BK-7. By calculation using Eq. (2), the corresponding luminous reflectance at normal angle RL(0°, 0°) is 4.2%. For an LCD smartphone, fringe field switching (FFS) mode with negative dielectric anisotropy LC mixture (Δε < 0) is commonly used [10, 21]. Its CR is assumed to be 2000:1, with peak brightness ~600 nits. While for OLED, we assume its peak brightness is also 600 nits, and CR is assumed to be 1,000,000:1. Then we calculate the ACR at different ambient light conditions. Results are plotted in Fig. 3.

 figure: Fig. 3

Fig. 3 Calculated ACR as a function of different ambient light conditions for LCD and OLED smartphones. Here, we assume LCD peak brightness is 600/800 nits and OLED peak brightness is 600 nits, and the surface reflectance is 4.2% for both LCD and OLED.

Download Full Size | PPT Slide | PDF

As expected, when the ambient light is weak, OLED shows a much higher ACR than LCD. But as the ambient light gets stronger, two ACR curves get much closer. At 300 lux (moderate indoor lighting), LCD shows comparable ACR to OLED (140.1 vs. 150.6). If we slightly increase the peak brightness of LCD (by increasing the backlight intensity) to 800 nits, two ACR curves crossover at 90 lux (typical lighting condition in office building hallway or toilet lighting). It means below 90 lux, OLED (with 600 nits of peak brightness) exhibits a higher ACR, but beyond 90 lux the situation is reversed for the LCD with 800 nits of peak brightness.

As discussed above, higher brightness is more critical for higher ACR. This is also verified by experimental results, as listed in Table 1. These testing results are obtained from DisplayMate Technologies Corp [22]. They use a light source to uniformly illuminate the displays from all directions, then measure the screen brightness and screen reflectance to get ACR (they call it contrast rating for high ambient light: CR HAL). More details could be found in [23]. From Table 1, iPhone X has the highest peak brightness, thus leading to the highest ACR. Also, it is found that our calculated ACR shows excellent agreement with the measured results. The validity of our model is therefore confirmed.

Tables Icon

Table 1. Comparison between measured ACR and calculated ACR.

b) Large-sized TVs

For large-sized TVs, they are mostly operated by remote control, so that no touch functionality is needed. As a result, an AR coating is commonly adopted. Let us assume a single-layer AR coating with magnesium fluoride (MgF2) is used, and its luminous reflectance at normal angle is RL(0°, 0°) = 1.5% [17]. Also, TVs are powered by an electrical outlet. Thus, their peak brightness can be boosted compared to the battery-driven smartphones. Nowadays, the state-of-the-art LCD TV has ~1500 nits of peak brightness, while OLED has ~800 nits. In terms of static CR, MVA LCD is assumed to be 5000:1, while OLED is 1,000,000:1. With all these information, we can get ACR for both LCD and OLED TVs. Similarly, as shown in Fig. 4, OLED exhibits a higher ACR in the low illuminance region (dark room), but declines sharply as ambient light gets brighter. At 72 lux, OLED shows the same ACR as LCD. Beyond that, LCD is better. Again, this 72 lux is obtained based on the current LCD and OLED peak brightness (1500 nits vs. 800 nits). As both technologies continue to evolve, the crossover point will undoubtedly change with time.

 figure: Fig. 4

Fig. 4 Calculated ACR as a function of different ambient light conditions for LCD and OLED TVs. Here we assume LCD peak brightness is 1500 nits and OLED peak brightness is 800 nits, and the surface reflectance is 1.5% for both LCD and OLED.

Download Full Size | PPT Slide | PDF

c) Public displays

Recently, public display is emerging rapidly [24]. They have potential applications for advertisement, entertainment, and education, etc. For such displays, they have to endure very harsh environments, including very strong ambient light, or even direct sunlight. As a result, the display brightness has to be improved substantially; otherwise, the displayed images would be washed out. Currently, the LCD intended for public displays can get 2500 nits. Let us assume OLED public display can get 1200 nits. We can also boost the brightness for OLED, but the tradeoffs are burn-in and compromised lifetime. As Fig. 5 shows, the crossover point of ACR takes place at 96.7 nits. For an overcast day, the ambient light illuminance is at least 1000 lux. It means for public displays, LCD is favored for most cases.

 figure: Fig. 5

Fig. 5 Calculated ACR as a function of different ambient light conditions for LCD and OLED public displays. Here we assume LCD peak brightness is 2500 nits and OLED peak brightness is 1200 nits, and the surface reflectance is 1.5% for both LCD and OLED.

Download Full Size | PPT Slide | PDF

3.2 Simulated ambient isocontrast contour

So far, we concentrate on the ACR at normal angle. Next, we examine the ACR at different viewing angles. Before that, we have to elucidate the device parameters for both LCD and OLED. As discussed above, two LCD modes are used in our simulation: n-FFS for smart phones, and MVA for TVs and public displays. For both LCD modes, the parameters are the same as reported in [25]. Basically, the polarizer and analyzer are 24 µm thick with no = 1.5, ko = 0.000306, ne = 1.5, and ke = 0.019027. Compensation films are implemented to suppress the color shift and gamma shift at large oblique angles. Also, their depolarization effect is considered to better present the real cases [25].

For OLED, as mentioned earlier, a broadband circular polarizer consisting of a linear polarizer, a half-wave plate, and a quarter-wave plate is used. Its optical configuration is plotted in Fig. 6(a). The parameter of linear polarizer is the same as that used in LCD. For the half-wave plate, it is 183.33 µm thick positive A-film with no = 1.5095 and ne = 1.511 at 550 nm. The quarter-wave plate is using the same A-film, but with reduced thickness 91.67 µm. Then we calculate its light leakage at different wavelengths and different angles using a commercial simulation software TechWiz LCD (Sanayi-system, Korea). In our simulation, the OLED is replaced with a reflector. Figures 6(b) and 6(c) show the calculated results. At normal angle, the light leakage is less than 1% in the visible region (450 nm – 700 nm), the broadband feature is indeed validated. As the viewing angle increases, light leakage gradually increases and reaches up to almost 40%. This will undoubtedly affect the final perceived ACR at oblique viewing directions.

 figure: Fig. 6

Fig. 6 (a) Schematic diagram of optical configuration of broadband circular polarizer; (b) Calculated light leakage at different wavelengths at normal angle (θ = 0°, φ = 0°); and (c) Calculated light leakage at different polar angles (φ = 0°).

Download Full Size | PPT Slide | PDF

In the above calculations for light leakage, OLED is assumed to be a perfect mirror. But to make it more accurate, we have to know the real reflectance of OLED panel, which is RL_OLED in Eq. (4). Here, a typical multi-layer OLED device is considered, and the home-made MATALB codes are employed to calculate the angular-dependent luminous reflectance. More simulation details could be found in our previous paper [18]. Figure 7 shows the simulated results. It is seen that for the whole viewing zone, the obtained luminance reflectance doesn’t change much (~80%). Please note, for different OLED structures, this reflectance may vary due to the strong interference/cavity effect.

 figure: Fig. 7

Fig. 7 Calculated angular-dependent luminous reflectance of a multi-layer OLED device.

Download Full Size | PPT Slide | PDF

a) Mobile displays

Again, we use n-FFS based LCD to compare with OLED smartphone. Both LCD and OLED are assumed to have the same peak brightness, which is 600 nits. BK-7 is used as the cover glass. Figure 8(a) shows the calculated luminous reflectance of BK-7 at different viewing directions. When the polar angle is less than 45°, RL remains lower than 5%. But it increases sharply as viewing angle further increases. Another thing worth mentioning here is the decreased brightness. For OLED, it is self-emissive and its angular distribution is much broader than LCD. For instance, at 30° viewing angle, OLED brightness only decreases by ~20%, whereas LCD brightness decreases more than 50% [26].

 figure: Fig. 8

Fig. 8 (a) Calculated luminous reflectance of BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED smartphones.

Download Full Size | PPT Slide | PDF

With all these information, we calculate the ambient isocontrast contour for both LCD and OLED. At 500 lux (office lighting), it is interesting to see LCD [Fig. 9(a)] and OLED [Fig. 9(b)] show quite similar contour patterns. In theory, OLED has a broader angular distribution, which is supposed to perform better at large angles. However, this advantage is evened out due to the light leakage of circular polarizer. Also, from these two figures, most of the viewing zone shows ACR ≥ 5:1, which is adequate for normal reading. As the ambient light increases to 5000 lux (outdoor with moderate overcast sky), LCD and OLED show much reduced but still quite similar ACR pattern. According to the analysis in [16, 27], ACR < 2 means display is unreadable. Therefore, from Figs. 9(c) and 9(d), the viewing zone for LCD and OLED is limited to ± 50° in an overcast day.

 figure: Fig. 9

Fig. 9 Simulated ambient isocontrast contour for (a) LCD smartphone at 500 lux, where ACRmax = 86.1:1, ACRmin = 1.3:1, (b) OLED smartphone at 500 lux, where ACRmax = 89.2:1, ACRmin = 2.0:1, (c) LCD smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1, and (b) OLED smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1. Both LCD and OLED are assumed to have the same peak brightness: 600 nits.

Download Full Size | PPT Slide | PDF

b) Large-sized TVs

To apply an AR coating for TVs, multiple approaches can be employed [28–31]. Currently, a single-layer magnesium fluoride (MgF2) AR coating is a favored choice due to its simple configuration, low cost and fairly good performance [17]. Figure 10(a) shows the calculated luminous reflectance of AR-coated BK-7 at different angles. Within 45°, the RL value is lower than 2%, which is about 2.5x lower than that of a bare BK-7 glass. Also, the decreased brightness for LCD and OLED is considered, as shown in Fig. 10(b). Unlike smartphones, wide view is more critical for TVs, aiming at multi-viewers applications. As a result, the brightness distribution is broader, e.g. OLED brightness decrease at 30° is less than 10%, while LCD is ~35%.

 figure: Fig. 10

Fig. 10 (a) Calculated luminous reflectance of AR-coated BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED TVs.

Download Full Size | PPT Slide | PDF

Figure 11 depicts the ambient isocontrast contour under ~50 lux of ambient light (a typical lighting condition in living rooms). From Fig. 11, firstly, both LCD and OLED can get reasonably good performance (ACR ≥ 50:1) at almost entire viewing zone ( ± 80°). Then in the central region, LCD shows superior ACR than OLED. For example, ACR ≥ 1000 has been extended to over ± 40° in LCD panel; whereas for OLED, it is limited to ± 30°. This is mainly because LCD exhibits a much higher peak brightness than OLED (1500 nits vs. 800 nits).

 figure: Fig. 11

Fig. 11 Simulated ambient isocontrast contour for (a) LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) OLED TV at 50 lux, where ACRmax = 3362.2:1, ACRmin = 27.8:1. The peak brightness for LCD is 1500 nits and for OLED is 800 nits.

Download Full Size | PPT Slide | PDF

c) Public displays

For public displays, we assume the AR coating and brightness distribution for LCD and OLED remain the same as those shown in Fig. 10; the only difference is their peak brightness is 2500 nits for LCD and 1200 nits for OLED. Here, ambient light is also much stronger than any other case discussed above: 10,000 lux to represent full day light (not direct sun). From Fig. 12, LCD exhibits great advantages over OLED. Firstly, its maximum ACR is over 2x higher than that of OLED: 61.2 vs. 29.5. Secondly, LCD’s ACR is more than 5:1 within the 60° viewing cone, while OLED’s is only ± 40°. This means, LCD exhibits a better sunlight readability. Lastly, LCD’s viewing zone with ACR ≥ 2:1 is as large as ± 75°. These results clearly indicate that display brightness plays the key role for improving sunlight readability.

 figure: Fig. 12

Fig. 12 Simulated ambient isocontrast contour for (a) LCD public display at 10,000 lux, where ACRmax = 61.2:1, ACRmin = 1.2:1, and (b) OLED public display at 10,000 lux, where ACRmax = 29.5:1, ACRmin = 1.2:1. The peak brightness for LCD is 2500 nits and for OLED is 1200 nits.

Download Full Size | PPT Slide | PDF

4. Discussion

From the above discussions, we can tell ACR is jointly determined by several factors, like display brightness, ambient light illuminance, surface reflection, and light leakage, etc. To improve ACR, LCD and OLED camps should have different strategies.

4.1 Enhancing an LCD’s ACR

For an LCD, high brightness is its major strength, leading to an excellent ACR, especially at strong ambient light conditions. But under low ambient light, LCD has room for improvement. The key is to suppress the light leakage at voltage-off state. Recently, an LCD panel with in-cell polarizer was proposed to decouple the depolarization effect of LC layer and color filter array [25]. The CR of a MVA LCD TV could be boosted to 20,000:1. Also, a dual-panel LCD system is proposed to further enhance the CR to more than 1,000,000:1 [4].

Another option is to use local dimming [32–34]. In theory, its CR can approach infinity to one, as long as all LEDs are turned off. Especially, when mini-LED technology (LED chip size is 100-200 μm) is getting mature, dimming number and accuracy will be improved significantly. Here, we compare the viewing angle performance between conventional LCD and mini-LED-enhanced LCD. Their ambient isocontrast contours are plotted in Fig. 13. With the help of mini-LED, LCD TV can get over 2x higher ACR at normal direction (7312.5 vs. 2931.3). Besides, its high ACR region is widened. For example, ACR ≥ 2000:1 is expanded to almost ± 50°. For conventional LCD, it is only ± 30°.

 figure: Fig. 13

Fig. 13 Simulated ambient isocontrast contour for (a) conventional LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) new LCD TV with mini-LED backlight at 50 lux, where ACRmax = 7312.5:1, ACRmin = 18.8:1.

Download Full Size | PPT Slide | PDF

4.2 Enhancing an OLED’s ACR

For an OLED, it shows inherent true black state, leading to an excellent ACR at dark ambient. But this advantage gradually disappears as the ambient light increases, due to the inadequate brightness. To improve that, it needs substantial improvement on OLED materials and device configurations [19, 35]. Another limiting factor is the employed circular polarizer. Through our analysis, this polarizer is broadband but not wide view. Light leakage as high as 40% exists at large oblique angles. To suppress light leakage, the Nz value ( = nx-nz/nx-ny, where nx, ny, and nz are the refractive indices in the x, y, and z directions) of wave-plates should be optimized [36]. Also, negative wavelength dispersion films or other achromatic wave-plates could be implemented [37–39]. Here, we propose a new configuration by replacing the two uniaxial films with new biaxial films, as shown in Fig. 14(a). The physical parameters for these two films are: Biaxial film #1: d = 78.57 µm, nx = 1.5124, ny = 1.5089, nz = 1.50978 @ 550 nm, and biaxial film #2: d = 39.29 µm, nx = 1.5124, ny = 1.5089, nz = 1.51055 @ 550 nm [40]. Clearly, compared to the conventional circular polarizer [Fig. 14(b)], the new circular polarizer shows much suppressed light leakage [Fig. 14(c)]. Within ± 40°, it is less than 2%. The highest light leakage is about 10%. In comparison, it is more than 40% for conventional case.

 figure: Fig. 14

Fig. 14 (a) Schematic diagram of optical configuration of newly proposed broadband and wide-view circular polarizer with two biaxial films; Calculated light leakage for (b) conventional broadband circular polarizer, and (c) new broadband circular polarizer.

Download Full Size | PPT Slide | PDF

With the new broadband and wide-view circular polarizer, we plot the ACR for an OLED TV. Results are shown in Fig. 15. The viewing angle is widened significantly, especially in the central region, where ACR ≥ 500 is approaching ± 60° [Fig. 15(b)]. By contrast, if a conventional circular polarizer is used, the viewing cone with ACR ≥ 500 is limited to ± 40° [Fig. 15(a)].

 figure: Fig. 15

Fig. 15 Simulated ambient isocontrast contour for (a) OLED TV at 50 lux with conventional broadband circular polarizer, where ACRmax = 3362.2:1, ACRmin = 27.8:1, and (b) OLED TV at 50 lux with new broadband circular polarizer, where ACRmax = 3363.3:1, ACRmin = 29.4:1.

Download Full Size | PPT Slide | PDF

5. Conclusion

We have analyzed the ambient contrast ratio of LCD and OLED systematically. It is found that high static CR is important in low ambient light conditions. But under strong ambient light, higher brightness is more critical. This gives important guidelines for future display development. The LCD camp should improve its dark state; while OLED camp should improve its peak brightness. Also, the ambient isocontrast contour is plotted under different scenarios. It provides thorough information about LCD and OLED viewing performance. To improve an OLED’s ACR at large oblique angles, we propose a new broadband and wide-view circular polarizer by using two biaxial films. Good performance is demonstrated.

Funding

a.u.Vista, Inc.

Acknowledgment

The authors would like to thank Ruidong Zhu for helpful discussion.

References and links

1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014).

2. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004). [CrossRef]  

3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005). [CrossRef]  

4. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017). [CrossRef]  

5. H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

6. T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed. (John Wiley & Sons, 2017).

7. T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

8. H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

9. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

10. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971). [CrossRef]  

11. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998). [CrossRef]  

12. J. A. Dobrowolski, B. T. Sullivan, and R. C. Bajcar, “Optical interference, contrast-enhanced electroluminescent device,” Appl. Opt. 31(28), 5988–5996 (1992). [CrossRef]   [PubMed]  

13. J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005). [CrossRef]   [PubMed]  

14. E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006). [CrossRef]  

15. J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

16. Z. Ge and S. T. Wu, Transflective Liquid Crystal Displays (John Wiley & Sons, 2010).

17. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012). [CrossRef]  

18. G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016). [CrossRef]  

19. H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

20. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987). [CrossRef]  

21. H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012). [CrossRef]  

22. DisplayMate Technologies Corp, http://www.displaymate.com/

23. R. M. Soneira, Tablet and Smartphone Displays under Bright Ambient Lighting Shoot-Out Master Photo Grid for Viewing Screen Shots of all the Displays (DisplayMate Technologies Corp., 2012).

24. H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

25. H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017). [CrossRef]   [PubMed]  

26. R. M. Soneira. iPhone X OLED Display Technology Shoot-Out. DisplayMate Technologies Corp., 2017.

27. G. Walker, GD-Itronix Dynavue Technology. The Ultimate Outdoor-Readable Touch-Screen Display (Rugged PC Review, 2007).

28. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000). [CrossRef]  

29. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003). [CrossRef]   [PubMed]  

30. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011). [CrossRef]  

31. G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with Moth-eye-like structure for flexible display application,” Optica 4(7), 678–683 (2017). [CrossRef]  

32. P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

33. C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008). [CrossRef]  

34. H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010). [CrossRef]  

35. K. Müllen and U. Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications (John Wiley & Sons, 2006).

36. B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014). [CrossRef]   [PubMed]  

37. A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

38. N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

39. Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

40. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014).
  2. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
    [Crossref]
  3. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
    [Crossref]
  4. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref]
  5. H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).
  6. T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed. (John Wiley & Sons, 2017).
  7. T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).
  8. H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).
  9. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).
  10. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  11. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
    [Crossref]
  12. J. A. Dobrowolski, B. T. Sullivan, and R. C. Bajcar, “Optical interference, contrast-enhanced electroluminescent device,” Appl. Opt. 31(28), 5988–5996 (1992).
    [Crossref] [PubMed]
  13. J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
    [Crossref] [PubMed]
  14. E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
    [Crossref]
  15. J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).
  16. Z. Ge and S. T. Wu, Transflective Liquid Crystal Displays (John Wiley & Sons, 2010).
  17. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
    [Crossref]
  18. G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
    [Crossref]
  19. H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).
  20. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
    [Crossref]
  21. H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
    [Crossref]
  22. DisplayMate Technologies Corp, http://www.displaymate.com/
  23. R. M. Soneira, Tablet and Smartphone Displays under Bright Ambient Lighting Shoot-Out Master Photo Grid for Viewing Screen Shots of all the Displays (DisplayMate Technologies Corp., 2012).
  24. H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).
  25. H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
    [Crossref] [PubMed]
  26. R. M. Soneira. iPhone X OLED Display Technology Shoot-Out. DisplayMate Technologies Corp., 2017.
  27. G. Walker, GD-Itronix Dynavue Technology. The Ultimate Outdoor-Readable Touch-Screen Display (Rugged PC Review, 2007).
  28. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
    [Crossref]
  29. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  30. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  31. G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with Moth-eye-like structure for flexible display application,” Optica 4(7), 678–683 (2017).
    [Crossref]
  32. P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).
  33. C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
    [Crossref]
  34. H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
    [Crossref]
  35. K. Müllen and U. Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications (John Wiley & Sons, 2006).
  36. B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
    [Crossref] [PubMed]
  37. A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).
  38. N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).
  39. Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).
  40. Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
    [Crossref] [PubMed]

2018 (1)

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

2017 (3)

2016 (2)

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

2015 (1)

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

2014 (2)

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
[Crossref] [PubMed]

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

2013 (1)

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

2012 (3)

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

2011 (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

2010 (1)

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

2008 (1)

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

2007 (2)

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

2006 (1)

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

2005 (3)

2004 (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

2003 (2)

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
[Crossref] [PubMed]

2001 (1)

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

2000 (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

1998 (2)

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

1992 (1)

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Ahn, B. C.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Ahn, S. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Bajcar, R. C.

Brett, M. J.

Chen, H.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
[Crossref] [PubMed]

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Chen, S.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Cheng, I. C.

Chida, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Choi, H. C.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Choi, S. H.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Choi, W.

de Greef, P.

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

Deepak,

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Dobrowolski, J. A.

Furuki, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Ha, T. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Han, B. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Hashizume, M.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Heidrich, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hong, Q.

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Hsu, S. C.

Hulze, H. G.

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

Hur, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Hwangbo, C. K.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Ito, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Jang, I. W.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Jeong, K. U.

Jeong, Y. S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Jo, M. H.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Käläntär, K.

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

Kataoka, S.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Kelley, E. F.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Kennedy, S. R.

Kim, B. C.

Kim, B. K.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Kim, H. R.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Kim, H. S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Kim, N. Y.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Kim, S. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Koike, Y.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Koma, N.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Lai, C. C.

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

Lan, Y. H.

Lee, G. D.

Lee, J. H.

Lee, K. C.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Lee, S. H.

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(107), A1725–A1730 (2014).
[Crossref] [PubMed]

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Lee, S. L.

Lee, Y. Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Li, M. C.

Lim, Y. J.

Lin, B. Y.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Lin, H. Y.

Lin, T. C.

Lin, Y. H.

Lindfors, M.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Lu, R.

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Luo, Z.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Muto, M.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Narayanan Unni, K. N.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Oh, C. H.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Oh, J. H.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Ohmuro, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Okamoto, K.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Otani, T.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Park, K. H.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Park, K. M.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Park, M. C.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Penczek, J.

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

Peng, L. H.

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Sasabayashi, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Sasaki, T.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Sasaoka, T.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Sato, Y.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Shin, H. J.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Singh, R.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Solanki, A.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Son, Y. B.

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Song, B. C.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Song, J. H.

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Suga, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Sullivan, B. T.

Sung, J. H.

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Takahashi, Y.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Takaki, J.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Takasugi, S.

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

Takeda, A.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Tan, G.

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Tatsuki, K.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Tsai, C. C.

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

Tsai, Y. S.

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Tsuda, H.

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Uchiyama, A.

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

Urabe, T.

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Wei, M. K.

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Whitehead, L. A.

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

Wu, S. T.

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
[Crossref] [PubMed]

G. Tan, J. H. Lee, Y. H. Lan, M. K. Wei, L. H. Peng, I. C. Cheng, and S. T. Wu, “Broadband antireflection film with Moth-eye-like structure for flexible display application,” Optica 4(7), 678–683 (2017).
[Crossref]

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

J. H. Lee, X. Zhu, Y. H. Lin, W. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[Crossref] [PubMed]

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Wu, T. X.

Q. Hong, T. X. Wu, R. Lu, and S. T. Wu, “Wide-view circular polarizer consisting of a linear polarizer and two biaxial films,” Opt. Express 13(26), 10777–10783 (2005).
[Crossref] [PubMed]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

Yamamoto, M.

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Yatabe, T.

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

Yin, Y.

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

Yoshida, S.

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

Yun, H. J.

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Zhu, R.

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref]

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

Zhu, X.

ACM Trans. Graph. (1)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23(3), 760–768 (2004).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987).
[Crossref]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86(12), 121107 (2005).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73(20), 2881–2883 (1998).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

IEEE Trans. Consum. Electron. (1)

C. C. Lai and C. C. Tsai, “Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications,” IEEE Trans. Consum. Electron. 54(2), 669–674 (2008).
[Crossref]

J. Phys. D (1)

G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D 49(31), 315101 (2016).
[Crossref]

J. Soc. Inf. Disp. (2)

E. F. Kelley, M. Lindfors, and J. Penczek, “Display daylight ambient contrast measurement methods and daylight readability,” J. Soc. Inf. Disp. 14(11), 1019–1030 (2006).
[Crossref]

H. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18(1), 57–65 (2010).
[Crossref]

Light Sci. Appl. (1)

H. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light Sci. Appl. 7, e17168 (2018).

Liq. Cryst. (1)

H. J. Yun, M. H. Jo, I. W. Jang, S. H. Lee, S. H. Ahn, and H. J. Hur, “Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy,” Liq. Cryst. 39(9), 1141–1148 (2012).
[Crossref]

Opt. Express (5)

Opt. Mater. (1)

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Optica (1)

SID Symp. Dig. Tech. Papers (10)

P. de Greef and H. G. Hulze, “Adaptive dimming and boosting backlight for LCD-TV Systems,” SID Symp. Dig. Tech. Papers 38(1), 1332–1335 (2007).

A. Uchiyama and T. Yatabe, “Characteristics and applications of new wide-band retardation films,” SID Symp. Dig. Tech. Papers 32(1), 566–569 (2001).

N. Koma, M. Hashizume, M. Yamamoto, and Y. Sato, “Development of photochromic circular polarizer for OLEDs,” SID Symp. Dig. Tech. Papers 43(1), 1268–1271 (2012).

Y. Takahashi, Y. Furuki, S. Yoshida, T. Otani, M. Muto, Y. Suga, and Y. Ito, “A new achromatic quarter-wave film using liquid-crystal materials for anti-reflection of OLEDs,” SID Symp. Dig. Tech. Papers 45(1), 381–384 (2014).

H. Chen, R. Zhu, K. Käläntär, and S. T. Wu, “Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution,” SID Symp. Dig. Tech. Papers 47(1), 1413–1416 (2016).

J. H. Lee, K. H. Park, S. H. Kim, H. C. Choi, B. K. Kim, and Y. Yin, “AH-IPS, superb display for mobile device,” SID Symp. Dig. Tech. Papers 44(1), 32–33 (2013).

H. Seetzen, L. A. Whitehead, and G. Ward, “A high dynamic range display using low and high resolution modulators,” SID Symp. Dig. Tech. Papers 34(1), 1450–1453 (2003).

T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active matrix OLED display,” SID Symp. Dig. Tech. Papers 38(1), 161–164 (2007).

H. J. Shin, S. Takasugi, K. M. Park, S. H. Choi, Y. S. Jeong, B. C. Song, H. S. Kim, C. H. Oh, and B. C. Ahn, “Novel OLED display technologies for large-size UHD OLED TVs,” SID Symp. Dig. Tech. Papers 46(1), 53–56 (2015).

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Dig. Tech. Papers 29(1), 1077–1080 (1998).

Surf. Coat. Tech. (1)

N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, “TiNx layer as an antireflection and antistatic coating for display,” Surf. Coat. Tech. 128, 156–160 (2000).
[Crossref]

Other (8)

R. M. Soneira. iPhone X OLED Display Technology Shoot-Out. DisplayMate Technologies Corp., 2017.

G. Walker, GD-Itronix Dynavue Technology. The Ultimate Outdoor-Readable Touch-Screen Display (Rugged PC Review, 2007).

DisplayMate Technologies Corp, http://www.displaymate.com/

R. M. Soneira, Tablet and Smartphone Displays under Bright Ambient Lighting Shoot-Out Master Photo Grid for Viewing Screen Shots of all the Displays (DisplayMate Technologies Corp., 2012).

T. Tsujimura, OLED Display Fundamentals and Applications, 2nd Ed. (John Wiley & Sons, 2017).

Z. Ge and S. T. Wu, Transflective Liquid Crystal Displays (John Wiley & Sons, 2010).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (John Wiley & Sons, 2014).

K. Müllen and U. Scherf, Organic Light Emitting Devices: Synthesis, Properties and Applications (John Wiley & Sons, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic diagram of an LCD.
Fig. 2
Fig. 2 Schematic diagram of an OLED.
Fig. 3
Fig. 3 Calculated ACR as a function of different ambient light conditions for LCD and OLED smartphones. Here, we assume LCD peak brightness is 600/800 nits and OLED peak brightness is 600 nits, and the surface reflectance is 4.2% for both LCD and OLED.
Fig. 4
Fig. 4 Calculated ACR as a function of different ambient light conditions for LCD and OLED TVs. Here we assume LCD peak brightness is 1500 nits and OLED peak brightness is 800 nits, and the surface reflectance is 1.5% for both LCD and OLED.
Fig. 5
Fig. 5 Calculated ACR as a function of different ambient light conditions for LCD and OLED public displays. Here we assume LCD peak brightness is 2500 nits and OLED peak brightness is 1200 nits, and the surface reflectance is 1.5% for both LCD and OLED.
Fig. 6
Fig. 6 (a) Schematic diagram of optical configuration of broadband circular polarizer; (b) Calculated light leakage at different wavelengths at normal angle (θ = 0°, φ = 0°); and (c) Calculated light leakage at different polar angles (φ = 0°).
Fig. 7
Fig. 7 Calculated angular-dependent luminous reflectance of a multi-layer OLED device.
Fig. 8
Fig. 8 (a) Calculated luminous reflectance of BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED smartphones.
Fig. 9
Fig. 9 Simulated ambient isocontrast contour for (a) LCD smartphone at 500 lux, where ACRmax = 86.1:1, ACRmin = 1.3:1, (b) OLED smartphone at 500 lux, where ACRmax = 89.2:1, ACRmin = 2.0:1, (c) LCD smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1, and (b) OLED smartphone at 5000 lux, where ACRmax = 9.8:1, ACRmin = 1.1:1. Both LCD and OLED are assumed to have the same peak brightness: 600 nits.
Fig. 10
Fig. 10 (a) Calculated luminous reflectance of AR-coated BK-7 cover glass at different angles, and (b) normalized brightness of LCD and OLED TVs.
Fig. 11
Fig. 11 Simulated ambient isocontrast contour for (a) LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) OLED TV at 50 lux, where ACRmax = 3362.2:1, ACRmin = 27.8:1. The peak brightness for LCD is 1500 nits and for OLED is 800 nits.
Fig. 12
Fig. 12 Simulated ambient isocontrast contour for (a) LCD public display at 10,000 lux, where ACRmax = 61.2:1, ACRmin = 1.2:1, and (b) OLED public display at 10,000 lux, where ACRmax = 29.5:1, ACRmin = 1.2:1. The peak brightness for LCD is 2500 nits and for OLED is 1200 nits.
Fig. 13
Fig. 13 Simulated ambient isocontrast contour for (a) conventional LCD TV at 50 lux, where ACRmax = 2931.3:1, ACRmin = 16.2:1, and (b) new LCD TV with mini-LED backlight at 50 lux, where ACRmax = 7312.5:1, ACRmin = 18.8:1.
Fig. 14
Fig. 14 (a) Schematic diagram of optical configuration of newly proposed broadband and wide-view circular polarizer with two biaxial films; Calculated light leakage for (b) conventional broadband circular polarizer, and (c) new broadband circular polarizer.
Fig. 15
Fig. 15 Simulated ambient isocontrast contour for (a) OLED TV at 50 lux with conventional broadband circular polarizer, where ACRmax = 3362.2:1, ACRmin = 27.8:1, and (b) OLED TV at 50 lux with new broadband circular polarizer, where ACRmax = 3363.3:1, ACRmin = 29.4:1.

Tables (1)

Tables Icon

Table 1 Comparison between measured ACR and calculated ACR.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ACR= L on + L ambient R L L off + L ambient R L ,
R L = λ 1 λ 2 V(λ)S(λ)R(λ)dλ λ 1 λ 2 V(λ)S(λ)dλ ,
AC R LCD (θ,ϕ)= L on (θ,ϕ)+ R 1 L off (θ,ϕ)+ R 1 , R 1 = L ambient R L_surface (θ,ϕ).
AC R OLED (θ,ϕ)= L on (θ,ϕ)+ R 1 + R 2 L off (θ,ϕ)+ R 1 + R 2 , R = 1 L ambient R L_surface (θ,ϕ), R 2 = L ambient [1 R L_surface (θ,ϕ)] R L_OLED (θ,ϕ)C P leak (θ,ϕ).

Metrics