Abstract

We report measurements of time-frequency entangled photon pairs and heralded single photons at 1550 nm wavelengths generated using a microring resonator pumped optically by a diode laser. The conventional metrics used to describe performance, such as Coincidences-to-Accidentals Ratio (CAR), conditional self-correlation [g(2) (0) ], two-photon energy-time Franson interferometric visibility etc. are shown to reach a high-performance regime not yet achieved by silicon photonics, and attained previously only by crystal, glass and fiber-based pair-generation devices.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

There is much recent interest in silicon photonic approaches to generating, manipulating and detecting quantum light, including entangled photon pairs and heralded single photons as resources for quantum optical communications and information processing. Integrated photonic structures such as waveguides and micro-resonators can be used for photon pair and heralded single photon generation using the nonlinear optical process of spontaneous four-wave mixing (SFWM) [1–9]. The intrinsic rate of nonlinear optical processes increases as the mode volume decreases, which reduces the pump power requirements of silicon microrings used for pair generation to sub-milliwatt levels [8], and the device footprint to about one hundred square-microns [2, 3]. Silicon device technology is useful not only for making high quality factor (Q) compact optical micro-resonators such as microrings and microdisks, but also driving and monitoring them with the help of micro-electronic components [10, 11]. Also, the larger free-spectral range (FSR) compared to glass or silicon nitride micro-resonators (in the few-nanometer range) makes it easier to extract and measure the signal and idler photons from the “comb-like” multiplexed state where many wavelength-pairs are simultaneously generated [12], since the required components can be selected from commercially-available devices (such as filters, de-multiplexers, arrayed waveguide gratings, delay line interferometers etc.) which have already been designed for telecommunications.

However, the reported performance—in terms of the usual metrics such as Coincidences-to-Accidentals Ratio (CAR), conditional self-correlation [g(2) (0) ] and two-photon interference visibility (V)—has been significantly inferior to those of traditional pair-generation devices formed using optical fiber or crystals such as periodically-poled lithium niobate (PPLN) and potassium trihydrogen phosphate (KTP), where CAR > 10, 000, g(2)(0) < 0.01 and V ≃ 99% are common [13–16]. Silicon-photonic-based pair generation devices may not be able to generate a comparable number of photon pairs per second because of the weaker nonlinearity compared to crystal, and length limitations compared to fiber. But silicon volume manufacturing using wafer-scale technology can be inexpensive, and silicon photonic devices can be integrated with lasers [17], detectors [18] and micro-electronics for future integrated systems. Thus, it is desirable at this time that a high quality of the photon pairs be demonstrated, with high pump efficiency. There are applications, such as detector calibration and short-range communications, where a very large number of photons per second is perhaps not essential, but a source that is neither bright nor of high quality is probably not of much use, even if cheap.

The objective of this paper is to report record performance numbers achieved (at room-temperature, in an “open” setup, i.e., not sealed off from the laboratory environment) using optically-pumped SFWM in a high-Q silicon microring resonator. Previous reports have shown saturation / roll-off of parameters such as CAR at much lower values than measured here; therefore, these results present a more optimistic prospect for using silicon photonic devices for pair generation in quantum optics experiments than may have been expected by the wider community so far.

2. Experimental details

The microring was fabricated using a foundry silicon photonic process on SOI wafers, using ridge waveguides of width 0.65 µm, height 0.22 µm, and slab thickness 70 nm, designed for low loss transmission in the lowest-order mode of the transverse electric (TE) polarization defined relative to the device plane. The microring resonator was designed with a radius of R = 10 µm, side-coupled to the feeder waveguide. The slab regions of the ridge waveguides were doped, followed by contact and via formation and metalization, to form a p-i-n diode for monitoring, under reverse-bias, the optical power circulating in the microring (a detailed discussion of the p-i-n diode structure can be found in [10]). The Si waveguides used in the feeder waveguide and microring had a propagation loss (measured on test sites) of approximately 1 dB/cm, resulting in a microring intrinsic quality factor of approximately 9 × 105, and a resonance lifetime τ ≈ 76 ps (loaded quality factor of 9.2 × 104 at 1550 nm, with a measured spectral full-width at half-maximum (FWHM) of approximately 2.1 GHz).

Measurements reported here used the experimental configuration shown in Fig. 1. The bare-die chip was mounted on a temperature-controlled stage with a thermo-electric controller (TEC) in feedback with a thermistor on the stage mount. To establish a stable resonance, the silicon photonic chip with the microring was heated until the selected resonance aligned with the pump laser. The spectral alignment was continuously monitored during measurement using the reverse-biased photo-current of a silicon p-i-n junction diode fabricated across the microring [10], and confirmed using high-magnification infrared camera images of the microring. Polarization-maintaining fibers, fiber-loop paddles and lensed tapered fibers with anti-reflection coating were used to couple light to and from the silicon chip, and nanopositioning stages with piezoelectric actuators were used for accurate positioning of the fiber tips to the waveguide facets. An automated software program attempted to continuously optimize the coupling. The insertion loss of each fiber-to-waveguide coupler was estimated as 3.5 dB averaged over the wavelengths of interest based on previous experiments. Light was coupled to and from the chip using lensed tapered polarization-maintaining fibers. Output light from the chip was routed through cascaded filters to select one pair of spectral lines of Stokes (also called idler) and anti-Stokes (signal) photons positioned symmetrically around the pump wavelength.

 

Fig. 1 (A) The experimental configuration for pair generation, and measurement of the coincidences-to-accidentals ratio (CAR). ATT: Variable optical attenuator, TEC: thermo electric controller, TCSPC: time-correlated single-photon counter. ROADM: 3-port reconfigurable optical add-drop multiplexer. (B) Modifications to the detection setup for measurement of the conditional (heralded) self-correlation, g(2) (0). (C) Measurement of two-photon Franson interferometric visibility using the folded configuration. DLI: Delay-Line Interferometer. (D) Measurement of two-photon Franson interferometric visibility using the un-folded configuration.

Download Full Size | PPT Slide | PDF

Under SFWM, energy-conservation between the pump and the generated Stokes and anti-Stokes photon pair dictates the frequency relationship, 2ωp = ωS + ωaS, so that all three frequencies (wavelengths) lie within the band used in communication networks near 1550 nm. The microring provided simultaneous resonance for all three frequencies across adjacent free-spectral ranges with a tight constraint on the narrow bandwidth dictated by the high quality factor resonance. The pump wavelength was positioned at 1554.9 nm and signal and idler photons were detected at 1535.5 nm and 1574.7 nm, respectively. External tunable filters (benchtop components) were used at these three wavelengths with FWHM’s of approximately 1 nm, 0.6 nm and 0.8 nm, respectively. The spectral width of the microring resonance was approximately 0.03 nm, much narrower than the filter widths. Thus, the filters do not reshape the joint-spectral intensity, as may be a concern with broadband SFWM in waveguides.

Photons were detected using fiber-coupled superconducting (WSi) nanowire single photon detectors (SNSPD), cooled to 0.8 K in a closed-cycle Helium-4 cryostat equipped with a sorption stage. The detection efficiencies for the SNSPDs were about 90% for two detectors and about 65% for the other two detectors; these detectors were not gated and were operated in a simple dc-biased mode with an RF-amplified readout. Coincidences were measured using a multi-input time-to-digital converter (TDC) instrument, with 0.08 ns minimum bin width, in start-stop mode. To prevent binning artifacts when accumulating histograms, at the cost of a factor-of-two in temporal resolution, two adjacent hardware bins were summed, according the manufacturer’s suggestions, resulting in the 0.16 ns bin width used for all coincidence measurements. For confirmation, a few coincidence histograms were also measured using a two-channel time-correlated single-photon counting (TCSPC) instrument with 25 ps bin size; these gave similar results in terms of the shape and widths of the coincidence peaks.

3. Measurements

Typical characterization measurements for SFWM report pair generation rates (PGR) and two-photon correlation and interference measurements, quantifying the pair generation, heralding and entanglement properties of the source [ 19] (Chap. 2). Since the purpose of this paper is to demonstrate that high CAR values and low g(2)(0) values can be experimentally achieved using off-the-shelf, foundry-fabricated silicon photonic devices, we focus mainly on the low pump-power case; nevertheless, an appreciable rate of pairs and single photons was measured because of the relatively high brightness of the source.

3.1. Single and coincidence counts

Figure 2(A) shows the measured singles rates as a function of pump power, with differences in the values based on the slightly different losses through the filters (5.0 dB and 7.2 dB at the signal and idler wavelengths). Both sets of data are fitted by a quadratic function of the input pump power P (in the feeder waveguide before the microring). The on-chip PGR was calculated from the measured coincidence rate by accounting for the insertion loss of the filters, and chip-waveguide coupling (3.5 dB), and the efficiency of the detectors (0.9). In Fig. 2(B), the (on-chip) pair generation rate is shown, and the fitted line, following the functional form PGR = R × P 2, agreed with the data. (The right-hand side axis shows the raw measured coincidence rates.) The fitted PGR is R = 149 ± 6 MHz.mW−2 (one standard deviation uncertainty). This is a good value for silicon microrings, which improves upon previous experimental results (R = 1 − 10 MHz.mW−2) tabulated in [8]. As a comparison, on-chip parametric down-conversion (PDC) sources formed using periodically-poled lithium niobate or aluminum nitride [20,21] report typical pair generation rates of about 6 − 14 MHz.mW−1.

 

Fig. 2 (A) Singles count rates (in Hz, raw measurements, not scaled) versus (cw) optical pump power in the feeder silicon waveguide. The difference in single counts between the signal and idler channels stems from the slightly different losses through the filters (5.0 dB and 7.2 dB respectively). (B) Coincidence rate (in Hz), using the setup shown in Fig. 1(A). The left-hand side vertical axis shows the scaled coincidence count rates, accounting for chip coupling loss, filter insertion loss and detection efficiency. From the fit of this data, we infer the pair generation rate (PGR) as discussed in Section 3.1. The right-hand side vertical axis shows the raw measured coincidence count rates (Hz).

Download Full Size | PPT Slide | PDF

3.2. Coincidences-to-Accidentals Ratio (CAR)

Figure 3(A) shows the measurements of CAR versus input (cw) pump power. Raw two-fold coincidence counts (Craw) and accidental coincidence counts (Araw) between the generated photon pairs were measured for typical acquisition times of 30–300 seconds and binned into a histogram (one for each input pump power level). [The complete list of integration times is (from highest pump power to lowest power): 30, 30, 30, 120, 120, 180, 240, 600, 2100, and 3000 seconds.] The uncertainties in Araw are one standard deviation values of counts in bins away from the peak (start-stop delays were measured upto 100 ns time difference), and were propagated to generate the error bars in the CAR plot. Coincidences due to dark counts were measured separately, but since their contribution was negligible, they were not subtracted from the measurements. Each histogram peak was fitted by a Gaussian function, whose FWHM was typically 0.31 ns. The histogram of start-stop coincidences (measured bin counts divided by the measurement time in seconds) which resulted in the highest CAR is shown in Fig. 3(B), along with a segment of the accidental coincidences in the inset figure. As shown in Fig. 3(C), the peak was well fit by a Gaussian function. Its two-sided root-mean-square width defined the time window over which the (fitted) coincidence counts were integrated to yield C, and the same width was used to calculate the integrated averaged accidentals count, A, with CAR defined as CAR = C/A. (This number is less than Craw/Araw, since the accidentals counts are more or less flat over the integration window, whereas the coincidences are peaked.)

 

Fig. 3 Pair generation. (A) Coincidences-to-Accidentals Ratio (CAR) versus (cw) optical pump power in the feeder waveguide before the microring. The error bars are one standard deviation, calculated as described in the text. The highest measured CAR was 12, 105 ± 1, 821. (B) The start-stop coincidence counting histogram for the highest CAR value. The inset shows a segment of the accidental coincidences. (C) Fit of the coincidence peak using a Gaussian function, with FWHM of 0.315 ns.

Download Full Size | PPT Slide | PDF

The highest CAR was 12, 105 ± 1, 821 measured using an integration time of 3,000 seconds, when the pair generation brightness (defined as the pair generation rate divided by the FWHM of the loaded quality factor) was 8 × 10−3 pairs.s−1.GHz−1. At the highest power values used here, CAR = 532 ± 35 with an integration time of 30 seconds, at a pair generation brightness of 550 × 103 pairs.s−1.GHz−1. Dividing further by the square of the optical pump power in the feeder waveguide (since the SFWM process is quadratic in the pump power) calculates the spectral brightness of the source, equal to 1.5 × 108 pairs.s−1.GHz−1.mW−2 at the highest CAR value and 1.6 × 108 pairs.s−1.GHz−1.mW−2 at the lowest CAR value (the two numbers are approximately the same, as is expected). The spectral brightness of this microring device is two orders of magnitude higher than reported by other groups [22], a factor of twenty four higher than our previous results [8], and is a factor of two greater than that of the silicon microdisk [7].

CAR decreased at higher pump powers, as expected, and since the pair generation rate was higher, a shorter integration time was required to achieve reasonably small uncertainty error bars. CAR values in the tens of thousands have been measured in SPDC pair generation [14], but not yet shown in silicon photonics where values have been in the few thousands [9, 23]. (The CAR metric can be inflated by un-naturally narrowing the coincidence window, e.g., less than the timing jitter of the detectors [23].) Achieving high CAR depends on low detector noise, suppression of pump and scattering noise, improvement of the stability of pair generation, and improving factors such as loss in the device and the experimental setup, which lead to broken pairs and increase the rate of accidental coincidences.

3.3. Heralded single-photon generation

Detecting one photon of the pair results in a heralded single-photon source, since the other photon is expected to show non-classical anti-bunching behavior. Figure 4 shows the heralded (i.e., conditional) single-photon second-order self-correlation function, gH(2)(0), obtained by detecting one of the generated photon pair as a herald, and measuring the self-correlation of the other photon in the presence of the herald. The normalized value of the photon correlation measurement on the heralded single photons at zero time delay was calculated using the formula [24] gH(2)(0)=NABCNANABNAC, where NA is the average photon detection rate on the heralding SNSPD detector [labels are shown in Fig. 1(B)], double coincidences NAB and NAC correspond to average rates of simultaneous events on one of the detectors (B or C) and the heralding SNSPD detector (A), and triple coincidences NABC correspond to average rates of simultaneous events on all three detectors. The arrival times of events at the TDC module were synchronized by selecting appropriate lengths of BNC cables. Coincidences were defined as simultaneous detections within a 5 ns time window, measured directly by the TDC hardware (calculating coincidences between combinations of input channels without software post-selection). Counting times varied from 100 seconds for the higher pump powers to 600 seconds for the lowest pump power. The fitted line in Fig. 4 has the sigmoidal functional form, gH(2)(0)=aP2/(1+aP2), where a = 6.3 mW−2 is a fitted coefficient. This fitting form is based on the fact that g(2) (0) is proportional to the biphoton rate [25], which, in SFWM, is quadratic in the pump power, P, (at) low values, but saturates (to 1) as P increases. Values as low as gH(2)(0)=0.0053±0.021 were directly measured (the errorbar is one standard deviation uncertainty), for a measured heralding rate of NA = 18 kHz. Even at the highest power values used in this sequence of measurements, gH(2)(0)=0.11±0.051, well below the classical threshold, at a heralding rate of NA = 340 kHz.

 

Fig. 4 Heralded single photon generation. Conditional self-correlation (heralded auto-correlation) gH(2)(0) measured using the setup shown in Fig. 1(B). The error bars are one standard deviation. The lowest measured gH(2)(0) was 0.00533 ± 0.021.

Download Full Size | PPT Slide | PDF

The heralding (Klyshko) efficiency, defined as NAB/(NA × D ) where D = 0.65 is the detection efficiency of the heralded photon, was calculated to be between 3% and 4% for the input powers shown in Fig. 4 (agreeing with the alternative calculation method, based on NABC and NBC, described in [9]). These are typical values for silicon photonic SFWM sources, and are about a factor of 10 inferior to those of SPDC based pair sources or glass integrated optics (at 700 nm wavelengths) [26]. The main reason for the lower efficiency is loss: the sum of the fiber-to-waveguide loss and the insertion loss of the filters is about 7–10 dB for each of the photons in the current experimental configuration. Improving the Klyshko efficiency is a topic of current research, e.g., using active delay/multiplexing schemes to raise the heralding rates significantly [27]. Another approach is to adjust the coupling efficiency between the micro-resonator (in the reported case [9], a microdisk resonator with an under-cut “pedestal”) and the input waveguide (in the reported case, a tapered optical fiber) by adjusting their relative positioning. A high-Q resonator could go from under-coupled condition to over-coupled condition by moving the input waveguide closer to the resonator, thus improving the extraction efficiency of the photon pairs generated inside the resonant cavity. In our device, the position of the waveguide near the microring is fixed during lithography, and requires iterative fabrication to optimize.

3.4. Energy-time entanglement

The generated photon pair is expected to demonstrate energy-time entanglement which can be investigated through a Franson-type two-photon interference experiment, by violating Bell’s inequality [28, 29]. Such measurements have already been shown for several silicon photonic pair-generation devices [22, 30–34], and high values of visibility are confirmed for the microring device measured here. Figure 5(B) shows the measurement of visibility fringes using a folded Franson interferometer configuration, in which both the signal and idler photons co-propagate through the same delay-line interferometer (DLI) [35]. Figure 5(D) shows the measurements of the unfolded Franson interferometer configuration, in which two separate DLI’s were used, one for the signal photons and one for the idler photons. Two fiber-coupled, polarization-maintaining, piezo-controlled DLI’s, each with an FSR of 2.5 GHz and peak-to-valley extinction ratio approximately 25 dB were used in these measurements. Unlike in other experiments [22, 34], no active DLI stabilization was required, considerably simplifying the experimental requirements. Approximately the same number of counts were measured here in 5 seconds as took nearly 50 times longer in other experiments [22]. Data scatter in the fringes was caused by fluctuations of photon pair flux coupled to the DLI’s, which was mainly a result of polarization drifting (of both pump and generated photons) and fiber-to-chip misalignment.

 

Fig. 5 (A) Representative histogram for the measurement of energy-time entanglement (at a particular phase setting of the DLI’s), with an acquisition time of 5 s. The solid black line, showing the sum of the three Gaussians shown in red, blue and green dashed lines, fits the black dots which show the binned coincidence measurements. (B) Two-photon interference pattern measured using the folded Franson interferometer configuration. Grey dots (with errorbars): measured experimental data (coincidence counts), black line: fit. (C) The singles counts for the folded interferometer, measured at the same time as the two-photon coincidences. (D) Two-photon interference pattern measured using the un-folded Franson interferometer configuration. The interference pattern for two different phase settings on the second delay-line interferometer are shown. Grey and blue dots (with errorbars): experimental data, black solid and dashed lines: fit. (E) The singles counts for the unfolded interferometer.

Download Full Size | PPT Slide | PDF

As shown in Fig. 5(A), the measured coincidences show three peaks, where the outer peaks correspond to the ‘short-long’ (i.e., one of the photons goes through the short arm of its DLI and the other goes through the long arm of its DLI) and ‘long-short’ coincidences, which do not change with phase tuning of the DLI’s. The central peak consists of the interference of the ‘short-short’ and ‘long-long’ paths, whose peak amplitude varies sinusoidally with the phase difference between the two DLI’s. The fitting uncertainty (one standard deviation) is shown as the errorbar in Figs. 5(B) and 5(D) and is too small to be visible. In the unfolded interferometer, the phase of one of the DLI’s (i.e., the phase delay between the short arm and the long arm of that DLI) was held constant, and the phase of the other DLI was swept over approximately one free spectral range. The DLI’s were tuned by voltage; as expected, the voltage required to tune the folded Franson interferometer, where both signal and idler photons experience the phase tuning, over a full period (3.86 V) was almost exactly one-half that of the unfolded Franson interferometer (7.82 V), where only the signal photon experiences the phase tuning. Although the signal and idler photons are at different wavelengths, separated by about 40 nm, the differential group delay accumulated over a few meters of fiber is negligible, compared to the timing jitter of the detectors. Proof of photon pair entanglement requires a two-photon interference pattern fringe visibility V ≥ 70.7% (without necessarily providing a test of local realism). The fitted measurements showed V clearly in excess of this threshold value, measured using a pump power in the feeder waveguide of about 50 µm, resulting in a pair generation rate of about 68 kHz. From the raw data, Vdata(f)=98.9±0.6% for the folded Franson interferometer measurement, and Vdata(uf)=98.2±0.9% and 97.1 ± 0.5% for the two phase settings of the unfolded configuration. From a fit to the measurements based on the non-linear least-square curve fitting algorithm in Matlab, Vfit(f)=95.9±5.5% for the folded configuration, and Vfit(uf)=97.8±14% and 90.3 ± 14% for the unfolded configuration. In each case, the stated uncertainty is one standard deviation, but there are differences in the source of the uncertainty. For the data points, the uncertainty arises from the goodness-of-fit of the parameters of the Gaussian function used to fit the central peak [see Fig. 5(A)]. When the ensemble of points shown in Figs. 5(B) and 5(D) is fitted with a sinusoid function, the uncertainty then arises from the goodness-of-fit of those fitted parameters. These measurements confirmed the energy-time entanglement properties of the pairs, as shown by the sinusoidal variation of coincidences with phase, and in both cases, the flat singles rates (versus phase), shown in Figs. 5(C) and 5(E), show the absence of single-photon interference, as desired [28,29].

4. Discussion

Table 1 summarizes recent pair generation results using silicon photonic microring resonators. In only about five years, the reported maximum measured CAR values for pair generation, using equipment that is commercially readily available, have improved greatly from about 10 to over 10,000 and measured g(2)(0) values for heralded single-photon generation have decreased from about 0.2 to about 0.005, and Franson interferometry visibility has increased to about 98–99%. The spectral brightness of our device, about 1.6 × 108 pairs.s−1.GHz−1.mW−2, was significantly higher than reported for other silicon microrings, and in fact, a factor of two higher than the microdisk resonator [7]. Measurements reported here took between a few seconds and a few minutes per data point.

Tables Icon

Table 1. Recent results of photon pair generation using silicon microring resonators (comparison: recent silicon microdisk results)

These experiments benefited from advances in single-photon detectors, and several other experimental improvements compared to our earlier experiments. Readout from an integrated monitoring photodiode across the microring helped align the resonance to the laser wavelength. The temperature of the microchip was accurately stabilized. The polarization state of the input light and fiber-waveguide alignment were actively monitored and controlled. The residual amplified spontaneous emission from the pump was cleaned for the detection stage. We expect that with better packaging and higher levels of integration, performance may improve further, and devices may be tested for extended durations. The performance of the microring itself may still improve; the quality factor of the microrings is higher than in most other experiments listed in Table 1, but not at the achievable limit [36]. The fiber-resonator positioning challenges of the undercut microdisk structure [9] suggest that the microring device may be easier to package and use practically. On the other hand, the approach of [9] also presents an opportunity to optimize the resonator coupling coefficient for a particular application, e.g., improving heralding efficiency in situ, which is not possible here.

Taken together, the measurements reported here support and augment the growing evidence in favor of silicon (i.e., semiconductor) microring resonators as a viable architecture for optically-pumped photon pair and heralded single photon generation at telecommunications-compatible wavelengths, and establish a new level of performance of silicon-photonics devices, which (we hope) may now be considered seriously for potential implementation in experiments and deployed systems. The optical pump requirements are simple, and the pump could also be integrated into the silicon photonics manufacturing platform [17]. Such devices may be inexpensive to manufacture (in volume) and could, for some applications, conveniently replace the crystal- or fiber-based instruments / assemblies used today both in the laboratory and in the field.

Funding

National Science Foundation (NSF) (ECCS 1201308, EFMA-1640968 “ACQUIRE: Microchip Photonic Devices for Quantum Communication over Fiber”).

References and links

1. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006). [CrossRef]   [PubMed]  

2. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009). [CrossRef]   [PubMed]  

3. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012). [CrossRef]  

4. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012). [CrossRef]  

5. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

6. C. M. Gentry, J. M. Shainline, M. T. Wade, M. J. Stevens, S. D. Dyer, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popovic, “Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip,” Optica 2, 1065–1071 (2015). [CrossRef]  

7. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015). [CrossRef]   [PubMed]  

8. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016). [CrossRef]   [PubMed]  

9. X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-q silicon microdisk,” Optica 3, 1331–1338 (2016). [CrossRef]  

10. M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015). [CrossRef]  

11. M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016). [CrossRef]  

12. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011). [CrossRef]   [PubMed]  

13. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012). [CrossRef]  

14. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013). [CrossRef]   [PubMed]  

15. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013). [CrossRef]   [PubMed]  

16. M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992–24001 (2016). [CrossRef]   [PubMed]  

17. X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

18. C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013). [CrossRef]  

19. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

20. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014). [CrossRef]   [PubMed]  

21. X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017). [CrossRef]  

22. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016). [CrossRef]   [PubMed]  

23. J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

24. M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007). [CrossRef]  

25. M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014). [CrossRef]  

26. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013). [CrossRef]   [PubMed]  

27. F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015). [CrossRef]  

28. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989). [CrossRef]   [PubMed]  

29. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993). [CrossRef]   [PubMed]  

30. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express 16, 20368–20373 (2008). [CrossRef]   [PubMed]  

31. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015). [CrossRef]  

32. R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015). [CrossRef]   [PubMed]  

33. J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015). [CrossRef]  

34. R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015). [CrossRef]   [PubMed]  

35. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002). [CrossRef]  

36. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef]  

37. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012). [CrossRef]  

38. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013). [CrossRef]  

39. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015). [CrossRef]   [PubMed]  

40. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014). [CrossRef]   [PubMed]  

41. M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017). [CrossRef]   [PubMed]  

42. S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref] [PubMed]
  2. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref] [PubMed]
  3. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  4. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
    [Crossref]
  5. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
  6. C. M. Gentry, J. M. Shainline, M. T. Wade, M. J. Stevens, S. D. Dyer, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popovic, “Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip,” Optica 2, 1065–1071 (2015).
    [Crossref]
  7. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
    [Crossref] [PubMed]
  8. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
    [Crossref] [PubMed]
  9. X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-q silicon microdisk,” Optica 3, 1331–1338 (2016).
    [Crossref]
  10. M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
    [Crossref]
  11. M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
    [Crossref]
  12. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
    [Crossref] [PubMed]
  13. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
    [Crossref]
  14. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref] [PubMed]
  15. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
    [Crossref] [PubMed]
  16. M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992–24001 (2016).
    [Crossref] [PubMed]
  17. X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.
  18. C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
    [Crossref]
  19. A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).
  20. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
    [Crossref] [PubMed]
  21. X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
    [Crossref]
  22. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
    [Crossref] [PubMed]
  23. J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.
  24. M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
    [Crossref]
  25. M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
    [Crossref]
  26. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
    [Crossref] [PubMed]
  27. F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
    [Crossref]
  28. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
    [Crossref] [PubMed]
  29. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
    [Crossref] [PubMed]
  30. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express 16, 20368–20373 (2008).
    [Crossref] [PubMed]
  31. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  32. R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
    [Crossref] [PubMed]
  33. J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
    [Crossref]
  34. R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
    [Crossref] [PubMed]
  35. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
    [Crossref]
  36. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  37. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
    [Crossref]
  38. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  39. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
    [Crossref] [PubMed]
  40. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
    [Crossref] [PubMed]
  41. M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
    [Crossref] [PubMed]
  42. S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
    [Crossref]

2017 (2)

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (10)

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

C. M. Gentry, J. M. Shainline, M. T. Wade, M. J. Stevens, S. D. Dyer, X. Zeng, F. Pavanello, T. Gerrits, S. W. Nam, R. P. Mirin, and M. A. Popovic, “Quantum-correlated photon pairs generated in a commercial 45 nm complementary metal-oxide semiconductor microelectronic chip,” Optica 2, 1065–1071 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

2013 (5)

2012 (4)

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

2007 (1)

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

2006 (1)

2005 (1)

2002 (1)

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Agha, I.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Aktas, D.

Alsing, P. M.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Andreani, L. C.

Ansari, V.

Aoki, T.

Asobe, M.

Assefa, S.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Azzini, S.

Baehr-Jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Baets, R. G.

Bajoni, D.

Barbieri, M.

Bashkansky, M.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Becher, C.

Beck, M.

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

Belabas-Plougonven, N.

Bentivegna, M.

Bienfang, J. C.

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Bock, M.

Bogaerts, W.

Bonneau, D.

Booth, M. J.

Borselli, M.

Brecht, B.

Brida, G.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Cassan, E.

Chen, J.

Cheng, R.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Christensen, B. G.

Chunnilall, C.

Clark, A. S.

Clemmen, S.

Davanco, M.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Degiovanni, I. P.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Dirmeier, T.

Dong, S.

Dorenbos, S. N.

Doussiere, P.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Dyer, S. D.

Emplit, P.

Engin, E.

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Ezaki, M.

Fan, J.

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
[Crossref] [PubMed]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Fanto, M. L.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Foster, M. A.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Frera, A. D.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Fujiwara, M.

Fukuda, H.

Gaeta, A. L.

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Galli, M.

Genovese, M.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gentry, C. M.

Gerrits, T.

Ghioni, M.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gisin, N.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Giudice, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Grassani, D.

Green, W. M. J.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Gulinatti, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Guo, X.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Guo, Y.

Hadfield, R. H.

Harada, K.-i.

Harder, G.

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Helt, L. G.

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Howland, G. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Huang, Y.

Humphreys, P. C.

Huy, K. P.

Iizuka, N.

Inagaki, T.

Itabashi, S.-i.

Jiang, W. C.

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Jin, X.-M.

Johnson, T.

Jones, R.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Jung, H.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Kaiser, F.

Kaneda, F.

Kolthammer, W. S.

Kumar, P.

Kumar, R.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Kwiat, P. G.

F. Kaneda, B. G. Christensen, J. J. Wong, H. S. Park, K. T. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” Optica 2, 1010–1013 (2015).
[Crossref]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Labonté, L.

Langford, N. K.

Lee, K. F.

Lenhard, A.

Levine, Z. H.

Lin, Q.

Lipson, M.

Liscidini, M.

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Lu, X.

Lunghi, T.

Lv, N.

Ma, C.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Marquardt, C.

Marris-Morini, D.

Massar, S.

Matsuda, N.

Mazeas, F.

McCusker, K. T.

Metcalf, B. J.

Migdall, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Migdall, A. L.

Mirin, R. P.

Mookherjea, S.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Moore, M.

Nam, S. W.

Nambu, Y.

Natarajan, C. M.

Ngah, L. A.

O’Brien, J. L.

Ohira, K.

Ong, J. R.

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Painter, O.

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Park, H. S.

Pavanello, F.

Peng, J.

Pernice, W.

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Piacentini, F.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Picholle, E.

Pipino, A. C. R.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Polyakov, S. V.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

Popovic, M. A.

Preble, S. F.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Ramos, C. A.

Reintjes, J.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Rogers, S.

Rong, H.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Roux, X. L.

Salter, P. S.

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Sasaki, M.

Sauder, G.

Savanier, M.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

Scarcella, C.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Schmidt, B. S.

Schuck, C.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Shainline, J. M.

Sharping, J. E.

Shehata, A. B.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Silberhorn, C.

Silverstone, J. W.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Sipe, J. E.

Sorel, M.

Spring, J. B.

Srinivasan, K.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Steidle, J. A.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Stevens, M. J.

Strain, M. J.

Suo, J.

Suzuki, N.

Tadanaga, O.

Takeoka, M.

Takesue, H.

Tang, H.

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

Tang, H. X.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Tanner, M. G.

Tanzilli, S.

Thew, R. T.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thomas-Peter, N.

Thompson, M. G.

Tison, C. C.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Tittel, W.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Tokura, Y.

Tosi, A.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Traetta, M.

Traina, P.

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

Tsuchizawa, T.

Turner, A. C.

Vivien, L.

Vurgaftman, I.

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

Wade, M. T.

Wakabayashi, R.

Walmsley, I. A.

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Wang, X.

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

Wang, Z.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Watanabe, T.

Wong, J. J.

Xia, F.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Yamada, K.

Yoshida, H.

Yoshino, K. ichiro

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zbinden, H.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Zeng, X.

Zhang, J.

Zhang, W.

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zhou, Q.

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Zou, C.-l.

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Zwiller, V.

Appl. Phys. Lett. (5)

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a pin diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

M. Savanier and S. Mookherjea, “Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation,” Appl. Phys. Lett. 108, 251102 (2016).
[Crossref]

G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. D. Frera, A. Tosi, A. B. Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. 101, 221112 (2012).
[Crossref]

C. Schuck, W. Pernice, and H. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102, 051101 (2013).
[Crossref]

J. Opt. Soc. Am. B: Opt. Phys. (1)

M. Beck, “Comparing measurements of g((2))(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B: Opt. Phys. 24, 2972–2978 (2007).
[Crossref]

Light Sci. Appl. (1)

X. Guo, C.-l. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light Sci. Appl. 6, e16249 (2017).
[Crossref]

Nat. Commun. (1)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,” Nat. Commun. 6, 7948 (2015).
[Crossref] [PubMed]

Opt. Express (19)

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on cw pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref] [PubMed]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref] [PubMed]

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
[Crossref] [PubMed]

K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wirewaveguide,” Opt. Express 16, 20368–20373 (2008).
[Crossref] [PubMed]

R. Wakabayashi, M. Fujiwara, K. ichiro Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref]

R. Kumar, M. Savanier, J. R. Ong, and S. Mookherjea, “Entanglement measurement of a coupled silicon microring photon pair source,” Opt. Express 23, 19318–19327 (2015).
[Crossref] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref] [PubMed]

M. Bock, A. Lenhard, C. Chunnilall, and C. Becher, “Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide,” Opt. Express 24, 23992–24001 (2016).
[Crossref] [PubMed]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref] [PubMed]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref] [PubMed]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

Opt. Lett. (1)

Optica (4)

Phys. Rev. A (3)

M. Bashkansky, I. Vurgaftman, A. C. R. Pipino, and J. Reintjes, “Significance of heralding in spontaneous parametric down-conversion,” Phys. Rev. A 90, 053825 (2014).
[Crossref]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Phys. Rev. Appl. (1)

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Phys. Rev. Lett. (2)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).

Other (3)

A. Migdall, S. V. Polyakov, J. Fan, and J. C. Bienfang, Single-Photon Generation and Detection: Physics and Applications, vol. 45 (Academic Press, 2013).

X. Wang, C. Ma, R. Kumar, P. Doussiere, R. Jones, H. Rong, and S. Mookherjea, “Photon pair generation using silicon photonic microring and hybrid laser,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2017), p. JTh5C.6.

J. A. Steidle, M. L. Fanto, C. C. Tison, Z. Wang, S. F. Preble, and P. M. Alsing, “High spectral purity silicon ring resonator photon-pair source,” in “Proc. SPIE Vol. 9500 Quantum Inf. Comput. XIII,” (2015), p. 950015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (A) The experimental configuration for pair generation, and measurement of the coincidences-to-accidentals ratio (CAR). ATT: Variable optical attenuator, TEC: thermo electric controller, TCSPC: time-correlated single-photon counter. ROADM: 3-port reconfigurable optical add-drop multiplexer. (B) Modifications to the detection setup for measurement of the conditional (heralded) self-correlation, g(2) (0). (C) Measurement of two-photon Franson interferometric visibility using the folded configuration. DLI: Delay-Line Interferometer. (D) Measurement of two-photon Franson interferometric visibility using the un-folded configuration.
Fig. 2
Fig. 2 (A) Singles count rates (in Hz, raw measurements, not scaled) versus (cw) optical pump power in the feeder silicon waveguide. The difference in single counts between the signal and idler channels stems from the slightly different losses through the filters (5.0 dB and 7.2 dB respectively). (B) Coincidence rate (in Hz), using the setup shown in Fig. 1(A). The left-hand side vertical axis shows the scaled coincidence count rates, accounting for chip coupling loss, filter insertion loss and detection efficiency. From the fit of this data, we infer the pair generation rate (PGR) as discussed in Section 3.1. The right-hand side vertical axis shows the raw measured coincidence count rates (Hz).
Fig. 3
Fig. 3 Pair generation. (A) Coincidences-to-Accidentals Ratio (CAR) versus (cw) optical pump power in the feeder waveguide before the microring. The error bars are one standard deviation, calculated as described in the text. The highest measured CAR was 12, 105 ± 1, 821. (B) The start-stop coincidence counting histogram for the highest CAR value. The inset shows a segment of the accidental coincidences. (C) Fit of the coincidence peak using a Gaussian function, with FWHM of 0.315 ns.
Fig. 4
Fig. 4 Heralded single photon generation. Conditional self-correlation (heralded auto-correlation) g H ( 2 ) ( 0 ) measured using the setup shown in Fig. 1(B). The error bars are one standard deviation. The lowest measured g H ( 2 ) ( 0 ) was 0.00533 ± 0.021.
Fig. 5
Fig. 5 (A) Representative histogram for the measurement of energy-time entanglement (at a particular phase setting of the DLI’s), with an acquisition time of 5 s. The solid black line, showing the sum of the three Gaussians shown in red, blue and green dashed lines, fits the black dots which show the binned coincidence measurements. (B) Two-photon interference pattern measured using the folded Franson interferometer configuration. Grey dots (with errorbars): measured experimental data (coincidence counts), black line: fit. (C) The singles counts for the folded interferometer, measured at the same time as the two-photon coincidences. (D) Two-photon interference pattern measured using the un-folded Franson interferometer configuration. The interference pattern for two different phase settings on the second delay-line interferometer are shown. Grey and blue dots (with errorbars): experimental data, black solid and dashed lines: fit. (E) The singles counts for the unfolded interferometer.

Tables (1)

Tables Icon

Table 1 Recent results of photon pair generation using silicon microring resonators (comparison: recent silicon microdisk results)

Metrics