Abstract

Transition-metal dichalcogenides with exceptional electrical and optical properties have emerged as a new platform for atomic-scale optoelectronic devices. However, the poor optical absorption resists their potential applications. The novel method of critical coupling with guided resonances is proposed to realize total absorption of light in monolayer MoS2 both theoretically and numerically. Simulated results illustrate that the perfect absorption with critical coupling is achieved by choosing suitably the ration of the hole radius to the period of the photonic crystal slab, and that the tunability of absorption peaks is obtained by a small change in the period and the thickness of the slab. Intriguingly, such device manifests the unusual polarization-insensitive feature and the good absorption stability over a wide angle range of incidence. The total absorption in monolayer MoSe2, WS2, and WSe2 is realized handily by the same principle. Hence, our results may open up new possibilities for improving the light-matter interaction in monolayer transition-metal dichalcogenides and find utility in wavelength-selective photoluminescence and photodetection.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Two-dimension (2D) materials [1–4] have received burgeoning amount of interest in recent years, due to their remarkable electric and optical properties, such as graphene [5,6], hexagonal boron nitride (hBN) [7,8], and transition-metal dichalcogenides (TMDCs) [9,10]. Graphene with only one atom thickness has been reported to support surface plasmon polaritons in the mid-infrared regions, because of the dominated intraband transition in electrons [11–13]. Graphene plasmons, with the extreme field confinement, low damping losses, and advantageous gate-voltage tunability [14], are emerging as a possible platform for new-generation nano-integrated optoelectronic devices including optical modulators [15], metamaterial perfect absorbers [16], transform optics [17,18], optical filters [19] and polarizers [20]. Accompanied by the excited mid-infrared plasmons, the light-matter interaction [21] in monolayer graphene has been boosted dramatically in this spectral range [22–24]. For example, Jiang et al. achieved perfect terahertz absorption in graphene by the modified Otto configuration [25]. Hu et al. utilized the structure of the sub-wavelength multilayer dielectric grating to realize near-unity absorption of light in monolayer graphene at near-infrared frequencies [26]. Wang et al. proposed the Tamm surface plasmons to yield the graphene-based multichannel perfect absorbers [27]. In addition, the guided resonances in the photonic crystal slab combined with multilayer Bragg reflectors were reported to obtain the total absorption of light in monolayer graphene [28–30] and hBN [31,32], even their heterostructures [8]. Different from graphene, TMDCs (e.g. MoS2, MoSe2, WS2, and WSe2) become the direct-bandgap semiconductors [33,34], when they are transformed from the bulk to monolayer, such as the monolayer MoS2 with a direct band gap around 1.8 eV [35] for electronic transition. Owing to special direct band gaps and internal amplification, monolayer TMDCs have been considered as the more preferable atomically thin materials for photodetection [36], photoluminescence [37], and the field-effect transistors [38] as well as photovoltaic devices [39]. Notwithstanding the impressive prospect in photonics and optoelectronics applications, the inherent atomic thickness of monolayer TMDCs enables a significant challenge for the light-matter interaction, thereby resulting in weak light emission and absorption [40]. For instance, the average single-pass absorption of light in monolayer MoS2 with the thickness of 6-7 Ǻ is about 10% in the visible spectral range [41]. The intrinsic drawback of poor absorption of light in monolayer TMDCs hinders assuredly the effective performance of TMDCs-based devices. Therefore, boosting absorption of light in monolayer TMDCs will play a vital role in extending applications of TMDCs in future optoelectronic devices. Thus far, in order to improve absorption of light in monolayer TMDCs, especially in the MoS2, several physical methods were proposed to enhance the interaction between the monolayer MoS2 and the incident light. Lu et al. proposed a multilayer photonic structure to achieve nearly perfect absorption of light in monolayer MoS2, utilizing the strong field confinement of interfacial Tamm plasmons [42]. Cao et al. designed a novel hybrid structure of combining the silver grating with a distributed Bragg reflector to realize the broad-band absorption of light in monolayer MoS2. The average absorption as high as 59% within wavelength ranging from 420 to 700 nm was observed based on the plasmonic resonant effect of the silver grating [43]. Besides the silver nanoribbons, plasmonic silver nanodisc arrays [35,44] were experimentally used for obtaining broad-band light absorption in monolayer MoS2. In particular, compared with the plasmonic resonant effect, the magnetic coupling effect [45] was proved to be a more efficient way to enable broad-band absorption enhancement in monolayer MoS2. The average absorption up to 72.7% within the visible wavelength range was achieved. However, the perfect absorption peak with the dynamical wavelength-selective property is essential for the high-efficiency photocatalysis, photoluminescence and photodetection, but has been rarely reported in MoS2-based absorption structures.

In this paper, the novel scheme of critical coupling with guided resonances is proposed to realize the tunable total absorption of light in monolayer MoS2, based on the structure consisting of the monolayer MoS2 supported by a photonic crystal slab with silver back reflectors. The finite-difference time-domain (FDTD) simulations demonstrate that the total absorption is realized at the optimal ratio of the hole radius to the period of the slab, where the leakage rate of the guided resonance is equal to the absorption rate of the monolayer MoS2. Simulation results are in excellent agreement with theoretical calculations. The spectral positions of absorption peaks are tuned effectively by a small change in the period and the thickness of the slab. Intriguingly, such absorber exhibits the unusual polarization-insensitive feature and good absorption stability over a wide angle range of incidence around ± 60°. In addition to MoS2, the total absorption in monolayer MoSe2, WS2, and WSe2 is realized by the same principle. Hence, our results may open up a new avenue for improving the light-matter interaction in atomically thin 2D materials, and find important applications in TMDC-based photoluminescence and photodetection.

2. Structure and model

Figure 1(a) shows the schematic of the proposed structure consisting of a monolayer MoS2 coated on photonic crystal slabs with a silver back reflector. The periods of the photonic crystal slab in the x and y directions are Px, and Py, respectively. The circular air hole is introduced into each unit cell. The x-z cross section of the unit cell is depicted in Fig. 1(b). The thickness of monolayer MoS2 is d. The thickness of the photonic crystal slab is h, and that of the silver reflector is D. The radius of the air hole is R. In all numerical calculations, the monolayer MoS2 is considered as a thin film with thickness of d = 0.615 nm. The wavelength-dependent complex permittivity of the monolayer MoS2 measured experimentally by Li et al. is used for our FDTD simulations [46]. The photonic crystal slab is assumed to the silicon with the refractive index of 3.45. The refractive index of the air hole is 1. The complex relative permittivity of silver is characterized by the typical Drude model [47,48]: εm(ω)=εωp2/(ω2+iωγ). Here, ε = 3.7 is the dielectric constant at infinite angular frequency, and ωp = 9.1 eV is the bulk plasma frequency representing the natural frequency of the oscillations of free conduction electrons. The γ = 0.018 eV stands for the damping frequency of the oscillations, and ω is the angular frequency of the incident light. The plane wave with the electrical polarization along the x direction irradiates normally this system.

 figure: Fig. 1

Fig. 1 (a) Schematic illustration of the absorption enhancing system composed of the upper monolayer MoS2, the sandwiched photonic crystal slab with circular air holes, and the ultra-thick metal back reflector. (b) Cross-sectional view of the unit cell. Relative structural parameters are indicated.

Download Full Size | PPT Slide | PDF

3. Results and analysis

It is well known that the unique guided resonances are supported by a photonic crystal slab, in addition to the usual guided modes [49]. Unlike guided modes without any coupling to external radiations, a guided resonance not only has its electro-magnetic power confined strongly within the slab but also can couple to external radiations. When the atomically thin monolayer MoS2 with high light transmission is placed on the photonic crystal slab, the configuration of guided resonances is hardly affected. However, based on the tightly confined electro-magnetic resonances, the extensive field enhancement occurs at the monolayer MoS2, thereby improving prominently its light-matter interaction. Moreover, if the photonic crystal slab with specific structural dimensions, such as the thickness and the period much smaller than the wavelength of interest, is designed, the higher-order guided resonances will be prohibited, thereby only the existence of the zero-order guided resonance. Considering the proposed structure shown in Fig. 1, the transmission from the system is very close to zero (T = 0), because the thickness (D = 400 nm) of the silver back reflector is much larger than the penetration depth of electromagnetic waves. Such structure hence behaves as the configuration of the single port coupled with a resonator. The versatile coupled-mode theory (CMT) [50–52] can illustrate successfully the inherent property of this construction. As shown in Fig. 1(b), the amplitudes of normalized input and output waves transmitted through the port are given by S+, and S-, respectively. The normalized amplitude of the guided resonance with the resonant frequency ω0 is assumed as a. The time rate of the amplitude change in the guided resonance of the photonic crystal slab without input waves is depicted as the external leakage rate γ. When the lossy monolayer MoS2 is placed on the photonic crystal slab, the introduced dissipative losses in the guided resonance is characterized by a small intrinsic loss rate δ. If the plane wave with the frequency ω is launched normally into this port, the entire system can be described by the following equations, according to the energy conservation and the time reversal symmetry [50].

dadt=(jω0γδ)a+j2γS+
S=S+j2γa
Here, j stands for the imaginary unit. Using the frequency domain e+jωt to isolate the S- / S+, the reflectance of the system obtained by Eqs. (1) and (2) is expressed as
r=SS+=j(ωω0)+δγj(ωω0)+γ+δ
The absorption of the system A = 1 − |r|2 is expressed finally as
A=4δγ(ωω0)2+(γ+δ)2
From the Eq. (4), we note that the key to achieve the near-unity absorption is to own the same external leakage rate and intrinsic loss rates, when the system is driven on the guided resonance with ω = ω0. In other word, if the leakage rate of the guided resonance out of the slab is equal to the absorption rate of the monolayer MoS2, the critical coupling is realized and all incident power hence is absorbed.

In order to confirm the total absorption, FDTD simulations are performed by using the commercial software of the Lumerical FDTD Solutions. The special structural parameters of Px = Py = P = 300 nm, h = 100 nm, and R = 60 nm are chosen. The perfectly matched layer absorbing boundary condition is applied along the z direction. The periodic boundary conditions are employed in the x, and y directions, respectively. The non-uniform mesh is adopted, and the minimum mesh size inside the MoS2 monolayer equals 0.1 nm and gradually increases outside the MoS2 sheet, for saving storage space and computing time. Simulated absorption spectrum is shown in Fig. 2(a), and indicated by the black line. Compared to the absorption curve of the monolayer MoS2 suspended in air, we see the near-unity absorption peak at the wavelength of λ0 = 679.2 nm. The magnetic field |Hz|2 distributions at the resonant wavelength are presented in Figs. 2(b) and 2(c). We note that the guided resonance with extensive field confinement occurs at the sandwiched slab. The transmission and reflection channels are suppressed, resulting from the ultra-thick metal substrate, and the critical coupling, respectively. All incident power is confined and absorbed by the entire structure. Meanwhile, the fitted absorption curve by the CMT is consistent with that of FDTD simulations, as shown in Fig. 2(a). The fitted γ = δ = 9.02 × 1012 Hz is obtained. The quality factors related to the external leakage and intrinsic loss of the guided resonance areQγ=ω0/2γ, and Qδ=ω0/2δ, respectively. The total quality factor of the guided resonance is calculated from the equationQ=QγQδ/(Qγ+Qδ). The Q = 76.86 hence is obtained theoretically. The total quality factor can also be estimated from Q=λ0/Δλ, where the Δλ is the FWHM (full width at half maximums) of the simulated absorption peak. The Δλ = 8.72 nm and the Q = 77.89 are obtained based on numerical results. The ting difference of Q between theoretical calculations and numerical estimations is the direct evidence of the existence of the critical coupling, which enables the outstanding total absorption. On the other hand, from the macroscopic electromagnetic point of view, when the total absorption by critical coupling is realized, the impedance of the perfect absorber should match to that of the free space (Z0 = 1) at the resonant wavelength. The effective impedance of the perfect absorber is calculated using the expression below [53,54].

Z(ω)=(1+S11(ω))2S21(ω)2(1S11(ω))2S21(ω)2
Herein, the S11 and S21 are the reflectance, and transmittance coefficient, respectively. The S-parameter retrieved relative impedance spectrum is shown in the inset of Fig. 2(a). The real relative impedance is near unity at the absorption wavelength of λ0 = 679.2 nm, namely, Z(ω0) = 1. The well impedance matching indeed is obtained. All numerical results are consistent with theoretical analyses. In addition, the experimental implementation of our structure is feasible based on the state-of-the-art technology. The photonic crystal slab with periodic air holes is fabricated by E-beam lithography [44] on the silicon layer deposited on the ultra-thick metal substrate. The CVD-synthesized MoS2 monolayer is transferred onto the photonic crystal slab using the methods demonstrated in [55]. An Olympus IX 81 optical microscope coupled with a liquid crystal filter and a charge-coupled device camera [40] is used for measuring the reflectance of the system, thereby obtaining the perfect absorption spectrum.

 figure: Fig. 2

Fig. 2 (a) FDTD-simulated and CMT-fitted absorption spectra with critical coupling and the absorption curve of the monolayer MoS2 suspended in air. Inset shows the effective impedance of the perfect absorption peak. (b) Magnetic field |Hz|2 distributions of the guided resonance at the resonant wavelength of λ0 = 679.2 nm. (c) Magnetic field |Hz|2 distributions of the cross section of proposed structure at the resonant wavelength of λ0 = 679.2 nm. (d) Simulated absorption spectra for different radii of the air holes with P = 300 nm and h = 100 nm. Inset illustrates the dependence of the maximum absorption on the radii of air holes, when the system is on resonance.

Download Full Size | PPT Slide | PDF

As mentioned above, to keep the external leakage rate same as the intrinsic loss rate of the guided resonance is the key to realize the critical coupling. Herein, the intrinsic loss results mainly from the lossy monolayer MoS2. In the interesting wavelength range, the absorption in monolayer MoS2 is considered approximately to be frequency-independent, as suggested by the blue line in Fig. 2(a). With the intrinsic loss rate almost unchanged, controlling the external leakage rate hence plays a dominant role in achieving the critical coupling. In the photonic crystal slab, the external leakage rate of the guided resonance depends mostly on the ratio of the hole radius to the period, namely, the R / P. When the period is fixed, the external leakage rate γ increases as the hole radius increases. Because the intrinsic loss rate resulting from the monolayer MoS2 is radius-independent, the FWHM of the guided resonance should increase with the hole radius increase, as shown in Fig. 2(d). At the same time, we find that the total absorption with the critical coupling (γ = δ) occurs at the R = 60 nm, according to the inset in Fig. 2(d). With the radius ranging from 40 to 80 nm, this system evolves from undercoupling, through critical coupling, to overcoupling regime. Therefore, the critical coupling can be realized handily only by engineering suitably the ration of the radius to the period. In addition, we see that the resonant wavelength of the absorption peak tends to exhibit a blue shift, as the hole radius increases, which is because the effective refractive index of the guided resonance decreases when the area of the air hole is extended.

Once the specific ration of the hole radius to the period is chosen and the critical coupling is achieved, we could tune the spectral position of the absorption peak by changing the period and the thickness of the photonic crystal slab. FDTD simulated absorption spectra with different periods of P = 250, 275 and 300 nm are shown in Fig. 3(a), and indicated by the black, red, and blue curves, respectively. As expected, the total absorption is unchanged, but the increase of the period enables the regular red shift of the absorption wavelength. Similarly, the change in the thickness of the slab provides another kind of tunability. As shown in Fig. 3(b), the spectral position of the absorption peak tends to exhibit a red shift with the thickness increase, because the effective refractive index of the guided resonance increases with the thickness increase. Therefore, such perfect absorption system owns the advantageous tunability, thereby finding important applications in nano-scale wavelength-demultiplexing metamaterial absorbers. In particular, when the studied wavelength range is extended, ranging from 500 to 800 nm, the high-order guided resonance yields at the shorter wavelength. For example, in addition to the fundamental resonance mode with the wavelength of 649 nm, another absorption peak appears at the wavelength of 527 nm with h = 106 nm, which is the high-order guided resonance confirmed by the magnetic field distributions shown in the inset of Fig. 3(b). However, the high-order guided resonances are not the emphasis of this paper.

 figure: Fig. 3

Fig. 3 (a) Absorption spectra for different periods with R / P = 0.2 and h = 100 nm. (b) Absorption spectra with different slab thicknesses, where R = 55 nm and P = 275 nm. Inset shows the magnetic field |Hz|2 distributions of the high-order guided resonance at the resonant wavelength of λ0 = 527 nm.

Download Full Size | PPT Slide | PDF

We have further investigated the absorption stability of the perfect absorber under the changes in the polarization angle and the incident angle. At the normal incidence, the electrical polarization along the x direction is 0°, and that along the y direction is 90°. When it is varied smoothly from the 0 to 90°, the absorption property of the coupling system is unchanged, as shown in Fig. 4, thanks to the strict central symmetry of the photonic crystal slab with circular air holes. At the same time, absorption as a function of the wavelength and the angle of incidence is shown in the inset of Fig. 4. The incidence along the z direction is 0°. Absorption spectra with the incident angle ranging from 0 to 60° are offered. We note that the resonant wavelength is no related to the incident angle, and that the maximum absorption decreases slightly with the angle increase. With the incident angle increase, the external leakage rate of the guided resonance increases tardily, but the intrinsic loss rate arising from the lossy monolayer MoS2 is unchanged, thereby giving rise to the breaking of the critical coupling. Thus, the FWHM of the resonance increases and the maximum absorption decreases, as the incident angle increases. However, the maximum absorption is still great than 80%, even the incident angle is up to 60°. The polarization-insensitive property, combined with the good absorption stability under oblique incidence, undoubtedly enables this absorber to be more feasible in practical applications.

 figure: Fig. 4

Fig. 4 Absorption as a function of the wavelength and the polarization angle. Inset illustrates the simulated absorption spectra with different angles of incidence. The slab with P = 275 nm, R = 55 nm, and h = 106 nm is unchanged.

Download Full Size | PPT Slide | PDF

Finally, it should be pointed out that the proposed scheme of critical coupling can also be applied to obtain total absorption in other monolayer TMDCs, such as MoSe2, WS2 and WSe2, not just the MoS2. FDTD simulated absorption spectra for coupling systems with respectively monolayer MoSe2, WS2, and WSe2, are demonstrated in Fig. 5. Compared with the single-pass absorption spectra of monolayer TMDCs suspended in air, we witness the appearance of multiple absorption peaks within wavelengths ranging from 400 to 800 nm, by means of guided resonances in photonic crystal slabs. The total absorption by critical coupling occurs at the wavelengths of 632, 505, and 505 nm, corresponding to the monolayer MoSe2, WS2, and WSe2, respectively. Certainly, we can observe the critical coupling at other guided resonances by adjusting the ration of the radius to the period, and can tune the spectral position of the resonant wavelength with critical coupling by varying the thickness and the period of the slab, as same as that used for monolayer MoS2. Hence, the method of the critical coupling is a general way to realize the total absorption in any lossy atomically thin 2D materials.

 figure: Fig. 5

Fig. 5 Absorption spectra of monolayer TMDCs (e.g. MoSe2, WS2, and WSe2) suspended in air, and that coated on photonic crystal slabs with ultra-thick metal back reflectors. The thicknesses of the monolayer MoSe2, WS2, and WSe2 are 0.646, 0.618, and 0.649 nm respectively. The complex permittivity of monolayer TMDCs measured experimentally by Li et al. is used for our numerical simulations. The photonic crystal slab with P = 275 nm, R = 65 nm, and h = 106 nm is chosen.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have both theoretically and numerically demonstrated that the total absorption in monolayer TMDCs is observed by critical coupling, with the help of the photonic crystal slab coated on an ultra-thick metal back reflector. The critical coupling of guided resonances depends mainly on the ratio of the hole radius to the period of the slab. Once the specific ration is given, the spectral position of the absorption peak can be tuned effectively by a small change in the period and thickness of the photonic crystal slab. In particular, such device exhibits the original polarization-insensitive property and the good absorption stability under oblique incidence. The structure is simple and the scheme is universal, thereby providing a forceful way to improve the light-matter interaction for future atomically thin 2D materials. Our results may play a significant role in the TMDC-based photoluminescence, photodetection, even the wavelength-selective metamaterial absorbers.

Funding

National Natural Science Foundation of China (NSFC) (Grant Nos. 61505052, 61176116, 11074069, and 61775055).

References and links

1. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013). [PubMed]  

2. H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

3. V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).

4. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014). [PubMed]  

5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [PubMed]  

6. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011). [PubMed]  

7. J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

8. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016). [PubMed]  

9. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).

10. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012). [PubMed]  

11. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012). [PubMed]  

12. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

13. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

14. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [PubMed]  

15. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012). [PubMed]  

16. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014). [PubMed]  

17. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013). [PubMed]  

18. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

19. H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

20. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013). [PubMed]  

21. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016). [PubMed]  

22. S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [PubMed]  

23. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

24. X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014). [PubMed]  

25. L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

26. J. Hu, Y. Qing, S. Yang, Y. Ren, X. Wu, W. Gao, and C. Wu, “Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies,” J. Opt. Soc. Am. B 34(4), 861–868 (2017).

27. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).

28. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

29. X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017). [PubMed]  

30. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014). [PubMed]  

31. J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

32. J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons,” Plasmonics (2017). https://doi.org/10.1007/s11468-017-0575-4

33. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010). [PubMed]  

34. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010). [PubMed]  

35. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

36. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013). [PubMed]  

37. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

38. D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012). [PubMed]  

39. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013). [PubMed]  

40. C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

41. J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

42. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017). [PubMed]  

43. J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

44. S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015). [PubMed]  

45. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).

46. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

47. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008). [PubMed]  

48. H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

49. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).

50. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).

51. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010). [PubMed]  

52. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

53. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013). [PubMed]  

54. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005). [PubMed]  

55. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013). [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [PubMed]
  2. H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).
  3. V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).
  4. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
    [PubMed]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [PubMed]
  6. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [PubMed]
  7. J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
  8. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
    [PubMed]
  9. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
  10. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [PubMed]
  11. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [PubMed]
  12. H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
  13. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
  14. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [PubMed]
  15. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
    [PubMed]
  16. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [PubMed]
  17. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
    [PubMed]
  18. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
  19. H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).
  20. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [PubMed]
  21. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
    [PubMed]
  22. S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [PubMed]
  23. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
  24. X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
    [PubMed]
  25. L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).
  26. J. Hu, Y. Qing, S. Yang, Y. Ren, X. Wu, W. Gao, and C. Wu, “Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies,” J. Opt. Soc. Am. B 34(4), 861–868 (2017).
  27. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
  28. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
  29. X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
    [PubMed]
  30. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
    [PubMed]
  31. J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
  32. J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons,” Plasmonics (2017). https://doi.org/10.1007/s11468-017-0575-4
  33. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
    [PubMed]
  34. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [PubMed]
  35. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
  36. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [PubMed]
  37. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
  38. D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
    [PubMed]
  39. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [PubMed]
  40. C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).
  41. J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
  42. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [PubMed]
  43. J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
  44. S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
    [PubMed]
  45. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).
  46. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
  47. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
    [PubMed]
  48. H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).
  49. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
  50. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
  51. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
    [PubMed]
  52. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
  53. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [PubMed]
  54. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
    [PubMed]
  55. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
    [PubMed]

2017 (8)

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

J. Hu, Y. Qing, S. Yang, Y. Ren, X. Wu, W. Gao, and C. Wu, “Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies,” J. Opt. Soc. Am. B 34(4), 861–868 (2017).

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[PubMed]

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).

2016 (7)

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).

2015 (3)

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[PubMed]

2014 (10)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[PubMed]

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[PubMed]

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

2013 (8)

H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
[PubMed]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[PubMed]

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

2012 (8)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[PubMed]

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[PubMed]

2010 (3)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
[PubMed]

2008 (1)

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[PubMed]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

Ayala-Orozco, C.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Aydin, K.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[PubMed]

Bahauddin, S. M.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[PubMed]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[PubMed]

Butun, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[PubMed]

Cai, Y.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

Cao, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[PubMed]

Chen, L. Y.

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[PubMed]

Chen, S.

Cheng, H.

Cheng, L.

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Choi, E. H.

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Cui, T. J.

Dai, X.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Deng, H.

Deng, L.

Deng, X. H.

Dong, Z. G.

Dravid, V. P.

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Elías, A. L.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Fan, D.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

Fan, S.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).

Fan, Y.

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Feng, Y.

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Gan, X.

Gao, S.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Gao, W.

García de Abajo, F. J.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[PubMed]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[PubMed]

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[PubMed]

Guo, C.

Guo, J.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Guo, Q.

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Guo, W.

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Halas, N. J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Hu, J.

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).

Huang, Z. R.

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Jang, W. H.

Janisch, C.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Ji, D.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Jiang, L.

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Jiang, T.

Jiang, X.

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Kim, H.

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Kim, K. W.

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Late, D. J.

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Lauchner, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

Lee, B.

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Lee, Y.

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

Li, H. J.

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Li, J.

Li, Q.

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Li, X. J.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Lin, Z.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Liu, B.

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Liu, C.

Liu, J. Q.

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Liu, J. T.

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[PubMed]

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Liu, N. H.

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[PubMed]

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

Liu, Q. H.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

Liu, X.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Liu, Z.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[PubMed]

Long, Y.

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Lou, J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Lu, H.

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[PubMed]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

Lu, W. B.

Lu, Y.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Lv, R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Mao, D.

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[PubMed]

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

Matte, H. S.

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Najmaei, S.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Ni, Z. H.

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[PubMed]

Park, J.

Park, J. W.

Perea-López, N.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

Qing, Y.

Qiu, M.

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

Rao, C. N. R.

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Ren, Y.

Rhee, J. Y.

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Robatjazi, H.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Shen, L.

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Sobhani, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Song, H.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Su, Y.

Sun, B.

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Sun, R.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Sun, Z.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Terrones, H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Terrones, M.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Thomann, I.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[PubMed]

Tian, J.

Tongay, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[PubMed]

Tran, V.

V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).

Tuong, P. V.

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Wang, B.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Wang, H.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Wang, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Wang, L. L.

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Wang, Q.

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Wang, T.

Wang, T. B.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[PubMed]

Wang, X.

Wen, F.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

Wen, S.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Wu, C.

Wu, J.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Wu, L.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

Wu, X.

Xia, F.

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Xiang, Y.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Xiao, S.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Xu, C.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Xu, H.

Xu, H. J.

Yan, M.

Yan, P.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Yan, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Yang, D.

Yang, G.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Yang, L.

V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).

Yang, S.

You, Q.

Yu, P.

Yuan, J.

Zhai, X.

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

Zhang, Y.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

Zhao, H.

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Zhao, J.

Zhou, C.

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

Zhu, B.

Zhu, J.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

Zhu, W.

2D Mater. (1)

C. Janisch, H. Song, C. Zhou, Z. Lin, A. L. Elías, D. Ji, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light–matter interaction,” 2D Mater. 3(2), 025017 (2016).

ACS Nano (4)

D. J. Late, B. Liu, H. S. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano 6(6), 5635–5641 (2012).
[PubMed]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[PubMed]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[PubMed]

ACS Photonics (2)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

AIP Adv. (1)

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).

Appl. Phys. Lett. (3)

H. J. Li, L. L. Wang, J. Q. Liu, Z. R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).

IEEE Photonics Technol. Lett. (1)

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photonics Technol. Lett. 28(13), 1454–1457 (2016).

J. Appl. Phys. (3)

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).

H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, “Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities,” J. Appl. Phys. 116(22), 224505 (2014).

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).

J. Opt. Soc. Am. B (1)

Nano Lett. (4)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[PubMed]

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[PubMed]

Nanophotonics (1)

H. Zhao, Q. Guo, F. Xia, and H. Wang, “Two-dimensional materials for nanophotonics application,” Nanophotonics 4(1), 128–142 (2015).

Nat. Commun. (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

Nat. Nanotechnol. (2)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[PubMed]

Nat. Photonics (2)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[PubMed]

Opt. Express (9)

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[PubMed]

W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21(9), 10475–10482 (2013).
[PubMed]

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25(22), 27028–27036 (2017).
[PubMed]

X. H. Deng, J. T. Liu, J. Yuan, T. B. Wang, and N. H. Liu, “Tunable THz absorption in graphene-based heterostructures,” Opt. Express 22(24), 30177–30183 (2014).
[PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008).
[PubMed]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
[PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18(38), 26661–26669 (2016).
[PubMed]

Phys. Rev. A (1)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).

Phys. Rev. B (4)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).

V. Tran and L. Yang, “Scaling laws for the band gap and optical response of phosphorene nanoribbons,” Phys. Rev. B 89(24), 245407 (2014).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B), 036617 (2005).
[PubMed]

Phys. Rev. Lett. (2)

S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805 (2010).
[PubMed]

Plasmonics (1)

L. Jiang, J. Guo, Q. Wang, X. Dai, and Y. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(5), 1825–1831 (2017).

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).

Sci. Rep. (1)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[PubMed]

Superlattices Microstruct. (1)

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).

Other (1)

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons,” Plasmonics (2017). https://doi.org/10.1007/s11468-017-0575-4

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of the absorption enhancing system composed of the upper monolayer MoS2, the sandwiched photonic crystal slab with circular air holes, and the ultra-thick metal back reflector. (b) Cross-sectional view of the unit cell. Relative structural parameters are indicated.
Fig. 2
Fig. 2 (a) FDTD-simulated and CMT-fitted absorption spectra with critical coupling and the absorption curve of the monolayer MoS2 suspended in air. Inset shows the effective impedance of the perfect absorption peak. (b) Magnetic field |Hz|2 distributions of the guided resonance at the resonant wavelength of λ0 = 679.2 nm. (c) Magnetic field |Hz|2 distributions of the cross section of proposed structure at the resonant wavelength of λ0 = 679.2 nm. (d) Simulated absorption spectra for different radii of the air holes with P = 300 nm and h = 100 nm. Inset illustrates the dependence of the maximum absorption on the radii of air holes, when the system is on resonance.
Fig. 3
Fig. 3 (a) Absorption spectra for different periods with R / P = 0.2 and h = 100 nm. (b) Absorption spectra with different slab thicknesses, where R = 55 nm and P = 275 nm. Inset shows the magnetic field |Hz|2 distributions of the high-order guided resonance at the resonant wavelength of λ0 = 527 nm.
Fig. 4
Fig. 4 Absorption as a function of the wavelength and the polarization angle. Inset illustrates the simulated absorption spectra with different angles of incidence. The slab with P = 275 nm, R = 55 nm, and h = 106 nm is unchanged.
Fig. 5
Fig. 5 Absorption spectra of monolayer TMDCs (e.g. MoSe2, WS2, and WSe2) suspended in air, and that coated on photonic crystal slabs with ultra-thick metal back reflectors. The thicknesses of the monolayer MoSe2, WS2, and WSe2 are 0.646, 0.618, and 0.649 nm respectively. The complex permittivity of monolayer TMDCs measured experimentally by Li et al. is used for our numerical simulations. The photonic crystal slab with P = 275 nm, R = 65 nm, and h = 106 nm is chosen.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

da dt =( j ω 0 γδ )a+j 2γ S +
S = S + j 2γ a
r= S S + = j( ω ω 0 )+δγ j( ω ω 0 )+γ+δ
A= 4δγ ( ω ω 0 ) 2 + ( γ+δ ) 2
Z( ω )= ( 1+ S 11 ( ω ) ) 2 S 21 ( ω ) 2 ( 1 S 11 ( ω ) ) 2 S 21 ( ω ) 2

Metrics