Abstract

Noble metal plasmonic resonance has been utilized in optical data storage widely for its excellent photo-transformation efficiency. TiO2 nanoporous films deposited with Ag nanoparticles present outstanding polarization-response and color-modulation ability. However, the low exposure-sensitivity at single wavelength inhibits their application in optical information processing, which is urgent to be improved by innovative methods. Here, we report that Ag nanoparticles were deposited efficiently via continuous laser irradiation in the TiO2 nanoporous film treated by tannic acid, presenting high-efficient monochromic absorption property. As a result, two sets of holograms were recorded sequentially at the same point of the film with orthogonal circular polarization configurations. The colored reconstruction of the mixed holograms was achieved by utilizing laser polarization state as chrominance segmentation channel. Our method provides a distinctive route for enhancing the photo-energy conversion efficiency of plasmonic nanoparticles, and paves a way to develop advanced display device.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Conversion of photo-energy has caused significant attention in the areas of photo-catalysis [1, 2], solar cells [3, 4], biotechnology [5, 6] and data storage [7, 8]. The enhancement of rate and efficiency in transformation between photon and electron is always the hot-issue which can be resolved by optimizing the absorption performance of recording media. Noble-metal nanoparticles (NPs) have unique electronic and optical properties which can be used as high-efficient photo-conversion media due to localized surface plasmon resonance (LSPR) [9, 10]. The photo-generated electrons can be transferred in a nanocomposite system consisted with the noble-metal NPs and semiconductor, which serves for high-performance nano-devices [11, 12].

Ag/TiO2 nanocomposite films have ability of presenting the same color as that of the irradiation light [13]. The photochromic behavior of the film is related to the changes of the size and shape of Ag NPs based on LSPR [13–15]. Ag NPs are dissolved directionally to Ag+ ions during the resonant polarized-light irradiation. The absorption of the film around the excitation wavelength decreases after monochromic exposure, resulting in “spectral-hole burning”. The LSPR absorption band can be restored with UV excitation [16–18]. Thus the optical information can be stored and recycled in the photochromic film via the above photo-chemical reaction.

However, the rate and efficiency of the reaction rely on the uniformity and density of Ag NPs for LSPR, respectively. Under monochromic light irradiation, the Ag NPs with different morphologies have poor dissolution ability interfacing with TiO2. Although the methods of UV-reduction, mesoporous-template and sol-gel synthesis have been exploited [19–23], uniform sized noble metal NPs are still difficult to be obtained. In fact, efficient fabrication of the uniform Ag NPs inside nanoporous TiO2 and precise modulation of LSPR absorption are crucial for the plasmonic application in photo-energy conversion.

Very recently, we reported a simple method to achieve the uniform and small-sized Ag NPs in TiO2 nanoporous films by the thermal-reduction pretreated with tannic acid for blu-ray holographic storage [24]. However, the reduction time is rather long. To resolve this problem, a propulsive work is reported here that visible laser was used to stimulate tannic acid for accelerating the reduction of Ag NPs. Lorentz model was adopted to characterize the LSPR absorption. Benefiting from the narrow-band optical absorption of the sample, multiplexed holograms were recorded at 473 nm in the film efficiently, and reconstructed independently by using polarization channels to load different color information based on polarization holography technique.

2. Fabrication and characterization of sample

2.1 Photochromic film preparation

TiO2 nanoporous film was fabricated on a glass substrate by dip-coating from the titania sol which was reported on our previous work [25]. Tannic acid (TA) was used as an electron donor in reduction of Ag+ ions. The TA solution with the concentration of 0.002 mol/L and potassium carbonate solution with the concentration of 0.009 mol/L were mixed to the PH value of 8.5. Subsequently, the nanoporous film was immersed in the TA solution for 2 hours and turned to be yellow. The TA-adsorbed TiO2 was then immersed to the solution of 0.1 M silver nitrate (AgNO3) mixed with ethanol of equal volume for 10 minutes at 30°C, followed by the irradiation of the single-longitudinal mode and continuous laser (Changchun New Industries Optoelectronics Tech. Co. Ltd.), as shown in Fig. 1. The sample prepared by the co-action of TA and laser is abbreviated as STA + laser. For comparison, Ag NPs were also deposited in the nanoporous TiO2 film via the sole TA (STA) or laser (Slaser) reduction. The optical properties of the samples were characterized by UV-Vis spectrophotometer (UV-2600).

 figure: Fig. 1

Fig. 1 Fabrication of Ag/TiO2 nanocomposite films. (a) TiO2 nanoporous films prepared on slides by the dip-coating method. (b) Heat treatment to remove the polymer. (c) TiO2 nanoporous films adsorbed with TA. (d) Thermal reduction of Ag NPs in TiO2 nanoporous films with the immersion time of 10 minutes. (e) Visible laser deposited Ag NPs in TiO2 nanoporous films. (BE, beam expander; M, mirror)

Download Full Size | PPT Slide | PDF

2.2 Photoelectrochemical experiment process

Photoelectrochemical measurements were conducted with PARSTAT 2273 potentiostat in a typical three-electrode configuration using the prepared samples on FTO as working electrode, an Ag/AgCl reference electrode and the home-made Pt black as the counter electrode. 0.5 M Na2SO4 aqueous was used as electrolyte (pH = 5.8). The illumination was provided by a solar simulator (Newport 370-RC), of which light intensity was adjusted to 100 mW/cm2, with a 450 nm filter.

2.3 Optical setup

The diffraction grating was recorded with two coherent s-polarized beams from a 473 nm laser with the power of 8 mW. A red laser generating 671 nm s-polarized light, was used as a probe source to monitor the holographic grating dynamics. The power of the 671 nm laser was set as 500 μW to minimize the destructive effect of readout radiation which in principle leads to photochemical reactions. The first-order diffracted signal was registered on a photo-diode interfaced with a computer. Diffraction efficiency of holographic gratings, taking Fresnel losses into account, can be calculated accordingly, which is defined as the ratio between intensities of the first-order diffracted beam and the incident beam after passing through the sample [26–28]. Besides, two sets of holograms were recorded at 473 nm sequentially by introducing beam-expander system under orthogonal circular-polarization mode. Quarter-wave plate was used to change the polarization states to right circular polarization (RCP) or left circular polarization (LCP) for the object and reference beams. The reconstructed colored holographic images were collected by a CMOS video camera. Red (671 nm) and green (532 nm) lasers are used as probe sources to read the mixed holographic images. The sketch map for optical setup is shown in the Fig. 2.

 figure: Fig. 2

Fig. 2 Optical setup for colored holographic reconstruction in Ag/TiO2 nanocomposite flms. (M, mirror; BS, beam splitter; RP, retardation plate; F, lens; BE, beam expander; PD, photodiode)

Download Full Size | PPT Slide | PDF

3. Spectral regulation

Figure 3(a) shows the differential absorption spectra of STA with reduction times of 10, 40 and 70 min. After extending a long reduction time by TA thermal treatment, the maximum value of differential absorbance can be increased from 0.34 to 1.02. Figure 3(b) shows the differential absorption spectra of Slaser with reduction times of 5, 10 and 15 min. The maximum value of the differential absorbance of 0.96 appears at the wavelength of 461 nm under the sole laser action for a quarter of an hour. Unfortunately, the Ag NPs deposited by the sole laser excitation present a rather wide LSPR band, indicating that the size distribution of the metal NPs is heterogeneous. Figure 3(c) shows the differential absorption spectra of STA + laser, for different laser irradiation times of 1, 3, 5, 7, 10 and 15 min. The maximum value of the LSPR absorbance at 425 nm can be increased significantly from 1.11 to 2.82. Commonly, the profile of absorption band is related to size homogeneity and population density of Ag NPs [29, 30]. The absorption spectra of the samples synthesized by the above three methods can be fitted by Lorentz model [31], which is expressed as followed:

A=A0+2SπW4(L-Lc)2+W2
, where A is the absorbance, A0 the minimum value of absorbance, S the integral area of the fitted curve, L the wavelength, Lc the wavelength corresponding to the center of the absorption band (Ac) and W the half peak width. The theoretical fitting curves are shown in Figs. 3(a)-3(c) (solid lines). Here the maximum absorption intensity (Ac) and the peak width at half height (W) are related to the population density and size uniformity of Ag NPs, respectively. Thus the ratio R = Ac/W may characterize the plasmonic absorption band, which are gathered in Fig. 3(d). STA + laser has the outstanding LSPR property for monochromatic absorption, compared with the other two samples. The ratio R for STA is uphill to reach only the half value for STA + laser even after a long reduction time. The ratio R for Slaser is still the lowest one reaching a quarter of the value for STA + laser, even after extending the reduction time.

 figure: Fig. 3

Fig. 3 (a) Differential absorption spectra of STA with different reduction times (10min, 40min and 70min), by setting absorption of TA-adsorbed TiO2 as baseline. (b) Differential absorption spectra of Slaser with different laser irradiation times (5min, 10min and 15min), by setting absorption of TiO2 as baseline. (c) Differential absorption spectra of STA + laser with different laser irradiation times (1min, 3min, 5min, 7min, 10min and 15min), by setting absorption of TA-adsorbed TiO2 as baseline. (d) Ratios (R = Ac/W) of STA, Slaser and STA + laser with different reduction times. The black curves are obtained by the Lorentz fitting.

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the top-view of SEM image for STA. A small amount of Ag NPs with spherical shape were observed on the surface of TiO2. The cross-sectional SEM image of STA is shown in the inset of Fig. 4(a). Cumulative volume fraction shows the Ag NPs (<20 nm) occupied a volume fraction of ~95%. The top-view of SEM image for Slaser is shown in Fig. 4(d). The Ag NPs with various morphologies appear on the surface of TiO2. A broad distribution of lateral diameter from 13 nm to 58 nm was obtained as illustrated in Fig. 4(e). The cross-sectional image of Slaser is shown in the inset of Fig. 4(d). The top-view of SEM image of STA + laser is shown in Fig. 4(g). The regular and spherical Ag NPs on the surface of TiO2 are well formed. The size distribution of the Ag NPs deposited on the TiO2 film varies from 8 nm to 24 nm as illustrated in Fig. 4(h). The cross-sectional EDXA of STA, Slaser and STA + laser are shown in Figs. 4(c), 4(f) and 4(i), respectively. Accordingly, the molar ratios of Ag are estimated via EDAX to be 7.32%, 16.39% and 17.15% relative to the sum of Ti and O for STA, Slaser and STA + laser, respectively. The mean size of the Ag NPs is ~14.8 nm for STA, ~15.6 nm for Slaser, ~24.8 nm for STA + laser. The concentration of Ag NPs is ~7.00 × 109/cm2 for STA, ~1.90 × 1010/cm2 for Slaser, ~2.50 × 1010/cm2 for STA + laser. Correlating to the spectral analysis mentioned above, we conclude that it is easier to achieve high-concentration and uniform Ag NPs for STA + laser than that for the other two kinds of samples.

 figure: Fig. 4

Fig. 4 The top-view of SEM for (a) STA (deposited Ag NPs by water-curing treatment for 70 min), (d) Slaser (deposition of Ag NPs only by 405 nm laser) and (g) STA + laser (deposition of Ag NPs in TA-pretreated TiO2 films under 405 nm laser irradiation for 15 min), respectively. The insets show the cross-sectional SEM images for STA, Slaser and STA + laser. The size distribution histograms and cumulative percentage of volume fraction of Ag NPs for (b) STA, (e) Slaser and (h) STA + laser. The cross-sectional EDXA spectra for (c) STA, (f) Slaser and (i) STA + laser on FTO substrate.

Download Full Size | PPT Slide | PDF

The efficient Ag NPs growth for STA + laser may benefit from the sufficient electron supplement for Ag+ ions from the co-action of TA and laser. TA, as a plant polyphenol, plays a role of electron donor center and can be absorbed to TiO2 due to its phenolic hydroxyl groups [24, 32, 33]. The TA-reduced Ag NPs act as dispersed nucleation centers. Ag+ ions are easier to be reduced around these synthesis-sites. The further laser irradiation provides more electron-supplying routes, such as TiO2 →Ag+, TA→Ag+, TA→TiO2 →Ag+. Figure 5(a) describes the UV-Vis absorption spectra of the pure and the TA-adsorbed TiO2 films. It was found that the pure TiO2 film has the absorbance extending to near-UV region, which may be related to the destroyed periodic potential fields [34]. While, the differential absorption spectrum of the TA molecules (inset of Fig. 5(a)) presents a wide absorption band from UV to visible region. That means both of TiO2 and TA can be excited by the near-UV laser, providing electrons for Ag NP growth. However, the excitation of TiO2 by the 405 nm laser results in the reduction of Ag+ ions at random spatial sites which weakens the uniformity of NP size and increases the absorbance at longer wavelength [35]. Hence, the laser co-deposition with the sole service for TA-reduction is necessary to suppress the photo-excitation of the metal oxide semiconductor and also inhibit the free growth of plasmonic NPs. Accordingly other visible lasers of 457 nm, 532 nm and 671 nm were introduced into the photochemical reduction system. The differential absorption spectra of STA + laser by these lasers are shown in Fig. 5(b). Lorentz model was also applied and the ratio R versus laser wavelength is shown in the inset part of Fig. 5(b). After these visible lasers treatment, the metal LSPR absorption band was further shaped. The highest value of R = 0.017 appears for the green (532nm) laser co-deposition. In fact, these visible lasers not only construct electron-supplying path, but also plays a role of photo-dissolution for the size tailoring of Ag NPs. Resultantly, the LSPR absorbance longer than 600 nm was inhibited.

 figure: Fig. 5

Fig. 5 (a) Absorption spectra of the pure TiO2 film and the TA pre-treated TiO2 film. Inset shows the differential spectrum. (b) The differential absorption spectra of STA + laser under 457 nm, 532 nm and 671 nm laser irradiations with excitation time of 15 min, by setting absorption of TA-adsorbed TiO2 as baseline. The black curves are obtained by the Lorentz fitting.

Download Full Size | PPT Slide | PDF

To reveal the mechanism of laser co-deposition of metal NPs in the semiconductor matrix, linear sweep voltammetry for TiO2 and TA was conducted with the light source of 450 nm, as shown in Fig. 6(a). Dark-current for the pure and the TA-adsorbed TiO2 electrodes could be neglected. The photo-current intensity of TA-absorbed TiO2 electrode is enhanced obviously compared to that of TiO2 electrode, confirming the transformation of photo-electron from TA to TiO2 under the visible irradiation. Accordingly, the schematic diagram of energy levels is shown in Fig. 6(b). Under the visible irradiation, the electrons of TiO2 are hardly excited from valence band to conduction band. Thus the released electrons for reduction of Ag+ ions can only come from TA molecules. In fact, the visible laser beam can pass through the TiO2 film and play a role in the widespread TA to accelerate the production of reducing electrons. Furthermore, the electron transformation from TA to TiO2 can also increase the reducing sites and provide a possible reduction channel for Ag+ ions. Thus the co-action of the visible laser and TA molecules helps to weaken the excessive growth of the NPs in the surface layer and maintain the loose nanohole structure which tends to be blocked by single laser action.

 figure: Fig. 6

Fig. 6 (a) Linear sweep voltammograms of the TiO2 and TA-adsorbed TiO2 electrodes (scan at the rate of 10 mV/s), the dash lines are the results of the test in the dark state. The inset shows the enlarged view of TiO2. (b) The schematic diagram of photo-energy transformation in Ag/TA@TiO2 nanocomposite systems.

Download Full Size | PPT Slide | PDF

4. Holographic Dynamics

Holographic recording as an effective method can manifest the ability of photo-energy transformation of the optical absorption medium. Figure 7 shows the blue-light written holographic kinetics for STA + laser, STA and Slaser. The grating formation based on photochromism of Ag/TiO2 films has been discussed in our previous works [14, 17]. The interferogram consisting of alternate bright and dark stripes was formed at the intersection point by two coherent writing beams. The interference pattern may be replicated to the Ag/TiO2 film based on photo-dissolution of Ag NPs. In the area of laser irradiation, Ag NPs is dissolved, releasing free electron and Ag+ ions. The free electrons can be captured by oxygen molecules in the air resulting in appearance of oxygen ions. Further, Ag+ ions combined with oxygen ions to form stable Ag2O. The spatial alternated arrangement of Ag NPs and Ag2O can form amplitude- or phase-type hologram. The diffraction efficiency of STA + laser increases exponentially versus time, to a maximum value of 1.8% at 450 s and keeps constant. The diffraction efficiency of the STA with reduction time of 70 min crosses a maximum value at 48 s, followed by a slight decline and a secondary incensement after 330 s. While Slaser presents a similar holographic dynamic behavior to that for STA, but with the poorest information-recording ability. Our previous works have pointed out that multistage growth for the holographic grating in Ag/TiO2 films results from the photo-response of the metal NPs with different sizes [24]. Only a system consisted with high-population and size-uniform NPs can achieve a fast and single exponential grating growth.

 figure: Fig. 7

Fig. 7 Time dependence of the first-order diffraction efficiency in (s-s) recording configurations in the Ag/TiO2 nanocomposite films prepared by different reduction methods.

Download Full Size | PPT Slide | PDF

5. Colored Holographic Reconstruction

The high-efficiency information recording in STA + laser provides possibility for multiple hologram writing and reconstruction. Moreover, with the help of the high polarization sensitivity of photo-dissolution of Ag NPs, a pure polarization hologram can be achieved in the system consisting of noble metal NPs and metal oxides after orthogonal circular polarization holographic recording [36]. For the pure vector hologram, the diffraction light intensity is close to the polarization state of the reading beam. Thus dividing color information via polarization channels can realize the colored holographic image reconstruction. Here, the blue laser beam (473 nm, 8mW) was still used as writing source, as shown in Fig. 8(a). The object beam of RCP with a “flower” shape was overlapped with the reference beam of LCP at the same point in the sample of STA + laser for 600 s, forming the first hologram. And then alternating the polarization states of the object and reference beams, and a “leaf” shaped information was loaded at the same point to the former hologram for 100 s. The equivalent diffraction intensities for the two holograms were obtained. Figure 8(b) shows the reconstruction of colored holograms with red and green laser beams (671 nm and 532 nm, respectively; both 1 mW). The incident angle of the reading beams was adjusted carefully. The polarization states of the red and green laser beams were set as LCP and RCP, respectively. A red flower with green leaf was clearly reconstructed with little crosstalk, which was captured by the COMS camera, as shown in Fig. 8(c).

 figure: Fig. 8

Fig. 8 (a) The holographic image of “flower” is recorded firstly, setting the polarization state of object beam as RCP and that of the reference light as RCP. The “leaf” information is written in the same point by alternating the polarization states of the object and reference beams. (b) Red light (671 nm, LCP) and green light (532 nm, RCP) are used as probe sources to read images simultaneously. (c) Reconstruction of colored holographic image of a red flower with a green leaf.

Download Full Size | PPT Slide | PDF

Compared to UV-reduction, more nucleation sites of Ag NPs were achieved by the visible laser-assisted reduction. As a result, an excellent plasmonic absorption for monochromatic light was obtained. Further, the efficiency of holographic storage at single wavelength was enhanced, which provides the feasibility for multiplexed holographic storage. However, this method has limitations in spectra regulation at other wavelengths, which need to be improved by introducing multi-source excitation. The optical medium prepared by this method can also be applied to the laser battery in wireless-power-transmission system, low-level-light detector and smart nano-template.

6. Conclusion

TiO2 nanoporous films were loaded with high-density and uniform-size Ag NPs by the co-action of TA and laser efficiently, which presents outstanding photo-electron conversion ability. The visible continuous laser irradiation is able to accelerate the release of electrons from TA in reduction of Ag NPs. The LSPR absorption ability of the nanocomposite film was further enhanced by adjusting the wavelength of the exciting laser. Based on such properties, the efficiency of information storage in the laser co-synthesized film was improved significantly compared to that by the traditional method. Mixed polarization holograms were recorded at single-wavelength under orthogonal circular polarization configuration. Color holographic reconstruction was also achieved in diffraction of the green and red lights with orthogonal circular polarization states. This work provides a good research strategy for photo-energy conversion at single wavelength and advanced display.

Funding

The National Natural Science Foundation of China (10974027, 31271442, 51372036, 61007006), the 111 project (B13013), and the Fundamental Research Funds for the Central Universities (2412017FZ011).

References and links

1. H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014). [PubMed]  

2. R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014). [PubMed]  

3. I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013). [PubMed]  

4. N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20(55Suppl 5), A694–A705 (2012). [PubMed]  

5. S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013). [PubMed]  

6. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006). [PubMed]  

7. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [PubMed]  

8. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017). [PubMed]  

9. S. H. Chen, C. L. Huang, C. F. Yu, G. F. Wu, Y. C. Kuan, B. H. Cheng, and Y. R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42(17), 3411–3414 (2017). [PubMed]  

10. J. B. Chou, X. H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S. G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016). [PubMed]  

11. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014). [PubMed]  

12. S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

13. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003). [PubMed]  

14. R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

15. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).

16. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004). [PubMed]  

17. Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

18. T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017). [PubMed]  

19. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005). [PubMed]  

20. X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014). [PubMed]  

21. G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015). [PubMed]  

22. Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011). [PubMed]  

23. N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

24. S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016). [PubMed]  

25. S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012). [PubMed]  

26. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010). [PubMed]  

27. A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

28. S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

29. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

30. J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

31. J. Lu, B. Tu, J. Wu, and W. N. Wang, Introduction of Spectroscopy (Higher Education Press, 2008).

32. G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999). [PubMed]  

33. B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017). [PubMed]  

34. E. K. Liu, B. S. Zhu, and J. S. Luo, Semiconductor Physics (Publishing House of Electronics Industry, 2008).

35. K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

36. S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

References

  • View by:
  • |
  • |
  • |

  1. H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
    [PubMed]
  2. R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
    [PubMed]
  3. I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
    [PubMed]
  4. N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20(55Suppl 5), A694–A705 (2012).
    [PubMed]
  5. S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
    [PubMed]
  6. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
    [PubMed]
  7. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [PubMed]
  8. Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
    [PubMed]
  9. S. H. Chen, C. L. Huang, C. F. Yu, G. F. Wu, Y. C. Kuan, B. H. Cheng, and Y. R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42(17), 3411–3414 (2017).
    [PubMed]
  10. J. B. Chou, X. H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S. G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
    [PubMed]
  11. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
    [PubMed]
  12. S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
  13. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
    [PubMed]
  14. R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).
  15. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
  16. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
    [PubMed]
  17. Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).
  18. T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
    [PubMed]
  19. X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
    [PubMed]
  20. X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
    [PubMed]
  21. G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
    [PubMed]
  22. Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
    [PubMed]
  23. N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).
  24. S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
    [PubMed]
  25. S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
    [PubMed]
  26. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
    [PubMed]
  27. A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
  28. S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
  29. R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).
  30. J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).
  31. J. Lu, B. Tu, J. Wu, and W. N. Wang, Introduction of Spectroscopy (Higher Education Press, 2008).
  32. G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
    [PubMed]
  33. B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
    [PubMed]
  34. E. K. Liu, B. S. Zhu, and J. S. Luo, Semiconductor Physics (Publishing House of Electronics Industry, 2008).
  35. K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).
  36. S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

2017 (4)

Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[PubMed]

S. H. Chen, C. L. Huang, C. F. Yu, G. F. Wu, Y. C. Kuan, B. H. Cheng, and Y. R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42(17), 3411–3414 (2017).
[PubMed]

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[PubMed]

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

2016 (2)

2015 (2)

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

2014 (6)

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

2013 (2)

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

2012 (4)

N. F. Fahim, B. Jia, Z. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20(55Suppl 5), A694–A705 (2012).
[PubMed]

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[PubMed]

2011 (3)

Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
[PubMed]

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

2010 (1)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

2009 (4)

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[PubMed]

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

2007 (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).

2006 (1)

2005 (1)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

2004 (1)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[PubMed]

2003 (1)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

1999 (1)

G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[PubMed]

Akbashev, A. R.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Albert, V. A.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Amjad, R. J.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Barbazuk, W. B.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Bartkiewicz, S.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

Bechstein, R.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Besenbacher, F.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Catlow, C. R. A.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Chamala, S.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Chanderbali, A. S.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Chang, S.

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

Chen, G.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Chen, L.-A.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Chen, S. H.

Chen, T.

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

Cheng, B. H.

Choi, I. S.

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[PubMed]

Chou, J. B.

Crespo-Monteiro, N.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Dai, R.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Davies, P. K.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

dePamphilis, C. W.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Der, J. P.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Destouches, N.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Dimitratos, N.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Dousti, M. R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Downing, C. A.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Elfaer, A.

Embden, J.

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

Fahim, N. F.

Fan, F.

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

Fenning, D. P.

Fu, S.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[PubMed]

Fu, S. C.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

Fujii, T.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Fujishima, A.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Gallo, E. M.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Gao, C.

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Ghoshal, S. K.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Gou, G.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Grinberg, I.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Gu, M.

Han, Q.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

Han, R.

Han, R. Y.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Han, S.

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

Han, X.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

Harms, K.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

He, Q.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Hermes-Lima, M.

G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[PubMed]

Hilt, G.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Hong, Y.

Huang, C. L.

Huo, H.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Hutchings, G. J.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Ishida, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[PubMed]

Jasieniak, J.

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

Jensen, H. H.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Jensen, M. T.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Jeon, S.

Jia, B.

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

Jouiad, M.

Kang, G.

Kawamura, G.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Kelly, K. L.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

Kesavan, L.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Kiely, C. J.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Kim, B. J.

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

Kim, S. G.

Kuan, Y. C.

Kubota, Y.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Lan, T.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Lee, K.-B.

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

Leebens-Mack, J.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Li, B.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

Li, J. X.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Li, L.

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Li, Q.

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

Li, X. H.

Li, Y.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

Li, Y. R.

Liu, S.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

Liu, X.

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Liu, Y.

Liu, Y. C.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Lockman, Z.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Logsdail, A. J.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Lopes, G. K. B.

G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[PubMed]

Lu, S.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

Lu, Z. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Malyarchuk, V.

Marsch, M.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Matsubara, K.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

Matsuda, A.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Meggers, E.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Michalon, J. Y.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Miniewicz, A.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

Moore, R.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Mulvaney, P.

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

Muto, H.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Nadar, L.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Naoi, K.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Nishi, H.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[PubMed]

Niwa, C.

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).

Ohko, Y.

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Ohmi, H.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

Priimagi, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

Qiao, Q.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Rappe, A. M.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Reynaud, S.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Riaz, S.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Rogers, J. A.

Röse, P.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Rounsley, S.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Sahar, M. R.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Sakai, N.

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

Sakai, Y.

Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
[PubMed]

Schab-Balcerzak, E.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

Schulman, H. M.

G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[PubMed]

Schuster, S. C.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Shao-Horn, Y.

Shen, X.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Shi, Z.

Smith, L.

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

Sobolewska, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

Soltis, D. E.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Soltis, P. S.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Spanier, J. E.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Stein, D. M.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Su, R.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Sun, S.

Sun, S. Y.

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

Tahir, B. A.

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

Tan, W. K.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Tan, X.

Tanabe, I.

Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
[PubMed]

Tatsuma, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[PubMed]

Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
[PubMed]

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[PubMed]

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Tiruvalam, R.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Torres, M.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Viegas, J.

Vocanson, F.

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

Walts, B.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Wang, C.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Wang, J.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

Wang, L.

Wang, L. L.

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Wang, X.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

Wang, X. L.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

Wang, Y.

Wells, P. P.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Wendt, S.

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

West, D. V.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Wiederrecht, G. P.

Wing, R. A.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Wong, K. Y.

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

Wu, G. F.

Wu, L.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

Xiao, N.

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Xiao, X. D.

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

Yang, Y.

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Yin, Y.

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Yu, C. F.

Zang, J.

Zhang, L.

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

Zhang, X.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[PubMed]

Zhang, X. T.

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Zhu, X. F.

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[PubMed]

ACS Nano (1)

R. Su, R. Tiruvalam, A. J. Logsdail, Q. He, C. A. Downing, M. T. Jensen, N. Dimitratos, L. Kesavan, P. P. Wells, R. Bechstein, H. H. Jensen, S. Wendt, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, “Designer Titania-Supported Au-Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production,” ACS Nano 8(4), 3490–3497 (2014).
[PubMed]

Adv. Mater. (2)

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[PubMed]

B. J. Kim, S. Han, K.-B. Lee, and I. S. Choi, “Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation,” Adv. Mater. 29(28), 1700784 (2017).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. Crespo-Monteiro, N. Destouches, L. Nadar, S. Reynaud, F. Vocanson, and J. Y. Michalon, “Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles,” Appl. Phys. Lett. 99(17), 173106 (2011).

R. Y. Han, X. T. Zhang, L. L. Wang, R. Dai, and Y. C. Liu, “Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film,” Appl. Phys. Lett. 98(22), 221905 (2011).

Q. Qiao, X. T. Zhang, Z. F. Lu, L. L. Wang, Y. C. Liu, X. F. Zhu, and J. X. Li, “Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films,” Appl. Phys. Lett. 94(7), 074104 (2009).

Biochim. Biophys. Acta (1)

G. K. B. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[PubMed]

Chem. Sci. (Camb.) (1)

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[PubMed]

Energy Environ. Sci. (1)

S. Chang, Q. Li, X. D. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).

J. Am. Chem. Soc. (1)

K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” J. Am. Chem. Soc. 126(11), 3664–3668 (2004).
[PubMed]

J. Lumin. (1)

R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, and B. A. Tahir, “Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles,” J. Lumin. 132(10), 2714–2718 (2012).

J. Mater. Chem. (1)

K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, “Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals,” J. Mater. Chem. 19(31), 5526–5532 (2009).

J. Phys. Chem. B (1)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[PubMed]

J. Phys. Chem. C (4)

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation Depth Surface Relief Gratings Using s−s Polarization Configuration in Supramolecular Polymer−Azobenzene Complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).

S. C. Fu, Q. Han, S. Lu, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).

J. Jasieniak, L. Smith, J. Embden, and P. Mulvaney, “Re-examination of the size-dependent absorption properties of CdSe quantum dots,” J. Phys. Chem. C 113(45), 19468–19474 (2009).

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).

Nanoscale (2)

Y. Sakai, I. Tanabe, and T. Tatsuma, “Orientation-selective removal of upright Ag nanoplates from a TiO2 film,” Nanoscale 3(10), 4101–4103 (2011).
[PubMed]

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, “One-step growth of triangular silver nanoplates with predictable sizes on a large scale,” Nanoscale 6(9), 4513–4516 (2014).
[PubMed]

Nanoscale Res. Lett. (1)

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10, 219 (2015).
[PubMed]

Nat. Mater. (1)

Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, “Multicolour photochromism of TiO2 films loaded with silver nanoparticles,” Nat. Mater. 2(1), 29–31 (2003).
[PubMed]

Nature (4)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[PubMed]

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials,” Nature 503(7477), 509–512 (2013).
[PubMed]

H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt, and E. Meggers, “Asymmetric photoredox transition-metal catalysis activated by visible light,” Nature 515(7525), 100–103 (2014).
[PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[PubMed]

Opt. Commun. (1)

S. C. Fu, S. Y. Sun, X. T. Zhang, X. L. Wang, and Y. C. Liu, “Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films,” Opt. Commun. 318, 1–6 (2014).

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6, 36701 (2016).
[PubMed]

Science (1)

S. Chamala, A. S. Chanderbali, J. P. Der, T. Lan, B. Walts, V. A. Albert, C. W. dePamphilis, J. Leebens-Mack, S. Rounsley, S. C. Schuster, R. A. Wing, N. Xiao, R. Moore, P. S. Soltis, D. E. Soltis, and W. B. Barbazuk, “Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella,” Science 342(6165), 1516–1517 (2013).
[PubMed]

Other (2)

E. K. Liu, B. S. Zhu, and J. S. Luo, Semiconductor Physics (Publishing House of Electronics Industry, 2008).

J. Lu, B. Tu, J. Wu, and W. N. Wang, Introduction of Spectroscopy (Higher Education Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication of Ag/TiO2 nanocomposite films. (a) TiO2 nanoporous films prepared on slides by the dip-coating method. (b) Heat treatment to remove the polymer. (c) TiO2 nanoporous films adsorbed with TA. (d) Thermal reduction of Ag NPs in TiO2 nanoporous films with the immersion time of 10 minutes. (e) Visible laser deposited Ag NPs in TiO2 nanoporous films. (BE, beam expander; M, mirror)
Fig. 2
Fig. 2 Optical setup for colored holographic reconstruction in Ag/TiO2 nanocomposite flms. (M, mirror; BS, beam splitter; RP, retardation plate; F, lens; BE, beam expander; PD, photodiode)
Fig. 3
Fig. 3 (a) Differential absorption spectra of STA with different reduction times (10min, 40min and 70min), by setting absorption of TA-adsorbed TiO2 as baseline. (b) Differential absorption spectra of Slaser with different laser irradiation times (5min, 10min and 15min), by setting absorption of TiO2 as baseline. (c) Differential absorption spectra of STA + laser with different laser irradiation times (1min, 3min, 5min, 7min, 10min and 15min), by setting absorption of TA-adsorbed TiO2 as baseline. (d) Ratios (R = Ac/W) of STA, Slaser and STA + laser with different reduction times. The black curves are obtained by the Lorentz fitting.
Fig. 4
Fig. 4 The top-view of SEM for (a) STA (deposited Ag NPs by water-curing treatment for 70 min), (d) Slaser (deposition of Ag NPs only by 405 nm laser) and (g) STA + laser (deposition of Ag NPs in TA-pretreated TiO2 films under 405 nm laser irradiation for 15 min), respectively. The insets show the cross-sectional SEM images for STA, Slaser and STA + laser. The size distribution histograms and cumulative percentage of volume fraction of Ag NPs for (b) STA, (e) Slaser and (h) STA + laser. The cross-sectional EDXA spectra for (c) STA, (f) Slaser and (i) STA + laser on FTO substrate.
Fig. 5
Fig. 5 (a) Absorption spectra of the pure TiO2 film and the TA pre-treated TiO2 film. Inset shows the differential spectrum. (b) The differential absorption spectra of STA + laser under 457 nm, 532 nm and 671 nm laser irradiations with excitation time of 15 min, by setting absorption of TA-adsorbed TiO2 as baseline. The black curves are obtained by the Lorentz fitting.
Fig. 6
Fig. 6 (a) Linear sweep voltammograms of the TiO2 and TA-adsorbed TiO2 electrodes (scan at the rate of 10 mV/s), the dash lines are the results of the test in the dark state. The inset shows the enlarged view of TiO2. (b) The schematic diagram of photo-energy transformation in Ag/TA@TiO2 nanocomposite systems.
Fig. 7
Fig. 7 Time dependence of the first-order diffraction efficiency in (s-s) recording configurations in the Ag/TiO2 nanocomposite films prepared by different reduction methods.
Fig. 8
Fig. 8 (a) The holographic image of “flower” is recorded firstly, setting the polarization state of object beam as RCP and that of the reference light as RCP. The “leaf” information is written in the same point by alternating the polarization states of the object and reference beams. (b) Red light (671 nm, LCP) and green light (532 nm, RCP) are used as probe sources to read images simultaneously. (c) Reconstruction of colored holographic image of a red flower with a green leaf.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A = A 0 + 2 S π W 4 ( L- L c ) 2 + W 2

Metrics