Abstract

We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO2) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO2 film inside or around the nanoantennas, as the VO2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries — nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk — and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

© 2017 Optical Society of America

1. Introduction

Optical nanoantennas have recently attracted a lot of attention due to their applications in photodetectors, solar cells, semiconductor light sources, biological sensing, etc [1,2]. When operating in the receiver mode, these antennas are nano-scale devices that concentrate free-space far-field optical radiation into localized fields [1–5]. In this mode, the nanoantennas are employed to enhance the performance of photodetectors [5–7], solar cells [8,9], tunable filters [10], photo-thermal therapy [11,12] as well as of optical sensors employing Raman signal enhancement and florescence enhancement [13,14]. When operating in the transmitter antenna mode, these nanoscale devices can transmit localized energy — such as optical radiation emitted by quantum sources — to freely propagating light [1–5]. In this mode, they are employed to control the emission of a single quantum system [4] as well as for enhanced nonlinear effects such as second harmonic generation [2,15] and four-wave mixing [2,16]. The initial research on optical antennas was primarily focused on developing enhanced scatterers whose geometries were similar to RF antennas [1,2]. In recent years, the progress in nanofabrication has made it possible to controllably fabricate complex geometries of metallic nanostructures thereby enabling optical nanoantennas to manipulate and direct optical signals at the nano-scale [1,3].

In a conventional plasmonic nanoantenna (PN), optical properties of the nanoantenna remain the same after fabrication i.e. there is no active control over the nanoantenna spectrum or the near-field intensity enhancement after fabrication. In the case of a switchable plasmonic nanoantenna (SPN), as being proposed in this paper, active control over the optical properties of the nanoantennas is possible by the application of optical, thermal, or electrical energies. SPNs can allow controllable switching of optical properties of the metallic nanoantenna structures such as their near-field and far-field spectra, as well as the near-field intensity enhancements around the SPN structures. These switchable nanoantennas can also be used for ultrafast optical switching [17,18].

In this paper, we propose several novel switchable plasmonic nanoantennas (SPNs) in which the optical spectra, near-field intensity enhancements, as well as the plasmon resonance wavelengths can be switched from one state to the other. Switching in optical properties of nanoantennas is a very important feature and there are several previous reports on tuning the optical properties of nanoantennas without using moving parts [18–21]. Most of the previously reported literature based on switchable plasmonic nanoantennas [14,22–26] shows shifts in extinction, reflection, or transmission spectra upon application of thermal, electrical, or optical energies, and does not describe studies of the switching of the near-field intensity of light around the nanoantennas. On the other hand, our paper reports switching in the electric-field intensity enhancement (EFIE) in the near-field of the VO2-containing plasmonic nanoantennas (i.e. the SPNs) for different wavelengths of light incident on the nanoantenas. The SPNs described in our paper consist of plasmonic nanoantennas that are either filled with or surrounded by a thin layer of a vanadium dioxide (VO2) film. Change in optical properties of the VO2 film in the vicinity of the plasmonic nanoantennas — upon application of electrical, thermal or optical energy — causes a change in optical properties of the switchable plasmonic nanoantennas (SPNs). VO2 is a metal oxide that exhibits phase transition [27–31] from the semiconductor state to the metallic state when its temperature is raised above a certain temperature [27–31], thereby leading to a change in its optical properties [27–30]. The phase transition in the VO2 thin films can also be induced optically (employing both continuous wave and pulsed lasers) [30] or by applying voltage [31]. VO2 has its own plasmon resonance peak in the near-infrared region but it is heavily damped. Gold nanoantennas have plasmon resonance peaks in the visible and near-infrared regions with lower attenuation as compared to VO2 nanostructures. So the combined structure — consisting of the plasmonic gold nanoantennas and VO2 thin-film in the vicinity of the nanoantennas — has the benefit of both low-attenuation plasmon resonance peaks of gold nanostructures and the switching property of the VO2 thin films. Hence, in our paper, we compare the near-field distribution of these VO2-containing plasmonic nanoantennas (i.e. the SPNs) for their On (semiconductor) and Off (metallic) states.

The switching of the EFIE in the gap center between the two arms of the SPNs is quantified by the term 'intensity switching ratio' in this paper, which is the ratio (ION/IOFF) of the near-field intensity enhancements in the On state (ION) and the Off state (IOFF) of the SPNs. Moreover, in this paper we demonstrate that some SPNs provides a very high shift in the plasmon resonance wavelength (Δλ ~360 nm) — of the near-field EFIE spectra — upon phase transition of the VO2 regions surrounding the plasmonic nanoantennas.

In this paper, FDTD simulations were employed to evaluate the switching properties of the SPNs. Different kinds of plasmonic nanoantenna structures — such as non-inverted SPNs, inverted SPNs, and planar trapezoidal toothed log-periodic SPNs as shown in Fig. 1 — were evaluated for their near-field distributions. The non-inverted SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (film of vanadium dioxide). On the other hand, inverted SPNs consist of gold nanoantenna structures surrounded by vanadium dioxide (VO2) at certain regions of the nanoantennas. Several kinds of inverted and non-inverted SPNs were studied such as dipole nanoantennas [2,5], bow-tie nanoantennas [32,33], and rod-disk nanoantennas, as shown in Fig. 1. In the semiconductor state, the non-inverted SPN consists of two gold nanorings filled with a VO2 seminconductor layer, while in the metallic state, the non-inverted SPN consists of metallic disc-shaped nanostructures with gold (metallic) layers outside the VO2 metallic nanostructures. In the case of inverted SPNs, the nanostructures are essentially metallic nanodiscs with different gap sizes (i.e. spacings between the metallic arms of the SPNs) depending on the state of the VO2 surrounding layers.

 figure: Fig. 1

Fig. 1 (a)-(c) Schematics showing different switchable plasmonic nanoantennas (SPNs): (a) Non-inverted Dipole SPN, (b) Non-inverted Bow-tie SPN, (c) Non-inverted Rod-disk SPN, (d) Inverted Dipole SPN, (e) Inverted Bow-tie SPN, (f) Inverted Rod-disk SPN, and (g) Trapezoidal toothed log-periodic SPN. The non-inverted SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (thin film of vanadium dioxide). The inverted SPNs consist of gold nanoantenna structures surrounded by vanadium dioxide (VO2) on their outer surface. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, ‘W’ is the thickness of the plasmonic ring, and 'G' is the nanoantenna gap.

Download Full Size | PPT Slide | PDF

Moreover, a variant of the planar trapezoidal toothed log-periodic nanoantenna, as shown in Fig. 1(g), was studied. Planar trapezoidal toothed log-periodic nanoantennas have been employed for broadband field enhancement [34]. Although conventional log-periodic nanoantennas are operated such that the electric-field of the incident radiation is polarized perpendicular to the nanoantenna axis, we have employed parallel polarization in order to achieve higher field enhancement. The functioning of trapezoidal toothed log-periodic nanoantennas is different from the non-inverted nanoantennas as there is no plasmonic nanoring present in the semiconductor state of the nanoantennas. These nanoantennas operate similar to the bow-tie nanoantennas (for parallel polarization of the incident light) and can effectively funnel the electromagenetic fields to the gap between the nanoantennas and therefore are expected to provide high electric field intensity enhancements in the nanoantenna gap.

The spectral position of the plasmon resonance peaks of the SPNs can be engineered by varying the geometry of the plasmonic nanoantennas at the time of nanoantenna design and fabrication [35,36]. If the VO2 phase-transition is induced by an optical signal (for e.g. using a femto-second pulsed laser), then ultrafast switching of the optical properties of the nanoantenna structures containing VO2 thin-films can be induced [30], thereby potentially leading to the development of ultrafast optical switches.

2. Numerical modeling using FDTD simulations

Finite-difference time-domain (FDTD) simulations were employed (using FullWAVE 9.0) to evaluate the switching property of the SPNs. For the FDTD simulations, the grid sizes were selected such that convergence was achieved. As an example, for a dipole SPN having a 5 nm VO2 layer, a convergent value of the grid size was found to be 1 nm, and a corresponding normalized time step cΔt (normalized with speed of light) was taken as 0.57 nm according to the Courant's stability criterion [37]. The dielectric constant for gold employed in our FDTD simulations is provided in the Appendix A. The dielectric constants for the metallic and semiconducting states of the vanadium dioxide (VO2) layer employed in our FDTD simulations are provided in Appendix B. In the FDTD simulations for the dipole, bow-tie, and rod-disk switchable nanoantennas, the incident light was taken to be linearly polarized along the direction of the axis of nanoantennas. In the case of the planar trapezoidal toothed log-periodic nanoantenna, FDTD simulations were carried out for both the cases when the incident light was linearly polarized along the direction of the axis of nanoantenna, as well as when it was linearly polarized perpendicular to the nanoantenna axis.

3. Results and Discussions

We employed FDTD simulations to determine the electric-field (E-field) intensity enhancement (EFIE) at the antenna gap, as well as in the near-field, of several switchable plasmonic nanoantennas (SPNs). EFIE was determined for the four different geometries of SPNs — (a) dipole, (b) bowtie, (c) rod-disk, and (d) planar trapezoidal toothed log-periodic — with a VO2 film layer inside the gold nanoantenna structures, as shown in Fig. 2. Switching in the EFIE between the two states of the SPNs is shown in Fig. 2 by plotting the E-field intensity enhancement as a function of the incident radiation wavelength for different phases of the VO2 film layer (i.e the semiconductor phase and the metallic phase).

 figure: Fig. 2

Fig. 2 Plots showing switching of electric-field intensity enhancement between the two states of the switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state for: (a) A non-inverted dipole SPN, (b) A non-inverted bow-tie SPN, (c) A non-inverted rod-disk SPN and (d) A planar trapezoidal toothed log-periodic SPN. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO2 film inside the nanoantennas. The plasmon resonance wavelengths associated with the E-field intensity enhancement (EFIE) spectra of the SPNs are termed as λm (for the metallic state of the SPNs) and λs (for the semiconductor state of the SPNs). As the SPNs change their state from the metallic state to the semiconductor state, there is a shift (Δλ = λs - λm) in the EFIE plasmon resonance wavelength. A comparison of the intensity switching ratio (ION/IOFF) for the two different types of nanoantennas: (i) non-inverted SPNs and (j) inverted SPNs. The nanoantenna arm length 'L', height 'H', and gap 'G' were taken to be 100 nm, 25 nm, and 10 nm, respectively, for all the SPNs. Gold ring thickness ‘W’ was taken as 5 nm in (a)-(c) and (e). The thickness of the VO2 surrounding layer was taken as 5 nm in (f). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).

Download Full Size | PPT Slide | PDF

One can observe from Figs. 2(a)-(f) that there is a blue-shift (Δλ = λs - λm) in the plasmon resonance wavelength (i.e. wavelength at which the E-field intensity enhancement at the antenna gap is maximum) for all the switchable plasmonic nanoantenna structures when the VO2 film layer lying inside the switchable plasmonic nanoantenna structures undergoes a phase transition from the semiconductor phase (λs) to the metallic phase (λm). The magnitude of the blue-shift in the plasmon resonance wavelength (Δλ = λs - λm) is maximum for the ring-shaped rod-disk nanoantenna (~360 nm as shown in Fig. 2(e)) as compared to the other types of switchable plasmonic nanoantennas. It was observed in Fig. 2(d) that while the planar trapezoidal toothed log-periodic nanoantennas exhibited the lowest values of plasmon resonance wavelength shift when compared with other the SPNs, the magnitudes of the E-field intensity enhancement in the middle of the nanoantenna gap were the highest for the planar trapezoidal toothed log-periodic SPNs (for both the semiconductor and the metallic phase). It was also observed in Fig. 2 (also shown in Appendix C) that there is an increase in the maximum E-field intensity enhancement at the antenna gap (i.e. the E-field intensity enhancement at the plasmon resonance wavelength) — when the VO2 film layer lying inside the switchable plasmonic nanoantennas undergoes a phase transition from the semiconductor phase to the metallic phase — for the planar trapezoidal toothed log-periodic SPN, the bow-tie SPN, and the rod-disk SPN. On the other hand, the dipole SPN has a decrease in the maximum (at the plasmon resonance wavelength) E-field intensity enhancement at the antenna gap when the VO2 film layer lying inside the nanoantenna undergoes a phase transition from the semiconductor phase to the metallic phase. The change of the value of the E-field intensity enhancement at the antenna gap — between two states (semiconductor and metallic) of the switchable plasmonic nanoantennas (SPNs) — can be employed for selective excitation of a quantum emitter (such as a fluorophore or a quantum dot) located in the gap region of the nanoantenna. Hence, a change in near-field distribution of the SPN upon change of the state of VO2 layer would enable switchable excitation and emission from the quantum emitters.

Figures 2(e)-2(f) show a comparison of the intensity switching ratio (ION/IOFF) for two different types of nanoantennas – non-inverted SPNs (shown in Figs. 1(a)-1(c)) and inverted SPNs (shown in Figs. 1(d)-1(f)). Figure 2(e) shows a comparison of the intensity switching ratio for three different non-inverted SPNs. It was observed that the dipole non-inverted SPNs had the highest switching ratio (~7) at a wavelength of ~950 nm, while the switching ratios of bow-tie non-inverted SPN and the rod-disk non-inverted SPN were ~4.5 and ~4, respectively. The value of near-field intensity switching ratio for the dipole non-inverted SPNs (ION/IOFF being ~7) is higher than what has been reported previously [38], where an ION/IOFF of 5.6 was achieved with VO2 nanostructures standing alone.

On the other hand, it can be seen from Fig. 2(f) that the values of the intensity switching ratios for the inverted SPNs were much lower (~1.4) than those for the non-inverted SPNs. In the semiconductor state, the non-inverted SPN consists of a gold nanoring filled with a VO2 seminconductor layer, while in the metallic state, the non-inverted SPN consists of metallic disc-shaped nanostructures with a gold layer outside the VO2 metallic nanostructures. As the plasmon resonance for a nanoring occurs at a higher wavelength than that for a nanodisc of the same dimension [39], there is a substantial shift in the plasmon resonance wavelength when the non-inverted SPN changes from the semiconductor state to the metallic state. In the case of inverted SPNs, the nanostructures are essentially metallic nanodiscs with different gap sizes depending on the state of the VO2 surrounding layers. Hence, the shift in the plasmon resonance is not substantial when the phase of the SPN changes. Moreover, it was observed that the magnitudes of the E-field intensity enhancements (in the middle of the gap region of the different SPNs) are much higher for the non-inverted SPNs as compared to those for the inverted SPNs. This could be attributed to the fact that the plasmonic metal layer is on the outer surface of the non-inverted SPNs, leading to higher enhancement of the E-field for both the metallic and the semiconductor states of the SPNs.

Figure 3 shows the effect of changing the nanoantenna geometrical parameters of a rod-disk SPN — more specifically the disk ratio (D2/D1) and the funnel ratio (D3/D1) — on the shift in plasmon resonance wavelength (Δλ = λs - λm) associated with the near-field E-field intensity enhancement as the SPNs change their state from the metallic state (with the plasmon resonance wavelength being λm) to the semiconductor state (with the plasmon resonance wavelength being λs). Here while D1 and D2 are the diameters of rod part and the disc part, respectively, D3 is the width of the other end of the rod part of the rod-disc nanoantenna, as shown in Fig. 3(d). It was observed that as the disk ratio (D2/D1) was increased, while keeping the funnel ratio constant at 1 (i.e. D3/D1 = 1), there was an increase in the value of Δλ, as shown in Figs. 3(a), 3(b), and 3(e). In the semiconductor state, the SPN consists of a gold nanoring filled with a VO2 seminconductor layer. Increasing the disk ratio increases the size of the gold nanoring (as D2 shown in Fig. 3 increases), which leads to a substantially higher plasmon resonance wavelength for these nanostructures. This increases in plasmon resonance wavelength with an increase in the nanoring diameter has also been peviously explained by Aizpurua et al. [39]. In the metallic state, the SPN consists of metallic disc-shaped nanostructures with a gold layer outside the VO2 metallic nanostructures. Increasing the disk ratio also increases the size of the metallic nanodiscs, though the change in the plasmon resonance wavelength is not as high as that for the gold nanoring structures [39].

 figure: Fig. 3

Fig. 3 Electric field intensity enhancement spectra of rod-disk switchable plasmonic nanoantennas (SPNs) having: (a) Disk ratio = 1 and a Funnel Ratio = 1, (b) Disk Ratio = 2 and a Funnel Ratio = 1 and (c) Disk Ratio = 2 and a Funnel Ratio = 2. (d) A schematic illustrating the definitions of the Disc Ratio and the Funnel Ratio. (e) Effect of increasing the Disk Ratio (D2/D1) on the intensity switching ratio (ION/IOFF) and the plasmon resonance wavelength shift (Δλ), when the Funnel Ratio (D3/D1) = 1, and (f) Effect of increasing the Funnel Ratio on the intensity switching ratio and the plasmon resonance wavelength shift, when the Disk Ratio = 2. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.

Download Full Size | PPT Slide | PDF

On the other hand, we observe from Fig. 3(e) that the intensity switching ratio decreases when the disk ratio is increased, while keeping the funnel ratio constant at 1 (for funnel ratio = 1). This is because an increase in the disk ratio leads to the appearance of a second plasmon resonance related peak (see a small peak at ~1100 nm) for the semiconductor phase of the VO2 thin film layer inside the rod-disk nanoantennas, as shown in Fig. 3(b). The second peak can be attributed to the hybridization of the modes of the two different regions of the ring-shaped rod-disk nanoantenna — the rod-shaped region and the disk-shaped region shown in Fig. 3(d). As the values of the disk ratio (for funnel ratio = 1) are increased, these two regions become more distinct thereby increasing the height of the second resonance peak. Appearance of this second peak leads to a lower value of the maximum switching ratio (ION/IOFF) for the switchable rod-disk nanoantenna. Moreover, it was observed that the switchable rod-disk plasmonic nanoantennas had the maximum value of shift in plasmon resonance wavelength (Δλ being as high has 350 nm) as compared to all other switchable plasmonic nanoantennas (Δλ being less than 200 nm). This larger value of Δλ for a rod-disk nanoantenna can be explained on the basis of hybridization of modes corresponding to the two regions of the rod-disc nanoantenna, thereby leading to a lower plasmon resonance frequency (and therefore a higher plasmon resonance wavelength) of the more dominant symmetric hybridized mode for the overall rod-disc nanoantenna structure, when the SPN is in the semiconductor state.

It was also observed in Fig. 3(f) that increasing the funnel ratio of the rod-disk nanoantenna (while keeping the disk ratio to be 2) lead to almost no change in the value of the shift in the plasmon resonance wavelength (Δλ). This can be attributed to the fact that increasing the funnel ratio (while keeping the disk ratio to be 2) leads to almost no increase in the size (D2 in Fig. 3) of the gold nanoring forming the SPN. On the other hand, increasing the funnel ratio of the rod-disk nanoantenna (while keeping the disk ratio to be 2) leads to an increase in the intensity switching ratio. This can be attributed to the disappearance of the second plasmon resonance peak — in the near-field EFIE spectrum associated with the semiconductor phase of the SPN — as the funnel ratio is increased from 1 to 2, for a disk ratio of 2. It has to be noted that the second peak in the spectra for the semiconductor state of the SPN is present when the funnel ratio is 1 (for a disk ratio of 2) because of the presence of two distinct regions of the ring shaped rod-disk nanoantenna — the rod region and the disc region shown in Fig. 3(d). As the value of the funnel ratio is increased from 1 to 2, the two regions become less distinct, thereby leading to the disappearance of the second peak in the near-field E-field intensity enhancement spectrum associated with the semiconductor phase of the SPN.

We also investigated the impact of changing the length of the arms of the different types of non-inverted switchable plasmonic nanoantennas — on the plasmon resonance wavelength associated with the near-field E-field intensity enhancement calculated at the middle of the gap region of the nanoantennas. While in conventional RF antennas the resonant length is half of the operating wavelength of the antenna, this is not the case for nanoantennas operating at optical frequencies [40]. This is because there is penetration of electromagnetic radiation in the metal at optical frequencies. Hence, the resonance wavelength at optical frequencies would depend on the displacement and polarization effects and therefore on the relative permittivity of the material constituting the antenna. Our simulation results in Fig. 4 show that with increasing arm lengths ‘L’, the wavelengths corresponding to the maximum intensity switching ratio are redshifted for all the SPN structures under consideration. This red-shift results from the red-shift of the resonance wavelengths for both the semiconductor and metallic states of VO2 in all the SPNs, as shown in Appendix D. The evolution of these spectra provides useful information for further optimization. It can be observed from Figs. 4(a) and 4(b) and Figs. 4(e) and 4(f) that the highest value of the switching ratio was obtained for the dipole SPNs (maximum ION/IOFF being ~7), while the trapezoidal toothed log-periodic SPN had the lowest value of the switching ratio (maximum ION/IOFF being ~2.4) out of all the different type of SPNs. Moreover, it can be observed from Fig. 4(e) that there is a second plasmon resonance peak in the switching ratio spectrum of a rod-disk SPN. This second plasmon resonance related peak in the intensity switching ratio (ION/IOFF) spectrum results from the presence of a second peak in the near-field E-field intensity enhancement spectrum for the ‘semiconductor phase’ of the SPN, as shown in Appendix D. The presence of two plasmon resonance peaks can be attributed to the two different regions of the ring shaped rod-disk nanoantenna (the rod region and the disk region shown in Fig. 3(d)). On the other hand, a second peak was not observed in the near-field E-field intensity enhancement spectrum associated with the ‘metallic phase’ of the SPN.

 figure: Fig. 4

Fig. 4 Effect of varying the nanoantenna arm length ‘L’ on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (a) A dipole switchable plasmonic nanoantenna (SPN) shown in (c), (b) A bow-tie SPN shown in (d), (e) A rod-disk SPN shown in (g), (f) a planar trapezoidal toothed log-periodic SPN shown in (h). In all these SPNs, G = 10nm, H = 50nm. ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (e). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (f).

Download Full Size | PPT Slide | PDF

It has to be noted that the planar trapezoidal toothed log-periodic nanoantenna proposed in this paper is operated in a manner similar to a bow-tie nanoantenna — with some regions of the nanoantenna metal being replaced by VO2. Although conventional log-periodic nanoantennas are operated such that the electric-field of the incident radiation is polarized perpendicular to the nanoantenna axis, we have employed parallel polarization as the E-field enhancement of a trapezoidal toothed log-periodic nanoantenna structure is substantially less when the E-field of the incident radiation is polarized perpendicular to the antenna axis. It was observed in Fig. 4(f) that the planar trapezoidal toothed log-periodic nanoantennas exhibited the lowest values of the intensity switching ratio (maximum ION/IOFF being ~2.4) and the plasmon resonance wavelength shift (Δλ ~100 nm) when compared with other SPNs (dipole, bow-tie, and rod-disk). This can be attributed to the fact that these nanoantennas are similar to the bow-tie nanoantennas in both the metallic and semiconducting state of the SPNs, and there is very little change in the structure of the nanoantennas upon VO2 phase transition. On the other hand, the advantage of employing the switchable trapezoidal toothed log-periodic nanoantennas is that the magnitudes of the E-field intensity enhancement in the middle of the nanoantenna gap were higher than those of the other SPNs, as shown in Fig. 2(d) and Appendix D. For parallel polarization of the incident light, the log-periodic nanoantennas behave in a similar manner to the bow-tie nanoantennas and can effectively funnel the electromagenetic fields to the gap between the nanoantennas – in both the metallic and semiconducting state of the SPNs. Hence, these nano-antennas have high electric field intensity enhancements in the nanoantenna gap.

The effect of the thickness of the gold nanoring structures present in the different SPNs (dipole, bow-tie, and rod-disk) — on the resonance wavelengths, i.e. wavelengths at which the maxima in the intensity switching ratio (ION/IOFF) curve occur — was also evaluated. As the thickness (W) of the gold ring layer was decreased from 12 nm to 5 nm, it was observed there was a significant red-shift in the resonance wavelengths associated with the intensity switching ratio spectra for the different SPNs, as shown in Figs. 5(e)-5(h). This results from a red-shift in the plasmon resonance wavelength associated with the EFIE spectra for the semiconductor phase of the SPNs, which can be attributed to the decrease of the resonant frequency of the dominant symmetric localized surface plasmon (LSP) modes excited in ananoring as the thickness of nanoring structures is decreased [39]. This effect in nanorings is similar to that observed in nanoshells [39,41]. It was also observed that varying the design constant τ of a planar trapezoidal toothed log-periodic nanoantenna had very little impact on the wavelengths at which the maxima in the switching ratio (ION/IOFF) curve occur. Moreover, it was observed that a decrease in the thickness (W) of the gold nanoring present in the different SPNs (dipole, bow-tie, and rod-disk) increases the intensity switching ratio for these SPNs. This could be attributed to there being greater effect of the phase change of the VO2 thin film layer (lying inside the gold nanorings forming the two arms of the nanoantennas) when the thickness of the gold nanoring was lower.

 figure: Fig. 5

Fig. 5 Schematics showing geometrical parameters in different switchable plasmonic nanoantennas (SPNs): (a) a dipole SPN, (b) a bow-tie SPN, (c) a rod-disk SPN, and (d) a planar trapezoidal toothed log-periodic SPN. Effect of varying the thickness ‘W’ — of the gold ring forming the switchable plasmonic nanoantennas — on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (e) A dipole switchable plasmonic nanoantenna (SPN), (f) A bow-tie SPN, and (g) A rod-disk SPN. The intensity switching ratios are plotted as a function of wavelength for L = 100 nm, D = D1 = 25 nm, D2 = 50 nm, B = 80 nm. (h) Effect of design constant τ of a planar trapezoidal toothed log-periodic nanoantenna on the Intensity Switching ratio. The planar trapezoidal toothed log-periodic nanoantenna have the following dimensional parameters: Rn = 100 nm, ρ = 2, Dn = 40 nm. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.

Download Full Size | PPT Slide | PDF

The SPNs proposed in this paper can be fabricated by first depositing VO2 thin films on sapphire [42], silicon [40], and silica [43–45] substrates and then employing a first electron- beam lithography [46] step — consisting of an electron-beam exposure using a ZEP resist and resist development, followed by reactive ion etching (RIE) to develop VO2 antenna structures (such as bow-tie or rod-disk structures of VO2) as shown in Appendix E. This will be followed by another electron-beam lithography step to only expose regions where gold would be deposited, as shown in Appendix E, followed by resist development and gold electron-beam evaporation. This would be followed by a lift-off process to obtain the SPNs proposed in this paper. It has to be mentioned that as the fabrication of these SPNs will require a two-step electron-beam lithography protocol, they are not entirely simple to fabricate due the requirement of precise alignment between the two lithography steps. The fabrication of SPNs in which phase change can be induced by voltage is even more difficult as nano-scale electrodes have to fabricated such that voltage can be applied accross the plasmonic nanoantennas. SPNs in which phase change can be induced optically can be fabricated more easily [47] as compared to those in which it can be induced by voltage application as no nano-scale electrodes are needed. However, some important considerations have to be kept in mind for employing SPNs with optically-induced phase change. The optically-induced phase change described previously [30] is for a relatively thick VO2 film, and the thermodynamic process is expected to be very different for the VO2 nanostructures present in the SPNs proposed in this paper. Therefore, it will have to be experimentally verified whether the optical fluence required for effectively inducing a phase change is large enough for causing damage to the material or not. Details of this SPN fabrication process and other possible ways of fabrication the SPNs proposed in this paper are provided in the Appendix E.

Hence, the switchable plasmonic nanoantennas (SPNs) described in this paper demonstrate very large intensity switching ratios — i.e. ratios of the near-field intensity enahcnements (around the SPNs) between the On and Off states of the SPNs. Moreover, the plasmon resonance wavelength of these nanoantennas and the near-field spatial distribution of the EM fields around the nanoantennas can be switched when the VO2-coated plasmonic nanoantennas switch between the two states.

4. Conclusions

In this paper, we have designed switchable plasmonic nanoantennas in the near-infrared optical regime using gold as the nanoantenna material and a vanadium dioxide (VO2) thin film present inside the gold nanoantenna structures as the switchable material. We have demonstrated switching in the electric-field intensity enhancement (EFIE) values between two the states, i.e. the On and Off states, of the nanoantennas, which can be controlled thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic state and the semiconductor state of the VO2 thin film layer inside the nanoantennas. We employed finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries — nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk. Moreover, we compared the near-field distribution of the E-field enhancement for the On and Off states of these nanoantenna structures. Intensity switching ratios between 5.5 and 7 were demonstrated for the different dimensions of the dipole SPNs, while the intensity switching ratios for the bowtie and the rod-disk SPN structures were found to be lying between ~4.5 and 6.5. Moreover, tuning of the resonance peaks — i.e. peaks at which the maximum intensity switching ratio occurs — was demonstrated over a large wavelength range (between 900 nm and 1300 nm) in the near-infrared spectral regime by changing the geometric parameters of the SPNs. In this paper, we have also demonstrated switching of the plasmon resonance wavelength (of the near-field EFIE spectrum) and of the near-field spatial distributions of the electromagnetic fields when the switchable plasmonic nanoantennas switch between the two states. The shift is plasmon resonance wavelength (of the near-field EFIE spectrum) was found to be greater (Δλ ~360 nm) for the rod-disk SPN as compared to the other SPNs.

Appendix A Dielectric constant of gold employed in the finite difference time domain (FDTD) simulations

In the FDTD simulations performed by us, we employed the following Lorentz-Drude dispersion relation model [37,48–50] for determining the dielectric constant for gold:

ε(ω)=1+k=16Δεkakω2ibkω+ck
where Δεk, ak, bk and ck are constants. The following values of Δεk, ak, bk, and ck for gold were employed in our work - Δε1: 1589.516, Δε2: 50.19525, Δε3: 20.91469, Δε4: 148.4943, Δε5: 1256.973, Δε6: 9169; a1: 1, a2: 1, a3: 1, a4: 1, a5: 1, a6: 1; b1: 0.268419, b2: 1.220548, b3: 1.747258, b4: 4.406129, b5: 12.63, b6: 11.21284; c1: 0, c2: 4.417455, c3: 17.66982, c4: 226.0978, c5: 475.1387, c6: 4550.765.

Appendix B Dielectric constants of vanadium dioxide (VO2) — for both the semiconductor state and the metallic state of VO2 — employed in the finite difference time domain (FDTD) simulations

In the FDTD simulations, we employed the following Lorentz-Drude dispersion relation model [29] for determining the dielectric constant for VO2 in its metallic state:

ε(ω)=ε+Δε1a1ω2ib1ω+k=26Δεkakω2ibkω+ck
where Δεk, ak, bk and ck are constants. The following values of Δεk, ak, bk, and ck for VO2 in its metallic state were employed in our work - ε: 3.95, Δε1: 284.7835992, Δε2: 34.49365809, Δε3: 195.7081155, Δε4: 323.4583261, Δε5 570.5996093, Δε6: 0; a1: 1, a2: 1, a3: 1, a4: 1, a5: 1, a6: 0; b1: 3.344700147, b2: 7.914574094, b3: 13.79232715, b4: 18.34111935, b5: 24.4771238, b6: 0; c1: 0, c2: 18.99430511, c3: 201.3457979, c4: 311.0176212, c5: 543.4281993, c6: 0.

In the FDTD simulations performed by us, we employed the following Lorentz dispersion relation model [29] for determining the dielectric constant for VO2 in its semiconductor state:

ε(ω)=ε+k=16Δεkakω2ibkω+ck
The following values of Δεk, ak, bk, and ck for VO2 in its semiconductor state were employed in our work - ε: 4.26, Δε1: 21.10833326, Δε2: 20.57271235, Δε3: 27.9097635, Δε4: 104.1014275, Δε5: 411.6548635, Δε6: 384.8646853; a1: 1, a2: 1, a3: 1, a4: 1, a5: 1, a6: 1; b1: 4.083574816, b2: 3.122733683, b3: 3.671568571, b4: 7.469830329, b5: 23.27526155, b6: 20.19793471; c1: 26.7194092, c2: 43.40234673, c3: 57.78418944, c4: 194.2190812, c5: 312.807647, c6: 363.0798918. The variation of the real and imaginary parts of the dielectric constants with wavelength are shown in Fig. 6 for VO2 in its semiconductor state, VO2 in its metallic state, and for gold.

 figure: Fig. 6

Fig. 6 The variation of real and imaginary parts of the dielectric constant (ε) with wavelength are shown for: (a) VO2 in semiconductor state, (b) VO2 in metallic state, and (c) Gold.

Download Full Size | PPT Slide | PDF

Appendix C Switching in the near-field distribution of the E-field enhancement between the two states (semiconductor and metallic) of the SPNs

The switching in the near-field distribution of the E-field enhancement between the two states (semiconductor and metallic) of the SPNs is shown in Fig. 7. It can be seen from Fig. 7 that the E-field enhancement in the gap region of the nanoantennas is higher in the metallic state of the SPNs as compared to the semiconductor state of the SPNs, for all the types of SPNs. It has to be noted that these near-field distributions were obtained at the wavelength for which the intensity switching ratio (ION/IOFF) of the E-field intensity enhancement was the highest, the E-field intensity enhancements (square of the E-field enhancements) being calculated in the middle of the nanoantenna gap. It can also be observed from Fig. 7(d) that the E-field enhancement in the gap region of the nanoantenna is the highest for the metallic state of the trapezoidal toothed log-periodic nanoantenna.

 figure: Fig. 7

Fig. 7 Figures showing changes in the near-field distributions of E-field enhancement as the VO2 thin film layer present in the different switchable plasmonic nanoantennas (SPNs) undergoes a phase transition from the semiconductor phase to the metallic phase. These near-field distributions were calculated at wavelengths for which maximum intensity switching ratio (ION/IOFF) occur for different SPNs: (a) Dipole SPN, (b) Rod-disk SPN, (c) Bow-tie SPN, and (d) Planar trapezoidal toothed log-periodic SPN. All SPNs had the following structural parameters: Length (L) = 100 nm, Height (H) = 25 nm, and Gap between the nanoantenna arms (G) = 10 nm. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (c). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).

Download Full Size | PPT Slide | PDF

Appendix D Switching of electric-field intensity enhancement in the gap region of the switchable plasmonic nanoantennas (SPNs)

Figure 8 shows the spectra of the electric-field intensity enhancements calculated in the middle of the gap regions of the different non-inverted switchable plasmonic nanoantennas (nanorod, bow-tie, planar trapezoidal toothed log-periodic, and rod-disk) for the semiconductor and the metallic states of the SPNs. As defined in the main paper, the non-inverted SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (film of vanadium dioxide). On the other hand, inverted SPNs consist of gold nanoantenna structures surrounded by vanadium dioxide (VO2) at certain regions of the nanoantennas.

 figure: Fig. 8

Fig. 8 Plots showing the switching of electric-field intensity enhancement between the two states of the non-inverted switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state, associated with the semiconductor and metallic states of the VO2 film layer for different nanoantennas: A dipole nanoantenna having arm length 'L' for: (a) 'L' = 120 nm, (b) 'L' = 100 nm, and (c) 'L' = 90 nm. A bow-tie nanoantenna having: (d) 'L' = 120 nm, (e) 'L' = 100 nm, and (f) 'L' = 90 nm. A rod-disk nanoantenna having: (g) 'L' = 120 nm, (h) 'L' = 100 nm, (i) 'L' = 90 nm. A planar trapezoidal toothed log-periodic nanoantenna having (j) 'L' = 120 nm, (k) 'L' = 100 nm, (l) 'L' = 90 nm. For all the SPNs, the gap between the nanoantenna arms 'G' = 10 nm, Height of the nanoantennas 'H' = 25 nm, and thickness of the ring 'W' = 5 nm.

Download Full Size | PPT Slide | PDF

Appendix E Fabrication of Switchable Plasmonic Nanoantennas (SPNs)

The SPNs proposed in this paper — specifically the VO2-containing trapezoidal toothed log-periodic, bow-tie and rod-disk plasmonic nanoantennas — can be fabricated by first depositing crystalline or polycrystalline VO2 thin films on sapphire [42], silicon [51], and silica [43–45] substrates and then employing a first electron-beam lithography [48] step, as shown in Fig. 9. This electron-beam lithography step would consist of an electron-beam exposure using a positive E-beam resist (such as ZEP520A) and resist development, followed by reactive ion etching (RIE) to develop VO2 antenna structures (such as bow-tie or rod-disk structures of VO2 shown in Fig. 9(d)). This would be followed by another electron-beam lithography step to only expose regions where gold would be deposited, as shown in Fig. 9(g), followed by resist development and gold electron-beam evaporation. This would be followed by a lift-off process to obtain the SPNs proposed in this paper. An additional focused ion-beam milling [52] or TEB-Ablation Lithography [53] step can be employed to clean thecorners of the switchable plasmonic antennas fabricated by this process. In another process to fabricate the SPNs proposed in this paper, plasmonic nanoantennas (e.g. ring-shaped gold bow-tie or rod-disk nanoantennas) can be first fabricated by employing electron-beam lithography [48], focused ion-beam milling [52], TEB-Ablation Lithography [53], or sub-10nm imprint lithography [54]. This can be followed by depositing crystalline or polycrystalline VO2 thin films in the regions inside the plasmonic nanoantennas (such as the empty regions inside the ring-shaped plasmonic nanoantennas), as well as on the regions around the plasmonic nanoantennas [52–55]. This can be followed by another step of electron-beam lithography and resist development such that the regions of the VO2 thin film inside the plasmonic nanoantennas are covered by the resist. Subsequently, reactive-ion etching can be employed to remove the thin film layer of VO2 from the top surface of the gold region of the plasmonic nanoantennas, as well as from the regions around the plasmonic nanoantennas. This can be followed by removal of the resist to obtain the desired SPNs.

 figure: Fig. 9

Fig. 9 Schematic showing the different processing steps involved in the fabrication of the switchable plasmonic nanoantennas (SPNs) being proposed in this paper.

Download Full Size | PPT Slide | PDF

Acknowledgments

The authors would like to thank the sponsors of this work — Department of Biotechnology (DBT) of the Government of India under grant # RP02829 and grant # RP03150, Department of Science and Technology (DST) of the Government of India under grant # RP03055, and the Ministry of Shipping, Government of India under grant # RP03162 — for their support.

References and links

1. M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).

2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009). [CrossRef]  

3. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012). [CrossRef]   [PubMed]  

4. T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008). [CrossRef]  

5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]  

6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]  

7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011). [CrossRef]   [PubMed]  

8. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012). [CrossRef]   [PubMed]  

9. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010). [CrossRef]   [PubMed]  

10. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012). [CrossRef]   [PubMed]  

11. G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009). [CrossRef]   [PubMed]  

12. R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

13. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012). [CrossRef]   [PubMed]  

14. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008). [CrossRef]  

15. A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19(27), 26752–26767 (2011). [CrossRef]   [PubMed]  

16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007). [CrossRef]   [PubMed]  

17. R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012). [CrossRef]  

18. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010). [CrossRef]   [PubMed]  

19. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011). [CrossRef]   [PubMed]  

20. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007). [CrossRef]  

21. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef]   [PubMed]  

22. K. Appavoo and R. F. Haglund Jr., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014). [CrossRef]   [PubMed]  

23. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012). [CrossRef]   [PubMed]  

24. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012). [CrossRef]   [PubMed]  

25. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013). [CrossRef]   [PubMed]  

26. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012). [CrossRef]   [PubMed]  

27. J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund Jr., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008). [CrossRef]  

28. F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

29. H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968). [CrossRef]  

30. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001). [CrossRef]   [PubMed]  

31. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000). [CrossRef]  

32. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]  

33. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]  

34. M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012). [CrossRef]   [PubMed]  

35. S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999). [CrossRef]  

36. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013). [CrossRef]   [PubMed]  

37. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

38. J. B. Park, I. M. Lee, S. Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21(13), 15205–15212 (2013). [CrossRef]   [PubMed]  

39. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef]   [PubMed]  

40. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef]   [PubMed]  

41. J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001). [CrossRef]  

42. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013). [CrossRef]   [PubMed]  

43. F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010). [CrossRef]  

44. H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008). [CrossRef]  

45. T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993). [CrossRef]  

46. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008). [CrossRef]   [PubMed]  

47. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016). [CrossRef]  

48. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009). [CrossRef]   [PubMed]  

49. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

50. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove Plasmonic Nano-gratings for Surface Plasmon Resonance Sensing,” Opt. Express 19(2), 787–813 (2011). [CrossRef]   [PubMed]  

51. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund Jr, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013). [CrossRef]   [PubMed]  

52. A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007). [CrossRef]   [PubMed]  

53. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007). [CrossRef]   [PubMed]  

54. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996). [CrossRef]  

55. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011). [CrossRef]  

References

  • View by:

  1. M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  3. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  4. T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [Crossref]
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  8. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
    [Crossref] [PubMed]
  9. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref] [PubMed]
  10. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  11. G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
    [Crossref] [PubMed]
  12. R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).
  13. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
    [Crossref] [PubMed]
  14. R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
    [Crossref]
  15. A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19(27), 26752–26767 (2011).
    [Crossref] [PubMed]
  16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [Crossref] [PubMed]
  17. R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
    [Crossref]
  18. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
    [Crossref] [PubMed]
  19. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
    [Crossref] [PubMed]
  20. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
    [Crossref]
  21. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  22. K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
    [Crossref] [PubMed]
  23. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
    [Crossref] [PubMed]
  24. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [Crossref] [PubMed]
  25. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  26. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
    [Crossref] [PubMed]
  27. J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
    [Crossref]
  28. F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).
  29. H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  30. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  31. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  32. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  33. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  34. M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
    [Crossref] [PubMed]
  35. S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  36. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
    [Crossref] [PubMed]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  38. J. B. Park, I. M. Lee, S. Y. Lee, K. Kim, D. Choi, E. Y. Song, and B. Lee, “Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition,” Opt. Express 21(13), 15205–15212 (2013).
    [Crossref] [PubMed]
  39. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [Crossref] [PubMed]
  40. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  41. J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
    [Crossref]
  42. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  43. F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
    [Crossref]
  44. H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
    [Crossref]
  45. T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
    [Crossref]
  46. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
    [Crossref] [PubMed]
  47. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
    [Crossref]
  48. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
    [Crossref] [PubMed]
  49. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  50. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove Plasmonic Nano-gratings for Surface Plasmon Resonance Sensing,” Opt. Express 19(2), 787–813 (2011).
    [Crossref] [PubMed]
  51. S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel, R. F. Haglund, and A. Roberts, “Tunable optical antennas enabled by the phase transition in vanadium dioxide,” Opt. Express 21(22), 27503–27508 (2013).
    [Crossref] [PubMed]
  52. A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
    [Crossref] [PubMed]
  53. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [Crossref] [PubMed]
  54. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [Crossref]
  55. G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
    [Crossref]

2016 (1)

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

2014 (1)

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (9)

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

2011 (5)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19(27), 26752–26767 (2011).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove Plasmonic Nano-gratings for Surface Plasmon Resonance Sensing,” Opt. Express 19(2), 787–813 (2011).
[Crossref] [PubMed]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

2010 (4)

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

2009 (5)

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009).
[Crossref] [PubMed]

2008 (6)

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

2007 (5)

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

2003 (2)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

2001 (2)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

1999 (1)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1998 (1)

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

1993 (1)

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Abu Hatab, N. A.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Agrawal, A.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Aizpurua, J.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Appavoo, K.

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Bandaru, N. K.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Basov, D. N.

Benedetti, A.

Bergamini, L.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Berglund, C.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bertolotti, M.

Beteille, F.

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Bhatia, S. N.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Blanchard, R.

Blasco, N.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Boltasseva, A.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Canva, M.

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Capasso, F.

Cavalleri, A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Centini, M.

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Chen, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Chen, Y. P.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, D.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Chu, Y.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Chung, T. F.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Crozier, K. B.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

Das, S. K.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Davis, T. J.

de Groot, C. H.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Deduytsche, D.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Dejene, F. B.

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

Detavernier, C.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dhawan, A.

Dickson, W.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Donev, E. U.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Drndic, M.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Earl, S. K.

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Emani, N. K.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Evans, P. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feldman, L. C.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Ferrara, D. W.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Fischbein, M. D.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Forget, P.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Gaskell, J. M.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Genevet, P.

Gerhold, M.

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

Gerhold, M. D.

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Haglund, R.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Haglund, R. F.

Halas, N. J.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hulst, N. F. V.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Ikuta, Y.

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

James, T. D.

Jin, P.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Jinzhong, Z.

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Kakiuchida, H.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Kall, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Kats, M. A.

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Kieffer, J. C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, K.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Kittl, J.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Kivshar, Y. S.

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Krasnok, A. E.

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Large, N.

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Lee, B.

Lee, I. M.

Lee, S. Y.

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, Z.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Livage, J.

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Maier, S. A.

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

Maksymov, I. S.

Maltzahn, G. V.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Martens, K.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Maruyama, T.

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Marvel, R. E.

McCallum, J. C.

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Miroshnichenko, A. E.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Muskens, L.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

Nadejda, R.

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Navarro-Cia, M.

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

Ni, X.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Nordlander, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Norton, S. J.

Noskov, R. E.

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ocaya, R. O.

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Oran, J. M.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, J. B.

Park, J. H.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Qazilbash, M. M.

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Ráksi, F.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

Rampelberg, G.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Roberts, A.

Sailor, M. J.

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Schaekers, M.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Schutter, B. D.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Segerink, F. B.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Sepaniak, M. J.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Sheel, D. W.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Sibilia, C.

Siders, C. W.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Song, E. Y.

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Squier, J. A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stefani, D. F.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Suh, J.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

Tazawa, M.

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Tetz, K. A.

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

Toth, C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vo-Dinh, T.

Wang, D.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Wang, Y.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

Wurtz, G. A.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Xie, Q.

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Xiong, Q.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

Yang, Z.

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, H. K.

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Zabala, N.

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Zayats, A. V.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

Zhu, W.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

ACS Nano (2)

M. Navarro-Cia and S. A. Maier, “Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation,” ACS Nano 6(4), 3537–3544 (2012).
[Crossref] [PubMed]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High Directivity Optical Antenna Substrates for Surface Enhanced Raman Scattering,” Adv. Mater. 24(32), 4376–4380 (2012).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (2)

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett. 91(4), 043101 (2007).
[Crossref]

G. Rampelberg, M. Schaekers, K. Martens, Q. Xie, D. Deduytsche, B. D. Schutter, N. Blasco, J. Kittl, and C. Detavernier, “Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition,” Appl. Phys. Lett. 98(16), 162902 (2011).
[Crossref]

Cancer Res. (1)

G. V. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas,” Cancer Res. 69(9), 3892–3900 (2009).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

F. B. Dejene and R. O. Ocaya, “Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate,” Curr. Appl. Phys. 10(2), 508–512 (2010).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Mater. Sci. (1)

T. Maruyama and Y. Ikuta, “Vanadium Dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. Haglund., “Modulation of the gold particle - plasmon resonance by the metal – semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt. 10(5), 055202 (2008).
[Crossref]

J. Phys. Chem. B (2)

S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. B. Jackson and N. J. Halas, “Silver Nanoshells: Variations in Morphologies and Optical Properties,” J. Phys. Chem. B 105(14), 2743–2746 (2001).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, and Q. Xiong, “Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

J. sol-gel. Sci. Tech. (Paris) (1)

F. Beteille and J. Livage, “Optical Switching in VO2 Thin Films,” J. sol-gel. Sci. Tech. (Paris) 13(1), 915–921 (1998).

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[Crossref]

Light Sci. Appl. (1)

L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5(10), e16173 (2016).
[Crossref]

Nano Lett. (11)

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano Switch,” Nano Lett. 12(9), 4977–4982 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically Tunable Damping of Plasmonic Resonances with Graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric Core-Shell Optical Antennas for Strong Solar Absorption Enhancement,” Nano Lett. 12(7), 3674–3681 (2012).
[Crossref] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor Nanowire Optical Antenna Solar Absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches,” Nano Lett. 10(5), 1741–1746 (2010).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

NanoBiotechnology (1)

A. Dhawan, M. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” NanoBiotechnology 3(3-4), 164–171 (2007).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a nearinfrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[Crossref]

T. H. Taminiau, D. F. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

New J. Phys. (2)

R. M. Bakker, V. P. Drachev, Z. Liu, H. K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

R. E. Noskov, A. E. Krasnok, and Y. S. Kivshar, “Nonlinear metal–dielectric nanoantennas for light switching and routing,” New J. Phys. 14(9), 93005–93915 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. Lett. (4)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. García de Abajo, “Optical Properties of Gold Nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. China Ser. Biol. Chem. (1)

R. Nadejda and Z. Jinzhong, “Photothermal ablation therapy for cancer based on metal nanostructures,” Sci. China Ser. Biol. Chem. 52(10), 1559–1575 (2009).

Sci. Rep. (1)

K. Appavoo and R. F. Haglund., “Polarization selective phase-change nanomodulator,” Sci. Rep. 4(1), 6771–6776 (2014).
[Crossref] [PubMed]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with Active Optical Antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Kakiuchida, P. Jin, and M. Tazawa, “Control of thermochromic spectrum in vanadium dioxide by amorphoussilicon suboxide layer,” Sol. Energy Mater. Sol. Cells 92(10), 1279–1284 (2008).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

M. Agio and A. Alu, Optical Antennas (Cambridge University, 2013).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a)-(c) Schematics showing different switchable plasmonic nanoantennas (SPNs): (a) Non-inverted Dipole SPN, (b) Non-inverted Bow-tie SPN, (c) Non-inverted Rod-disk SPN, (d) Inverted Dipole SPN, (e) Inverted Bow-tie SPN, (f) Inverted Rod-disk SPN, and (g) Trapezoidal toothed log-periodic SPN. The non-inverted SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (thin film of vanadium dioxide). The inverted SPNs consist of gold nanoantenna structures surrounded by vanadium dioxide (VO2) on their outer surface. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, ‘W’ is the thickness of the plasmonic ring, and 'G' is the nanoantenna gap.
Fig. 2
Fig. 2 Plots showing switching of electric-field intensity enhancement between the two states of the switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state for: (a) A non-inverted dipole SPN, (b) A non-inverted bow-tie SPN, (c) A non-inverted rod-disk SPN and (d) A planar trapezoidal toothed log-periodic SPN. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO2 film inside the nanoantennas. The plasmon resonance wavelengths associated with the E-field intensity enhancement (EFIE) spectra of the SPNs are termed as λm (for the metallic state of the SPNs) and λs (for the semiconductor state of the SPNs). As the SPNs change their state from the metallic state to the semiconductor state, there is a shift (Δλ = λs - λm) in the EFIE plasmon resonance wavelength. A comparison of the intensity switching ratio (ION/IOFF) for the two different types of nanoantennas: (i) non-inverted SPNs and (j) inverted SPNs. The nanoantenna arm length 'L', height 'H', and gap 'G' were taken to be 100 nm, 25 nm, and 10 nm, respectively, for all the SPNs. Gold ring thickness ‘W’ was taken as 5 nm in (a)-(c) and (e). The thickness of the VO2 surrounding layer was taken as 5 nm in (f). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).
Fig. 3
Fig. 3 Electric field intensity enhancement spectra of rod-disk switchable plasmonic nanoantennas (SPNs) having: (a) Disk ratio = 1 and a Funnel Ratio = 1, (b) Disk Ratio = 2 and a Funnel Ratio = 1 and (c) Disk Ratio = 2 and a Funnel Ratio = 2. (d) A schematic illustrating the definitions of the Disc Ratio and the Funnel Ratio. (e) Effect of increasing the Disk Ratio (D2/D1) on the intensity switching ratio (ION/IOFF) and the plasmon resonance wavelength shift (Δλ), when the Funnel Ratio (D3/D1) = 1, and (f) Effect of increasing the Funnel Ratio on the intensity switching ratio and the plasmon resonance wavelength shift, when the Disk Ratio = 2. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.
Fig. 4
Fig. 4 Effect of varying the nanoantenna arm length ‘L’ on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (a) A dipole switchable plasmonic nanoantenna (SPN) shown in (c), (b) A bow-tie SPN shown in (d), (e) A rod-disk SPN shown in (g), (f) a planar trapezoidal toothed log-periodic SPN shown in (h). In all these SPNs, G = 10nm, H = 50nm. ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (e). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (f).
Fig. 5
Fig. 5 Schematics showing geometrical parameters in different switchable plasmonic nanoantennas (SPNs): (a) a dipole SPN, (b) a bow-tie SPN, (c) a rod-disk SPN, and (d) a planar trapezoidal toothed log-periodic SPN. Effect of varying the thickness ‘W’ — of the gold ring forming the switchable plasmonic nanoantennas — on the intensity switching ratio (ION/IOFF) as a function of wavelength for: (e) A dipole switchable plasmonic nanoantenna (SPN), (f) A bow-tie SPN, and (g) A rod-disk SPN. The intensity switching ratios are plotted as a function of wavelength for L = 100 nm, D = D1 = 25 nm, D2 = 50 nm, B = 80 nm. (h) Effect of design constant τ of a planar trapezoidal toothed log-periodic nanoantenna on the Intensity Switching ratio. The planar trapezoidal toothed log-periodic nanoantenna have the following dimensional parameters: Rn = 100 nm, ρ = 2, Dn = 40 nm. Here, ‘L’ is the nanoantenna arm length, 'H' is the nanoantenna height, and 'G' is the nanoantenna gap.
Fig. 6
Fig. 6 The variation of real and imaginary parts of the dielectric constant (ε) with wavelength are shown for: (a) VO2 in semiconductor state, (b) VO2 in metallic state, and (c) Gold.
Fig. 7
Fig. 7 Figures showing changes in the near-field distributions of E-field enhancement as the VO2 thin film layer present in the different switchable plasmonic nanoantennas (SPNs) undergoes a phase transition from the semiconductor phase to the metallic phase. These near-field distributions were calculated at wavelengths for which maximum intensity switching ratio (ION/IOFF) occur for different SPNs: (a) Dipole SPN, (b) Rod-disk SPN, (c) Bow-tie SPN, and (d) Planar trapezoidal toothed log-periodic SPN. All SPNs had the following structural parameters: Length (L) = 100 nm, Height (H) = 25 nm, and Gap between the nanoantenna arms (G) = 10 nm. Gold ring thickness ‘W’ was taken as 5 nm in (a), (b), and (c). Design constants τ and ρ were taken as 0.5 and 2, respectively, in (d).
Fig. 8
Fig. 8 Plots showing the switching of electric-field intensity enhancement between the two states of the non-inverted switchable plasmonic nanoantennas (SPNs) — i.e. the semiconductor state and the metallic state, associated with the semiconductor and metallic states of the VO2 film layer for different nanoantennas: A dipole nanoantenna having arm length 'L' for: (a) 'L' = 120 nm, (b) 'L' = 100 nm, and (c) 'L' = 90 nm. A bow-tie nanoantenna having: (d) 'L' = 120 nm, (e) 'L' = 100 nm, and (f) 'L' = 90 nm. A rod-disk nanoantenna having: (g) 'L' = 120 nm, (h) 'L' = 100 nm, (i) 'L' = 90 nm. A planar trapezoidal toothed log-periodic nanoantenna having (j) 'L' = 120 nm, (k) 'L' = 100 nm, (l) 'L' = 90 nm. For all the SPNs, the gap between the nanoantenna arms 'G' = 10 nm, Height of the nanoantennas 'H' = 25 nm, and thickness of the ring 'W' = 5 nm.
Fig. 9
Fig. 9 Schematic showing the different processing steps involved in the fabrication of the switchable plasmonic nanoantennas (SPNs) being proposed in this paper.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1+ k=1 6 Δ ε k a k ω 2 i b k ω+ c k
ε(ω)= ε + Δ ε 1 a 1 ω 2 i b 1 ω + k=2 6 Δ ε k a k ω 2 i b k ω+ c k
ε(ω)= ε + k=1 6 Δ ε k a k ω 2 i b k ω+ c k

Metrics