Abstract

In this paper, we present a design method of broadband reflective circular polarizer (BRCP) in the extreme ultraviolet (EUV) region. By using this method, we designed three BRCPs with a 6, 12 and 18 eV bandwidth, respectively. Then, we investigated the performances of designed BRCPs in theory. The results indicated that the reflected lights of these BRCPs all showed a nearly 100% circular polarization degree and considerable circular reflection in their design band. In addition, we also studied the origin of high circular polarization degree by analyzing the phase shift and the reflectivity ratio between s- and p-polarized lights induced by the reflection of BRCPs. Furthermore, the pulse responses of BRCPs for attosecond pulses were also investigated. The proposed EUV BRCPs can be used for controlling the polarization state of broadband EUV sources, e.g., generating the circularly polarized attosecond pulse by a linearly polarized one.

© 2017 Optical Society of America

1. Introduction

The generation of attosecond pulses with circular polarization in the extreme ultraviolet (EUV) region is currently a hot research topic, due to the important applications of these pulses, for example, investigating ultrafast processes involved in chirality-sensitive light-matter interactions [1] and ultrafast demagnetization dynamics [2, 3] in the EUV region. High order harmonics generation is an efficient way to obtain attosecond pulses. High-order harmonics (HOH) generated by nonlinear interaction of femtosecond laser with rare gas is now the main source for attosecond pulses generation. Therefore, a direct way to obtain attosecond pulses with circular polarization is generating circularly polarized HOH. However, unlike linearly polarized HOH which can be generated by a linearly polarized driving pulse, the use of driving pulses with circular polarization is not feasible for the generation of HOH with circular polarization, since the harmonic conversion efficiency exponentially decreases with increasing ellipticity of the driving laser [4].

Various techniques have been proposed and implemented for the generation of high-order harmonics with circular polarization. Zhou et al. [5] found that harmonic emission from N2 molecules can be strongly elliptically polarized even when driven by linearly polarized laser fields. However, the degree of circular polarization was low (<40%), and the molecules need to be aligned by an initial laser pulse, making the setup complex. Using bichromatic circularly polarized laser fields with opposite rotation polarization directions, Milosevic et al. [6] proposed a scheme for the production of circularly polarized harmonics. Recently, near circularly polarized HOH and attosecond pulses have been generated using ring-current states with angular momentum |m| = 6 in atoms [7] or by combining elliptically polarized laser and strong static fields in molecular ions [8,9].

Another way to generate attosecond pulses with circular polarization is by directly converting a linearly polarized attosecond pulse into a circularly polarized one, which generally needs a broadband circular polarizer in the EUV region for its polarization control. Vodungbo et al. [10] obtained circularly polarized harmonics by implementing a circular polarizer in reflection based on four mirrors coated with 35 nm of molybdenum and a 5 nm layer of B4C to prevent oxidation. But, the efficiency of this method is not high (between 2.6% and 4.4%), and the spectral bandwidth of circularly polarized harmonics with high degree of circular polarization is limited, which is less than 10 eV for more than 90% degree of circular polarization. Schmidt et al. [11] produced a free-standing multilayer foil as a transmission EUV quarter-wave plate and applied it to high harmonic radiation. A 4.6 eV broadband epllipicity of 75% at 66 eV with a transmission efficiency of 5% was achieved. In our previous paper, we designed a broadband transmission quarter-wave plate in the EUV region. Although it can provide 90° phase shift for 18 eV EUV band, the average degree of circular polarization was still not high (74.74%) [12]. In addition, the transmission multilayer is more difficult in manufacturing than a reflection one.

In this paper, we designed the broadband reflective circular polarizer (BRCP) by using the aperiodic Mo/Si multilayer structure, which have been widely applied in the design of broadband optical elements in the EUV region, such as reflective mirrors [13,14], polarizers [15,16], phase retarders [17], analyzers [18], and the attosecond compressor [19,20]. Using a standard genetic algorithm [21] combined with a Levenberg-Marquardt algorithm [22], the EUV BRCPs with various bandwidths were designed. The achievement of EUV BRCP could be used for generating circularly polarized attosecond pulse from linearly polarized one directly.

2. Theoretical analysis and design method of BRCP

2.1 Theoretical model

Figure 1 shows the schematic of a BRCP. The BRCP is constructed with N Mo/Si bi-layers, and the thickness of each layer is di (i = 1-2N, N is the bi-layer number). Consider a beam of light travelling along the z direction and being incident on the surface of the BRCP, and then reflected by the BRCP. θ and α are the grazing incidence angle and the azimuthal angle for the incident beam. The electric field of the light E can be described by two orthogonal components Ep and Es. The direction of Ep and Es are ep and es respectively. Then z = ep × es. In this way, E can be expressed as

 figure: Fig. 1

Fig. 1 Schematic of a BRCP.

Download Full Size | PPT Slide | PDF

E(z,t)=(Epep+Eses)exp[i(ωtkz)].

2.2 Stokes parameters and Muller matrix

The polarization state of a beam can be described by the Stokes vector, S which is defined as follows,

(S0S1S2S3)=((|Ep|2+|Es|2)/2(|Ep|2|Es|2)/2|EpEs|cos(φpφs)|EpEs|sin(φpφs)).

The interaction of the light with a BRCP can be described by the Muller matrix M of this BRCP. After the interaction, the Stokes vector becomes S’ = MS. In the case of a BRCP with complex reflective coefficients

rp=|rp|exp(iφp)andrs=|rs|exp(iφs).

Then we have

M=12(|rp|2+|rs|2)(1cos(2Ψ)00cos(2Ψ)10000sin(2Ψ)cos(Δ)sin(2Ψ)sin(Δ)00sin(2Ψ)sin(Δ)sin(2Ψ)cos(Δ)).
tan(Ψ)=|rprs|andΔ=φpφs.

2.3 Degree of circular polarization and circular reflection

The corresponding Stokes vector of incident linearly polarized light with its polarization plane rotated by the azimuthal angle α compared to ep (Fig. 1) can be written as

Si=I0(1cos(2α)sin(2α)0),
where I0 = |E0|2/2 is proportional to the intensity of the incident light.

When the light is reflected by a BRCP, the Stokes vector is transformed into

Sr=(Sr0Sr1Sr2Sr3)=MSi=I02(|rp|2+|rs|2)(1cos(2Ψ)cos(2α)cos(2α)cos(2Ψ)sin(2α)sin(2Ψ)cos(Δ)sin(2α)sin(2Ψ)sin(Δ)).

The degree of circular polarization of reflected light Pc can be retrieved,

Pc=|Sr3|Sr0=|sin(2α)sin(2Ψ)cos(Δ)|1cos(2Ψ)cos(2α).

According to Eq. (8), we know that obtaining circular polarization (Pc = 1) requires a phase-shift of 90 degree, and should meet the requirement that the value of α equals to Ψ. For a circular polarizer working at a particular wavelength, the value of α can be adjusted to be Ψ by rotating polarizer. However, for a BRCP, a unified Ψ (|rp/rs|) in the desired spectral region is necessary to realize 100% circular polarization degree in the band, which makes the design of a BRCP difficult.

The circular reflection Rc, which can be seen as the ratio between the number of photons circularly polarized after reflection and the number of incident photons, can be written as,

Rc=|Sr3|I0=(|rp|2+|rs|2)2|sin(2α)sin(2Ψ)cos(Δ)|.

2.4 Design method

For the design of a BRCP, a standard genetic algorithm (GA) was used. In addition, a Levenberg-Marquardt (LM) algorithm inserts into the GA to improve its convergence speed, and save the design time. Since a good BRCP should possess high Pc and Rc, the merit function (MF) in GA used for BRCP design was written as follow,

MF=(1nj=1n(1Pc(Ej)Rc(Ej))2)1/2,
where Pc(Ej) and Rc(Ej) are the degree of circular polarization and circular reflection at photon energy Ej. n is the number of energies in the desired EUV region. By minimizing the MF, a BRCP with high-performance can be found by the GA.

The optical constants of Mo and Si used in the simulation were derived from the handbook edited by Henke et al. [23]. To provide a reasonable prediction of the characteristics of the designed multilayer structure, the inter-diffusion effect between the Mo and Si layers was considered in all cases following a proven model used in the realistic design of aperiodic Mo/Si multilayers [21].

3. Results and discussion

3.1 Performance analysis of BRCP

To verify the design method of BRCP described in section 2, we designed three BRCP samples centered at 90 eV with 6, 12 and 18 eV bandwidth (ΔE = 6, 12, 18 eV) respectively, using Mo/Si multilayer with 30 bi-layers (N = 30). The grazing incident angle of light was set to 30°, which has been proven to be helpful for the generation of large reflective phase shift [24]. Figure 2 gives the layer distribution of the designed BRCPs. It is seen that all BRCPs exhibit aperiodic structures.

 figure: Fig. 2

Fig. 2 The layer distributions of the designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.

Download Full Size | PPT Slide | PDF

To further investigate the designed BRCPs, two performance parameters, the degree of circular polarization of reflected light Pc and the circular reflection Rc of BRCP were calculated in its desired spectral region, as shown in Fig. 3. Three BRCPs all show nearly 100% circular polarization degree in their respective band. The average degree of circular polarization Pca is up to 99.71%, 99.61% or 99.54% for the BRCP with 6, 12 or 18 eV respectively, indicating good polarization characteristics of designed BRCPs (Table 1). In addition, the average circular reflection Rca decreases from 7.56% to 4.05% when the bandwidth of BRCP increases from 6 to 18 eV. When the photon energy of incident light approaches Si L-edge (100 eV), the circular reflection Rc of BRCPs becomes high for all three cases, due to low absorption of material in multilayer.

 figure: Fig. 3

Fig. 3 The degree of circular polarization of reflected light Pc and the circular reflection Rc of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Performance parameters of designed BRCPs

The design procedure, implemented through the GA algorithm, was used to search for stable multilayer structures, i.e., not critically dependent on deposition errors of the thickness of the layers. Therefore, we tested the structural stability of the designed BRCPs shown in Fig. 1 using the method described in [25]. Five hundred test samples were considered. The values of the degree of circular polarization of reflected light and the circular reflection in the design band for these 500 samples were calculated and analyzed by randomly varying (in the range of ± 1 Å) the thickness of the layers of the nominal structures. The means of Pca (Rca)of 500 samples for ΔE = 6, 12, 18 eV are 99.50%, 99.39%, 99.04% (7.57%, 6.96%, 4.05%). The deviations of Pca and Rca for three cases are all less than 1%, showing good stability of the designed BRCPs against layer-thickness deposition errors.

3.2 Origin of high circular polarization degree

As described in section 2, broadband phase shift of 90 degree and unified Ψ (|rp/rs|) in the desired spectral region is necessary for a perfect BRCP. To investigate the reason of nearly 100% circular polarization degree of designed BRCPs, the values of phase shift Δ and |rp/rs| were calculated, as shown in Fig. 4. It can be seen that the average phase shift Δa in the desired spectral region are all very close to 90 degree (as shown in Table 1). In addition, |rp/rs| of each BRCP fluctuates around a particular value, which indicates that a nearly unified Ψ can be found for realizing high circular polarization degree in a broad band. Table 1 lists the optimized azimuthal angle for each BRCP. Therefore, our designed BRCPs all possess broadband phase shift of nearly 90 degree and almost unified Ψ (|rp/rs|) in the desired spectral region, which is considered to be the reason of the achievement of high degree of circular polarization.

 figure: Fig. 4

Fig. 4 The phase shift Δ and |rp/rs| of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.

Download Full Size | PPT Slide | PDF

3.3 Pulse response of BRCP for attosecond pulse

The designed BRCPs can be used to converting a linearly polarized attosecond pulse into a circularly polarized one, due to its ability of broadband polarization control in the EUV region. When using a BRCP for polarization control of an incident attosecond pulse, the preservation of short pulse duration is usually the paramount requirement. However, an unchirped incident pulse will be broadened temporally when reflected by the multilayer with group delay dispersion. To study the pulse broadening characteristics of designed BRCPs, three unchirped isolated attosecond pulses with smoothed flat-top intensity distributions, similar to the plateau region of a high-harmonic spectrum near the cutoff, were modeled in our simulation [26]. The pulses were all centered at 90 eV, and with 6, 12 and 18 eV spectral bandwidth respectively. We assumed each pulse reflected by the BRCP with the same bandwidth. The temporal intensity shapes of the input pulse and of the s- and p-polarized reflected pulses for each case are plotted in Fig. 5.

 figure: Fig. 5

Fig. 5 The temporal intensity shapes of an input pulse with (a) 6 eV, (b) 12 eV and (c) 18 eV band width (black solid line), and their s- (red dash line) and p-polarized (blue dot line) output pulses after reflected by the corresponding BRCP.

Download Full Size | PPT Slide | PDF

After reflected by the BRCPs, the temporal full-width at half-maximum (FWHM) of attosecond pulses increased from 610, 305, 203 as to 615, 307, 223 as for s-polarized reflected pulses, and to 613, 308, 223 as for p-polarized reflected pulses. The pulse broadening was small in each case, which was beneficial for preserving short duration of incident attosecond pulse. To investigate the origin of small pulse broadening achieved by the designed BRCPs, we calculated reflective phase (φs and φp) of those BRCPs for s- and p-polarized light in their design bands (as shown in Fig. 6). Each BRCP exhibited nearly linear φs and φp (i.e., small group delay dispersion) throughout the energy range of its target attosecond pulse, leading to small pulse broadening.

 figure: Fig. 6

Fig. 6 The reflective phases (φs and φp) of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this paper, a design method of EUV BRCP was proposed. Using this method, we designed three BRCP samples with 6, 12 and 18 eV bandwidth respectively. By analyzing their performances, we found that three designed BRCPs all exhibited nearly 100% circular polarization degree in their design band. In addition, the circular reflections were also considerable for the practical purpose, which were 7.57%, 6.96% and 4.05% for the BRCP with 6, 12 and 18 eV bandwidth respectively. Nearly 90 degree phase shift and almost unified Ψ (or |rp/rs|) in the design band realized by the BRCPs were considered to be the origin of the achievement of nearly 100% circular polarization degree. In addition, the temporal full-width at half-maximum (FWHM) of attosecond pusles increased from 610, 305, 203 as to 615, 307, 223 as for s-polarized reflected pulses, and to 613, 308, 223 as for p-polarized reflected pulses, indicating weak effect of pulse broadening of designed BRCPs. Overall, the proposed EUV BRCPs can be used for controlling the polarization of broadband EUV source, and generating circularly polarized attosecond pulse.

Funding

National Natural Science Foundation of China (NSFC) (11547183, 11547241); National Key Research and Development Program of China (2016YFB0302000); Natural Science Foundation of Beijing (2162033); Higher Education and High-quality and World-class Universities (PY201612).

References and links

1. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016). [CrossRef]  

2. C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009). [CrossRef]   [PubMed]  

3. C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

4. A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014). [CrossRef]  

5. X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009). [CrossRef]   [PubMed]  

6. D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000). [CrossRef]  

7. X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008). [CrossRef]   [PubMed]  

8. K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011). [CrossRef]  

9. K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012). [CrossRef]  

10. B. Vodungbo, A. Barszczak Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lüning, and P. Zeitoun, “Polarization control of high order harmonics in the EUV photon energy range,” Opt. Express 19(5), 4346–4356 (2011). [CrossRef]   [PubMed]  

11. J. Schmidt, A. Guggenmos, M. Hofstetter, S. H. Chew, and U. Kleineberg, “Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate,” Opt. Express 23(26), 33564–33578 (2015). [CrossRef]   [PubMed]  

12. S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015). [CrossRef]  

13. M. Hatayama, H. Takenaka, E. M. Gullikson, A. Suda, and K. Midorikawa, “Broadband extreme ultraviolet multilayer mirror for supercontinuum light at a photon energy of 35-65 eV,” Appl. Opt. 48(29), 5464–5466 (2009). [CrossRef]   [PubMed]  

14. S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009). [CrossRef]  

15. Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006). [CrossRef]  

16. M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011). [CrossRef]  

17. Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007). [CrossRef]  

18. Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006). [CrossRef]  

19. M. Hofstetter, M. Schultze, M. Fiess, B. Dennhardt, A. Guggenmos, J. Gagnon, V. S. Yakovlev, E. Goulielmakis, R. Kienberger, E. M. Gullikson, F. Krausz, and U. Kleineberg, “Attosecond dispersion control by extreme ultraviolet multilayer mirrors,” Opt. Express 19(3), 1767–1776 (2011). [CrossRef]   [PubMed]  

20. C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012). [CrossRef]  

21. A. L. Aquila, F. Salmassi, F. Dollar, Y. Liu, and E. Gullikson, “Developments in realistic design for aperiodic Mo/Si multilayer mirrors,” Opt. Express 14(21), 10073–10078 (2006). [CrossRef]   [PubMed]  

22. Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006). [CrossRef]   [PubMed]  

23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]  

24. C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015). [CrossRef]  

25. M. Suman, F. Frassetto, P. Nicolosi, and M. G. Pelizzo, “Design of aperiodic multilayer structures for attosecond pulses in the extreme ultraviolet,” Appl. Opt. 46(33), 8159–8169 (2007). [CrossRef]   [PubMed]  

26. A. Wonisch, U. Neuhäusler, N. M. Kabachnik, T. Uphues, M. Uiberacker, V. Yakovlev, F. Krausz, M. Drescher, U. Kleineberg, and U. Heinzmann, “Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses,” Appl. Opt. 45(17), 4147–4156 (2006). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
    [Crossref]
  2. C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
    [Crossref] [PubMed]
  3. C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).
  4. A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
    [Crossref]
  5. X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
    [Crossref] [PubMed]
  6. D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
    [Crossref]
  7. X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
    [Crossref] [PubMed]
  8. K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011).
    [Crossref]
  9. K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012).
    [Crossref]
  10. B. Vodungbo, A. Barszczak Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lüning, and P. Zeitoun, “Polarization control of high order harmonics in the EUV photon energy range,” Opt. Express 19(5), 4346–4356 (2011).
    [Crossref] [PubMed]
  11. J. Schmidt, A. Guggenmos, M. Hofstetter, S. H. Chew, and U. Kleineberg, “Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate,” Opt. Express 23(26), 33564–33578 (2015).
    [Crossref] [PubMed]
  12. S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
    [Crossref]
  13. M. Hatayama, H. Takenaka, E. M. Gullikson, A. Suda, and K. Midorikawa, “Broadband extreme ultraviolet multilayer mirror for supercontinuum light at a photon energy of 35-65 eV,” Appl. Opt. 48(29), 5464–5466 (2009).
    [Crossref] [PubMed]
  14. S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
    [Crossref]
  15. Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
    [Crossref]
  16. M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
    [Crossref]
  17. Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
    [Crossref]
  18. Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
    [Crossref]
  19. M. Hofstetter, M. Schultze, M. Fiess, B. Dennhardt, A. Guggenmos, J. Gagnon, V. S. Yakovlev, E. Goulielmakis, R. Kienberger, E. M. Gullikson, F. Krausz, and U. Kleineberg, “Attosecond dispersion control by extreme ultraviolet multilayer mirrors,” Opt. Express 19(3), 1767–1776 (2011).
    [Crossref] [PubMed]
  20. C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
    [Crossref]
  21. A. L. Aquila, F. Salmassi, F. Dollar, Y. Liu, and E. Gullikson, “Developments in realistic design for aperiodic Mo/Si multilayer mirrors,” Opt. Express 14(21), 10073–10078 (2006).
    [Crossref] [PubMed]
  22. Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006).
    [Crossref] [PubMed]
  23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [Crossref]
  24. C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
    [Crossref]
  25. M. Suman, F. Frassetto, P. Nicolosi, and M. G. Pelizzo, “Design of aperiodic multilayer structures for attosecond pulses in the extreme ultraviolet,” Appl. Opt. 46(33), 8159–8169 (2007).
    [Crossref] [PubMed]
  26. A. Wonisch, U. Neuhäusler, N. M. Kabachnik, T. Uphues, M. Uiberacker, V. Yakovlev, F. Krausz, M. Drescher, U. Kleineberg, and U. Heinzmann, “Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses,” Appl. Opt. 45(17), 4147–4156 (2006).
    [Crossref] [PubMed]

2016 (1)

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

2015 (3)

J. Schmidt, A. Guggenmos, M. Hofstetter, S. H. Chew, and U. Kleineberg, “Generation of circularly polarized high harmonic radiation using a transmission multilayer quarter waveplate,” Opt. Express 23(26), 33564–33578 (2015).
[Crossref] [PubMed]

S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
[Crossref]

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

2014 (1)

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

2012 (3)

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012).
[Crossref]

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

2011 (4)

B. Vodungbo, A. Barszczak Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lüning, and P. Zeitoun, “Polarization control of high order harmonics in the EUV photon energy range,” Opt. Express 19(5), 4346–4356 (2011).
[Crossref] [PubMed]

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011).
[Crossref]

M. Hofstetter, M. Schultze, M. Fiess, B. Dennhardt, A. Guggenmos, J. Gagnon, V. S. Yakovlev, E. Goulielmakis, R. Kienberger, E. M. Gullikson, F. Krausz, and U. Kleineberg, “Attosecond dispersion control by extreme ultraviolet multilayer mirrors,” Opt. Express 19(3), 1767–1776 (2011).
[Crossref] [PubMed]

2009 (4)

M. Hatayama, H. Takenaka, E. M. Gullikson, A. Suda, and K. Midorikawa, “Broadband extreme ultraviolet multilayer mirror for supercontinuum light at a photon energy of 35-65 eV,” Appl. Opt. 48(29), 5464–5466 (2009).
[Crossref] [PubMed]

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

2008 (1)

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

M. Suman, F. Frassetto, P. Nicolosi, and M. G. Pelizzo, “Design of aperiodic multilayer structures for attosecond pulses in the extreme ultraviolet,” Appl. Opt. 46(33), 8159–8169 (2007).
[Crossref] [PubMed]

2006 (5)

2000 (1)

D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
[Crossref]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Adam, R.

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Aeschlimann, M.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Aquila, A. L.

Baltuška, A.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Bandrauk, A. D.

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012).
[Crossref]

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011).
[Crossref]

Barszczak Sardinha, A.

Barth, I.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Becker, W.

D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
[Crossref]

Blanchet, V.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Burgy, F.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Calegari, F.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

Chen, L.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Chen, L. Y.

Chen, S.

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
[Crossref]

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

Chen, Z.

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

Cheng, X.

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Chew, S. H.

Comby, A.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Delmotte, F.

Deng, S.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Dennhardt, B.

Descamps, D.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Ding, Y.

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

Dollar, F.

Drescher, M.

Dumergue, M.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Fabre, B.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Fan, Z.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Ferre, A.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Fiess, M.

Frassetto, F.

Gagnon, J.

Gao, H.

S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
[Crossref]

Garcia, G. A.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Gaupp, A.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Gautier, J.

Geneaux, R.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Giglia, A.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Goulielmakis, E.

Grychtol, P.

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Gu, Z.

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Gu, Z. X.

Guggenmos, A.

Gullikson, E.

Gullikson, E. M.

Handschin, C.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Hatayama, M.

Heinzmann, U.

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

Hofstetter, M.

Iaquaniello, G.

Jonnard, P.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Kabachnik, N. M.

Kapteyn, H. C.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Keith Powell, A.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Kienberger, R.

Kitzler, M.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Kleineberg, U.

Kopold, R.

D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
[Crossref]

Krausz, F.

Lambert, G.

La-O-Vorakiat, C.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Le Guen, K.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Li, C.

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Li, W.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Lin, C.

S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
[Crossref]

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

Liu, D.

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

Liu, L.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Liu, Y.

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

A. L. Aquila, F. Salmassi, F. Dollar, Y. Liu, and E. Gullikson, “Developments in realistic design for aperiodic Mo/Si multilayer mirrors,” Opt. Express 14(21), 10073–10078 (2006).
[Crossref] [PubMed]

Lock, R.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Lozano, M.

Lüning, J.

MacDonald, M.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Mahne, N.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Mairesse, Y.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Mathias, S.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Merceron, L.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Mevel, E.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Michette, A. G.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006).
[Crossref] [PubMed]

Midorikawa, K.

Miloševic, D. B.

D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
[Crossref]

Murnane, M. M.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Nahon, L.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Nannarone, S.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Nembach, H.

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Nembach, H. T.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

Neuhäusler, U.

Nicolosi, P.

Nisoli, M.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

Pelizzo, M. G.

Petit, S.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Pfauntsch, S. J.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006).
[Crossref] [PubMed]

Pons, B.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Powell, A. K.

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006).
[Crossref] [PubMed]

Qi, H.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Ruchon, T.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Salmassi, F.

Sansone, G.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

Schäfers, F.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Z. S. Wang, H. C. Wang, J. T. Zhu, F. L. Wang, Z. X. Gu, L. Y. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broad angular multilayer analyzer for soft X-rays,” Opt. Express 14(6), 2533–2538 (2006).
[Crossref] [PubMed]

Schmidt, J.

Schneider, C. M.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Schultze, M.

Scrinzi, A.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Sebban, S.

Shao, J.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Shaw, J. M.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Siemens, M.

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Silva, T. J.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Staedter, D.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Stagira, S.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

Suda, A.

Suman, M.

Takenaka, H.

Tan, M.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Teale, C. A.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

Turgut, E.

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

Uiberacker, M.

Uphues, T.

Valentin, C.

Vodungbo, B.

Vozzi, C.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

Wagner, N.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Wang, B.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Wang, F.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Wang, F. L.

Wang, H.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Wang, H. C.

Wang, Z.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Wang, Z. S.

Weber, S.

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Wei, C.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Wickenhauser, M.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Wonisch, A.

Wu, W.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Wu, Y.

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Xie, X.

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

Xu, Y.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Yakovlev, V.

Yakovlev, V. S.

Yi, K.

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

Yuan, K.-J.

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012).
[Crossref]

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011).
[Crossref]

Zeitoun, P.

Zhang, S.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Zhang, Z.

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Zhou, X.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

Zhu, J.

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

Zhu, J. T.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

Z. Wang, H. Wang, J. Zhu, Z. Zhang, Y. Xu, S. Zhang, W. Wu, F. Wang, B. Wang, L. Liu, L. Chen, A. G. Michette, S. J. Pfauntsch, A. Keith Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet,” Appl. Phys. Lett. 90(3), 031901 (2007).
[Crossref]

Z. Wang, H. Wang, J. Zhu, Y. Xu, S. Zhang, C. Li, F. Wang, Z. Zhang, Y. Wu, X. Cheng, L. Chen, A. G. Michette, S. J. Pfauntsch, A. K. Powell, F. Schäfers, A. Gaupp, and M. MacDonald, “Extreme ultraviolet broadband Mo/Y multilayer analyzers,” Appl. Phys. Lett. 89(24), 241120 (2006).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[Crossref]

IEEE Photonics J. (1)

C. Lin, S. Chen, D. Liu, and Y. Liu, “Attosecond stretcher–compressor using aperiodic multilayer,” IEEE Photonics J. 4(5), 1281–1287 (2012).
[Crossref]

J. Appl. Phys. (1)

Z. Wang, H. Wang, J. Zhu, F. Wang, Z. Gu, L. Chen, A. G. Michette, A. K. Powell, S. J. Pfauntsch, and F. Schäfers, “Broadband multilayer polarizers for the extreme ultraviolet,” J. Appl. Phys. 99(5), 056108 (2006).
[Crossref]

J. Opt. (1)

S. Chen, C. Lin, and H. Gao, “Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses,” J. Opt. 17(7), 075601 (2015).
[Crossref]

J. Phys. B-At. Mol. Opt. (2)

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B-At. Mol. Opt. 49(6), 062001 (2016).
[Crossref]

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses,” J. Phys. B-At. Mol. Opt. 45(7), 074001 (2012).
[Crossref]

Nat. Photonics (1)

A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Geneaux, L. Merceron, E. Mevel, L. Nahon, S. Petit, B. Pons, D. Staedter, S. Weber, T. Ruchon, V. Blanchet, and Y. Mairesse, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nat. Photonics 9(2), 93–98 (2014).
[Crossref]

Nucl. Instrum. Meth. A (1)

M. Tan, J. Zhu, L. Chen, Z. Wang, K. Le Guen, P. Jonnard, A. Giglia, N. Mahne, and S. Nannarone, “Molybdenum–silicon aperiodic multilayer broadband polarizer for 13-30nm wavelength range,” Nucl. Instrum. Meth. A 654(1), 588–591 (2011).
[Crossref]

Opt. Commun. (2)

S. Deng, H. Qi, C. Wei, K. Yi, Z. Fan, and J. Shao, “Design of broadband and broad angular Cr/C multilayer reflector for “near water window” region,” Opt. Commun. 282(17), 3513–3517 (2009).
[Crossref]

C. Lin, S. Chen, Z. Chen, and Y. Ding, “Design of reflective quarter-wave plates in extreme ultraviolet,” Opt. Commun. 347(15), 98–101 (2015).
[Crossref]

Opt. Express (5)

Phys. Rev. A (2)

D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high-order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61(6), 063403 (2000).
[Crossref]

K.-J. Yuan and A. D. Bandrauk, “Circularly polarized molecular high-order harmonic generation in H2+ with intense laser pulses and static fields,” Phys. Rev. A 83(6), 063422 (2011).
[Crossref]

Phys. Rev. Lett. (3)

X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, and M. Kitzler, “Internal momentum state mapping using high harmonic radiation,” Phys. Rev. Lett. 101(3), 033901 (2008).
[Crossref] [PubMed]

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[Crossref] [PubMed]

C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray Source,” Phys. Rev. Lett. 103(25), 257402 (2009).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. La-O-Vorakiat, E. Turgut, C. A. Teale, H. C. Kapteyn, M. M. Murnane, S. Mathias, M. Aeschlimann, C. M. Schneider, J. M. Shaw, H. T. Nembach, and T. J. Silva, “Ultrafast demagnetization measurements Using extreme ultraviolet light: comparison of electronic and magnetic contributions,” Phys. Rev. X 2(1), 011005 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a BRCP.
Fig. 2
Fig. 2 The layer distributions of the designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.
Fig. 3
Fig. 3 The degree of circular polarization of reflected light Pc and the circular reflection Rc of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.
Fig. 4
Fig. 4 The phase shift Δ and |rp/rs| of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.
Fig. 5
Fig. 5 The temporal intensity shapes of an input pulse with (a) 6 eV, (b) 12 eV and (c) 18 eV band width (black solid line), and their s- (red dash line) and p-polarized (blue dot line) output pulses after reflected by the corresponding BRCP.
Fig. 6
Fig. 6 The reflective phases (φs and φp) of designed BRCPs with (a) 6 eV, (b) 12 eV and (c) 18 eV bandwidths respectively.

Tables (1)

Tables Icon

Table 1 Performance parameters of designed BRCPs

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( z , t ) = ( E p e p + E s e s ) exp [ i ( ω t k z ) ] .
( S 0 S 1 S 2 S 3 ) = ( ( | E p | 2 + | E s | 2 ) / 2 ( | E p | 2 | E s | 2 ) / 2 | E p E s | cos ( φ p φ s ) | E p E s | sin ( φ p φ s ) ) .
r p = | r p | exp ( i φ p ) and r s = | r s | exp ( i φ s ) .
M = 1 2 ( | r p | 2 + | r s | 2 ) ( 1 cos ( 2 Ψ ) 0 0 cos ( 2 Ψ ) 1 0 0 0 0 sin ( 2 Ψ ) cos ( Δ ) sin ( 2 Ψ ) sin ( Δ ) 0 0 sin ( 2 Ψ ) sin ( Δ ) sin ( 2 Ψ ) cos ( Δ ) ) .
tan ( Ψ ) = | r p r s | and Δ = φ p φ s .
S i = I 0 ( 1 cos ( 2 α ) sin ( 2 α ) 0 ) ,
S r = ( S r 0 S r 1 S r 2 S r 3 ) = M S i = I 0 2 ( | r p | 2 + | r s | 2 ) ( 1 cos ( 2 Ψ ) cos ( 2 α ) cos ( 2 α ) cos ( 2 Ψ ) sin ( 2 α ) sin ( 2 Ψ ) cos ( Δ ) sin ( 2 α ) sin ( 2 Ψ ) sin ( Δ ) ) .
P c = | S r 3 | S r 0 = | sin ( 2 α ) sin ( 2 Ψ ) cos ( Δ ) | 1 cos ( 2 Ψ ) cos ( 2 α ) .
R c = | S r 3 | I 0 = ( | r p | 2 + | r s | 2 ) 2 | sin ( 2 α ) sin ( 2 Ψ ) cos ( Δ ) | .
MF = ( 1 n j = 1 n ( 1 P c ( E j ) R c ( E j ) ) 2 ) 1 / 2 ,

Metrics