Abstract

Two-dimensional (2D) black phosphorus (BP) with direct band gap, bridges the characteristics of graphene with a zero or near-zero band gap and transition metal dichalcogenides with a wide band gap. In the infrared (IR) regime, 2D BP materials can attenuate electromagnetic energy due to losses derived from its surface conductivity. This paper proposes an IR absorber based on 2D BP metamaterials. It consists of multi-layer BP-based nano-ribbon pairs, each formed by two orthogonally stacked nano-ribbons. The multi-layer BP metamaterials and bottom gold mirror together form a Fabry-Perot resonator that could completely inhibit light transmission to create strong absorption through the BP metamaterials. Unlike previously reported BP metamaterial absorbers, this new structure can operate at two frequency bands with absorption > 90% in each owning to the first-order and second-order Fabry-Perot resonant frequencies. It is also polarization independent due to the fourfold rotational structural symmetry. To our best knowledge, this is the first report on using BP metamaterials in an absorber that operates independent of polarization and in dual bands.

© 2017 Optical Society of America

1. Introduction

Two-dimensional (2D) materials with atomic-scale thicknesses, such as graphene, transition metal dichalcogenides (TMDs) and black phosphorus (BP), have shown outstanding potentials in many fields such as photonics, optoelectronics, imaging, and telecommunications [1–8]. The applications include sensors [1], surface plasmon polariton (SPP) waveguides [2, 3], phase shifters [4], transistors [5, 6], and absorbers [7, 8]. Among these materials, graphene has the highest carrier mobility, but its zero or near-zero band gap limits its applications that require high on-off ratio and strong light-matter interaction [9]. Although some treatments such as silicon doping have been adopted to open a band gap in graphene [10], they introduce other limitations [11]. By comparison, TMDs such as MoTe2, MoSe2, and MoS2 offer noticeable band gaps, resulting in extraordinary on/off ratios (e.g. >108) [5]. However, the moderate carrier mobilities of TMDs are also a limitation in their applications [6]. Reported methods to increase the carrier mobility in TMDs have involved extremely difficult preparation processes [9].

As an alternative 2D semiconductor, BP has been exfoliated from bulk-BP by mechanical or chemical method [9, 12–14]. Recently, BP has been extensively investigated in many areas, owing to its unique optoelectronic properties, such as high carrier mobility (up to 50,000 cm2 V−1 s−1 in bulk at 30 K) [15], thickness-dependent direct band gap (from ~0.3 eV in bulk to ~2 eV in monolayer) [16–19], and a maximum theoretical carrier density of ns = 2.6 × 1014 cm−2 [20, 21]. However, the potential of BP in absorbers has been underutilized. BP-based saturable absorbers have been developed in Q-switching and mode-locking to achieve pulse emission of lasers. These studies demonstrated the BP fabrication method by exfoliation [9, 12, 14], and its application as a saturable absorber [22–24]. Nevertheless, the patterning of BP materials as metamaterials has rarely been examined. Lately, an infrared (IR) absorber has been reported, which is composed of 2D BP metamaterials sandwiched between dielectric layers and mounted on a full reflective gold mirror. Thus, incident IR light can be efficiently dissipated [25]. This BP metamaterial absorber, however, has the disadvantages of polarization dependence and single frequency band. Nevertheless, it opens a door for further research.

In this work, a BP-based 2D metamaterial is proposed as an absorber that has dual frequency bands and polarization independence. The absorber is mounted on an optically thick gold mirror, which inhibits all transmission, and forms a Fabry-Perot resonator to enhance the light-matter interaction. The trapped electromagnetic energy is dissipated through the loss in BP material. The simulation results show that the proposed absorber can operate at two frequency bands with absorption greater than 90% in the IR regime. Owing to the fourfold rotational symmetry of the structure, the absorber is polarization-independent. Moreover, the mechanisms of the dual frequency bands and polarization independence are illuminated by using Fabry-Perot resonance and field distribution, respectively.

2. Electrical model of a 2D BP layer

The atoms in a 2D BP layer are arranged to form a puckered hexagonal honeycomb structure with ridges due to sp3 hybridization, which leads to strong in-plane anisotropic electrical and optical properties [25–28]. The permittivity tensor of monolayer BP takes the form [25]

ε¯¯=[ε1000ε2000ε3],
where ε1, ε2, and ε3 are the effective permittivities along the x, y, and z axes, respectively. Mathematically, εi (i = 1, 2, 3) can be derived as [25–28]
εi=εi,r+jσiε0ωd,
where ω is the incident light frequency, ε0 is the vacuum permittivity, d is the thickness of the BP layer, and j = √−1. εi,r = 5.76 is the relative dielectric constant of BP [28], and σi is the in-plane conductivity of BP (σz0). From Eq. (2), it can be deduced that the in-plane anisotropy of BP is mainly caused by σi. Only the real part of σi causes electromagnetic loss [25]. σi can be approximated by the Drude model as [25–28]
σi=jDiπ(ω+jη)(i=1or2).
Here, ħ is the reduced Planck constant, η (eV) describes the relaxation rate, and the Drude weight Di is given as
Di=πe2nsmi,
where e is the electron charge, ns is the carrier density, and mi denotes the in-plane effective electron masses near the Γ point within the Hamiltonian model, which is stated as
m1=22γ2/Δ+ηc,m2=2vc.
If the scale length α of monolayer BP is 2.23 Å and π/α is the width of Brillouin zone [26], the parameters in Eq. (5) can be set as γ = 4α/π ηc = ħ2/(0.4m0), vc = ħ2/(0.7m0), and the band gap Δ = 2 eV by assuming a standard electron rest mass m0 = 9.10938 × 10−31 kg and a fixed η = 10 meV. Figure 1 shows σi (i = 1, 2) in a broad spectrum for different ns for monolayer BP. It can be found that σi is approximately proportional to ns, σ1 is greater than σ2 for all ns, and rates of real parts are greater than that of imaginary parts. We should notice that only the real part of σi results in electromagnetic loss.

 figure: Fig. 1

Fig. 1 Frequency dependent in-plane conductivity: Black lines and red lines denote the in-plane conductivity along the x-direction and y-direction, respectively; solid lines and dashed lines are the conductivity values for real parts and imaginary parts; hollow round lines, solid round lines, and solid diamond lines are the in-plane conductivity values for ns given as 1.0 × 1014 cm−2, 1.0 × 1013 cm−2, and 1.0 × 1012 cm−2, respectively.

Download Full Size | PPT Slide | PDF

3. Theoretic model and research method

As shown in Fig. 2(a), the upper part of the proposed absorber cell consists of N layers (N = 5) of BP-based nano-ribbon pairs embedded in a dielectric layer. In the middle of the cell there is a layer of the same dielectric material, with a fully reflective gold mirror at the bottom. Here, each nano-ribbon pair (magenta and navy) consists of two orthogonally stacked nano-ribbons, and the adjacent pairs are separated by the dielectric (cyan). It is assumed that each BP nano-ribbon has a width of w, infinite length, and identical effective permittivity. The periodicity p of the absorber lattice in Fig. 2(b) is 0.5 μm. There is also a top dielectric layer (cyan, thickness: t1) in Fig. 2(c) to prevent environmental damage to the BP material [29, 30]. It should be noticed that, as shown in Figs. 2(b) and 2(c), the ridges of the BP nano-ribbons along x-direction and y-direction are perpendicular to y-axis and x-axis, respectively. In this work, we fixed the refractive indices (n) of all dielectrics to 1.7, and the total thickness (t) of the proposed absorber to 8.5 μm. Therefore, the thickness t0 of the dielectric in the middle of the absorber is 6.0 μm when t1 is 0.5 μm and N = 5, as shown in Fig. 2(d). Due to the strong in-plane anisotropic electrical and optical properties of BP, the responses from BP-based absorbers without special treatment are usually polarization dependent. In our design, the orthogonally stacked BP nano-ribbon pairs are the key to achieve polarization independence.

 figure: Fig. 2

Fig. 2 Schematic of the proposed absorber with orthogonal BP nano-ribbon pairs. (a) 3D structure. (b) Top view of one-layer pairs with orthogonal BP-based nano-ribbons. (c) 3D structure of (b) and the dielectric. (d) Cross-section plot of (a). Magenta and navy: stacked BP nano-ribbons. Cyan: dielectric material.

Download Full Size | PPT Slide | PDF

The absorber was simulated using CST Microwave Studio, where the thickness of BP nano-ribbon can be set as 1 nm [28] and were meshed using fine grids. Periodic boundary conditions were used in the x and y directions. The incident plane wave points downwards normal to the top surface of the absorber, with the magnetic and electric fields Hy or Ey perpendicular to the x-z plane (i.e., transverse-magnetic (TM) or transverse-electric (TE) polarizations, respectively). The wavelength (λ)-dependent absorption A(λ) is expressed as 1 − R(λ) − T(λ), where R(λ) = |S11(λ)|2 and T(λ) = |S21(λ)|2 are the spectral reflection and transmission, respectively. Owing to the gold mirror used in this platform, the light transmission is inhibited completely. Therefore, the absorption can be simplified as A(λ) = 1 − R(λ).

4. Results and discussion

In the first simulation for N = 5, ns was set to be 1.0 × 1014 cm−2, t1 was fixed to 0.5 μm, and BP is monolayer. The wavelength-dependent absorption spectra for w = 0.5, 0.38, 0.34, 0.26, 0.22, 0.16, and 0.14 μm are simulated and shown in Fig. 3(a). The two main resonant peaks are labeled by λ1 and λ2. For the first resonance λ1, the peak absorption intensity monotonically decreases with decreasing w due to the larger distance between the nano-ribbons and weaker inter-ribbon coupling, and it is greater than 90% while w ≥ 0.22 μm. Moreover, this absorption peak exhibits a redshift with decreasing w. For the second resonance λ2, the absorption peak intensity first increases and then decreases by decreasing w due to the over coupling and under coupling [31] between the nano-ribbons with oversized and undersized w. An optimal w range of 0.22 ~0.26 μm was found in this work, which both A1) and A2) are greater than 90%, allowing the device to function as a dual-frequency IR absorber. The spectra for w = 0.22 μm are colored red in Fig. 3(a). When w = 0.5 μm, the structure is no longer a metamaterial because all orthogonal BP nano-ribbons now merge into a 2D slab extending infinitely in the x-y plane.

 figure: Fig. 3

Fig. 3 Simulated absorption spectra, (a) various BP nano-ribbon widths w, (b) various thickness of dielectric layer t1, (c) various BP carrier densities ns, (d) various band gaps Δ, and (e) various layer numbers N. Solid lines and solid rounds with different colors are the absorptions for TM and TE polarizations. Inset in (a) shows the detailed absorption spectra for TM polarization from 13.5 to 17.5 μm.

Download Full Size | PPT Slide | PDF

The thickness of dielectric (cyan) t1 also has effects on the absorption performance. For w = 0.22 μm with the same N and ns as above, the wavelength-dependent absorption spectra for t1 = 0.1, 0.2, 0.5, 0.7, and 0.9 μm are shown in Fig. 3(b). It can be noticed that there are little change in peak position for both λ1 and λ2 because the total thickness t is almost constant (there are significant change for λ1). For the first resonance λ1, the absorption peak increases with decreasing t1. The absorption peak for the second resonance λ2 firstly increases and then decreases. The optimal t1 range of 0.2 ~0.5 μm was found in which both A1) and A2) are greater than 90%.

The value of carrier density ns directly determines the surface conductivity of BP, which results in electromagnetic energy loss and absorption. In general, surface conductivity becomes higher with increasing ns [25]. When N = 5, t1 = 0.5 μm, w = 0.22 μm and BP is monolayer, the simulated wavelength-dependent absorption spectra are shown in Fig. 3(c) for ns = 1.0 × 1012, 1.0 × 1013, 5.0 × 1013, 7.0 × 1013, and 1.0 × 1014 cm−2. At ns = 1.0 × 1012 cm−2, despite the poor absorption, we can notice that λ1 exhibits a redshift with decreasing ns, while the position of λ2 is essentially invariant. It can also be seen that the absorption performance is enhanced with increasing ns, and the proposed absorber with ns = 1.0 × 1014 cm−2 can achieve dual-band absorption (see the red line). While an even higher absorption performance is possible with ns > 1.0 × 1014 cm−2, other factors such as optical phonons or electron-electron scattering might become dominant.

In addition, Δ is thickness-dependent. From bulk to monolayer BP, Δ monotonically increases from ~0.3 eV to ~2.0 eV. For trilayer and bilayer BP, their band gaps are ~1.07 eV and ~1.3 eV, respectively [18]. When N = 5, t1 = 0.5 μm and w = 0.22 μm, the simulated absorption spectra for BP material with trilayer, bilayer and monolayer thickare shown in Fig. 3(d). It can be found that the absorption peak intensity for λ1 monotonically increases with decreasing Δ. Moreover, despite absorption peak intensity for λ2 is very small when ns = 1.0 × 1013 cm−2, it can be discovered that the absorption peak positions for both λ1 and λ2 show blueshift with decreasing Δ.

After fixing ns = 1.0 × 1014 cm−2, Δ = 2.0 eV, t1 = 0.5 μm and w = 0.22 μm, now we investigate the relationship between the absorption performance and the number of BP-metamaterial layers (N). The simulated absorption spectra for N = 1–5 are shown in Fig. 3(e). It is obvious that the peak position of λ1 exhibits a redshift with decreasing N, while that of λ2 is almost constant. It can be seen that both absorption peaks become stronger with increasing N, which is caused by the electromagnetic energy loss in the BP arising from the real part of σi. In other words, the BP metamaterials attenuate the electromagnetic fields, as shown in Fig. 4 for N = 5. Therefore, we conclude that better absorption performance can be achieved by increasing N.

 figure: Fig. 4

Fig. 4 Simulated distributions of the electric field in 2 × 2 unit cells at two wavelengths, 34.5 μm for (a)–(f) and 17.0 μm for (g)–(l), when excited by incident waves with different polarizations. Left two columns: TM polarization, right two columns: TE polarization. (a), (b), (g), and (h) are 3D field distributions, while (c)–(f) and (i)–(l) are 2D field distributions.

Download Full Size | PPT Slide | PDF

In this design, the gold mirror does not allow the transmission of incident IR light, and it forms Fabry-Perot resonance with the BP metamaterials. Therefore, the reflected energy is dissipated through electromagnetic losses in the 2D BP and leads to strong absorption. In the Fabry-Perot resonance condition [32], the simulated resonant wavelength satisfies λk = 4nH/(2k − 1), where k is the resonant order, n is the refractive indices, and H is the thickness of resonator. λ1 and λ2 are respectively the first-order and second-order resonance wavelengths, while other weaker resonances (e.g. k = 3, 4, and 5) were also observed as shown in Fig. 3. Due to the multilayer structure of the absorber, there is no single fixed H for all resonant wavelengths. For different k, values of the variable equivalent thickness H' (H' should less than or approximately equal to t) are given in Table 1. Now the reason for the redshift of the peak position at λ1 (see Figs. 3(a) and 3(c)) is apparent: H' increases with decreasing w and ns, due to the weaker inter-ribbon coupling. Analogously, the reason for the almost constant position at λ2 in Figs. 3(b), 3(c) and 3(d) is that the equivalent thickness H' keep almost invariable.

Tables Icon

Table 1. Equivalent thicknesses H' (μm) calculated by the Fabry-Perot resonance condition H' = (2k−1)λk/4n for different resonance orders and number of BP-metamaterials layers, from the resonant peak wavelengths (μm) in Fig. 3(e).

Finally, we examine the absorptions for both TM and TE polarizations shown in Fig. 3. The excellent agreement between these two polarizations indicates that the polarization-independent performance is achieved. This is due to the presence of the fourfold rotational symmetry about the z-axis, not only the geometric shape in the unit structure but also the atomic arrangement in the BP material [33, 34] as shown in Fig. 2. These symmetries lead to the symmetrical field distributions induced by TM and TE polarizations, as shown in Fig. 4.

5. Conclusions

In summary, we have theoretically proposed an IR absorber operating in dual-frequency bands with polarization independence, based on a metamaterial of orthogonal BP nano-ribbons arranged with fourfold rotational symmetry. The dual frequency bands were achieved by optimizing the nano-ribbon width w and carrier density ns. Two absorption peaks were found at the first- and second-order Fabry-Perot resonant wavelengths. Simulation results demonstrated that increasing the number of BP absorber layers can significantly affect the intensities of both absorption peaks. Moreover, the polarization-independent property is attributed to the fourfold rotational symmetry in this BP metamaterial. The proposed BP-based absorber can be used as key components in the applications of biosensing, imaging, and communications systems.

Funding

National Natural Science Foundation of China (NSFC) (Nos. 61661012, 61461016, 61361005, and 61561013); Natural Science Foundation of Guangxi (2017JJB160028); Program for Innovation Research Team of Guilin University of Electronic Technology; Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing.

Acknowledgments

Y. J. gives special acknowledgment to Prof. Yuanbo Zhang from Fudan University for his help.

References and links

1. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015). [CrossRef]   [PubMed]  

2. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef]   [PubMed]  

3. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]  

4. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013). [CrossRef]  

5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011). [CrossRef]   [PubMed]  

6. M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013). [CrossRef]   [PubMed]  

7. X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016). [CrossRef]   [PubMed]  

8. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015). [CrossRef]   [PubMed]  

9. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015). [CrossRef]   [PubMed]  

10. S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016). [CrossRef]   [PubMed]  

11. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015). [CrossRef]   [PubMed]  

12. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015). [CrossRef]  

13. G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017). [CrossRef]   [PubMed]  

14. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017). [CrossRef]   [PubMed]  

15. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

16. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014). [CrossRef]   [PubMed]  

17. Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016). [CrossRef]  

18. L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014). [CrossRef]   [PubMed]  

19. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014). [CrossRef]  

20. D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014). [CrossRef]  

21. Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015). [CrossRef]   [PubMed]  

22. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015). [CrossRef]   [PubMed]  

23. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015). [CrossRef]  

24. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015). [CrossRef]   [PubMed]  

25. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017). [CrossRef]   [PubMed]  

26. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014). [CrossRef]   [PubMed]  

27. Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016). [CrossRef]  

28. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016). [CrossRef]   [PubMed]  

29. J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014). [CrossRef]   [PubMed]  

30. J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015). [CrossRef]   [PubMed]  

31. B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015). [CrossRef]  

32. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014). [CrossRef]   [PubMed]  

33. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009). [CrossRef]  

34. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  2. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  3. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  4. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
    [Crossref]
  5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  6. M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
    [Crossref] [PubMed]
  7. X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
    [Crossref] [PubMed]
  8. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
    [Crossref] [PubMed]
  9. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  10. S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
    [Crossref] [PubMed]
  11. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  12. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
    [Crossref]
  13. G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
    [Crossref] [PubMed]
  14. S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
    [Crossref] [PubMed]
  15. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  16. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref] [PubMed]
  17. Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
    [Crossref]
  18. L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
    [Crossref] [PubMed]
  19. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
    [Crossref]
  20. D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
    [Crossref]
  21. Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
    [Crossref] [PubMed]
  22. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  23. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
    [Crossref]
  24. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  25. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [Crossref] [PubMed]
  26. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  27. Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
    [Crossref]
  28. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  29. J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
    [Crossref] [PubMed]
  30. J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
    [Crossref] [PubMed]
  31. B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
    [Crossref]
  32. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
    [Crossref] [PubMed]
  33. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  34. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]

2017 (3)

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

2016 (5)

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

2015 (11)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

2014 (8)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

2013 (2)

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
[Crossref]

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref] [PubMed]

2012 (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (2)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2007 (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Akinwande, D.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Albrow-Owen, T.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Ali, A.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Alu, A.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
[Crossref]

Argyropoulos, C.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Bao, Q.

Bao, Z. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Castro Neto, A. H.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, K. S.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Chen, S.

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Chen, Y.

Cho, E.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chu, P. K.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Dhanabalan, S. C.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Dodabalapur, A.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Doganov, R. A.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Dressick, W. J.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Dunkelberger, A. D.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, D.

Fan, D. Y.

Fears, K. P.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Fuhrer, M. S.

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref] [PubMed]

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, Z.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Guo, Z. N.

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Hasan, T.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Hersam, M. C.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Hone, J.

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref] [PubMed]

Howe, R. C. T.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Hu, G.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Hu, Y.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Hu, Z.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Huang, H.

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Huang, X.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Iwasa, Y.

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

Jariwala, D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Jiang, G.

Jiang, X. F.

Jiang, Y.

Jin, X.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jussila, H.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Kelleher, E. J. R.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Kim, J. S.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Kim, S.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Kis, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Koenig, S. P.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Lai, K.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Lauhon, L. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Li, S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Li, X. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Liang, L.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Lin, S. S.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Lin, W.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Liu, M.

Liu, X.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Liu, X. Y.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Liu, Y.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Low, T.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Lu, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Lu, S. B.

Lu, W. J.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

Luo, A. P.

Luo, Z. C.

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Lv, H. Y.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Marks, T. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Meunier, V.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Miao, L. L.

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Owrutsky, J. C.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Özyilmaz, B.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Pan, K.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Pan, M.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Peng, P.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Ponraj, J. S.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Qi, X.

Qian, L.

Qin, Z.

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Saito, Y.

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

Sangwan, V. K.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Schmidt, H.

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Shao, D. F.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

Shao, J.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Shehzad, K.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Simpkins, B. S.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Spann, B. T.

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Sumpter, B. G.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Sun, Y. P.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

Sun, Z.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Tan, P. H.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Tang, D.

Tang, D. Y.

Tang, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Tao, L.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Wang, J.

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[Crossref] [PubMed]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Wang, P.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Wang, Z.

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Wells, S. A.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Wen, S.

Wen, S. C.

Wood, J. D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Woodward, R. I.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Wu, D.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Wu, H. A.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Wu, H. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Wu, J. B.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Wu, T. C.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Wu, Z. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, Q.

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Xie, G.

Xie, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Xu, W. C.

Xu, W. L.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xu, Y.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Xu, Z. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

Yang, Z.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Yu, X.

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Yu, X. F.

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Yuan, P.

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, H.

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

Zhang, M.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Zhang, S. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

Zhong, H. K.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhou, Y.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Zhu, W.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

Zhu, X.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

ACS Nano (1)

Y. Saito and Y. Iwasa, “Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating,” ACS Nano 9(3), 3192–3198 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

B. S. Simpkins, K. P. Fears, W. J. Dressick, B. T. Spann, A. D. Dunkelberger, and J. C. Owrutsky, “Spanning strong to weak normal mode coupling between vibrational and Fabry−Pérot cavity modes through tuning of vibrational absorption strength,” ACS Photonics 2(10), 1460–1467 (2015).
[Crossref]

Adv Sci (Weinh) (1)

S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, and H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv Sci (Weinh) 4(6), 1600305 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Adv. Optical Mater. (1)

Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, and X. Yu, “Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots,” Adv. Optical Mater. 4(8), 1223–1229 (2016).
[Crossref]

Appl. Phys. Lett. (3)

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Carrier dynamics and transient photobleaching in thin layers of black phosphorus,” Appl. Phys. Lett. 107(8), 051108 (2015).
[Crossref]

Eur. Phys. Lett. (1)

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” Eur. Phys. Lett. 108(6), 67004 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag. 61(4), 1528–1537 (2013).
[Crossref]

Nano Lett. (3)

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Nanoscale (2)

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MoS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Opt. Express (5)

Phys. Rev. B (2)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Phys. Rev. Lett. (1)

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Sci. Rep. (4)

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4(1), 4130 (2014).
[Crossref] [PubMed]

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5(1), 8989 (2015).
[Crossref] [PubMed]

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2015).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Frequency dependent in-plane conductivity: Black lines and red lines denote the in-plane conductivity along the x-direction and y-direction, respectively; solid lines and dashed lines are the conductivity values for real parts and imaginary parts; hollow round lines, solid round lines, and solid diamond lines are the in-plane conductivity values for ns given as 1.0 × 1014 cm−2, 1.0 × 1013 cm−2, and 1.0 × 1012 cm−2, respectively.
Fig. 2
Fig. 2 Schematic of the proposed absorber with orthogonal BP nano-ribbon pairs. (a) 3D structure. (b) Top view of one-layer pairs with orthogonal BP-based nano-ribbons. (c) 3D structure of (b) and the dielectric. (d) Cross-section plot of (a). Magenta and navy: stacked BP nano-ribbons. Cyan: dielectric material.
Fig. 3
Fig. 3 Simulated absorption spectra, (a) various BP nano-ribbon widths w, (b) various thickness of dielectric layer t1, (c) various BP carrier densities ns, (d) various band gaps Δ, and (e) various layer numbers N. Solid lines and solid rounds with different colors are the absorptions for TM and TE polarizations. Inset in (a) shows the detailed absorption spectra for TM polarization from 13.5 to 17.5 μm.
Fig. 4
Fig. 4 Simulated distributions of the electric field in 2 × 2 unit cells at two wavelengths, 34.5 μm for (a)–(f) and 17.0 μm for (g)–(l), when excited by incident waves with different polarizations. Left two columns: TM polarization, right two columns: TE polarization. (a), (b), (g), and (h) are 3D field distributions, while (c)–(f) and (i)–(l) are 2D field distributions.

Tables (1)

Tables Icon

Table 1 Equivalent thicknesses H' (μm) calculated by the Fabry-Perot resonance condition H' = (2k−1)λk/4n for different resonance orders and number of BP-metamaterials layers, from the resonant peak wavelengths (μm) in Fig. 3(e).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ =[ ε 1 0 0 0 ε 2 0 0 0 ε 3 ],
ε i = ε i,r + j σ i ε 0 ωd ,
σ i = j D i π(ω+jη) (i=1 or 2).
D i = π e 2 n s m i ,
m 1 = 2 2 γ 2 /Δ+ η c , m 2 = 2 v c .

Metrics