Abstract

Visible light communication (VLC) is a promising candidate for high-speed wireless communication with numerous unlicensed spectrum. To achieve high-speed data communication, it requires intense light signals concentrated on a tiny fast photodiode. The common way of using focusing optics reduces the field of view (FoV) of the photodiode due to the conservation of étendue. Luminescent solar concentrators (LSC) provide a solution to enhance the signals without affecting the FoV. In this paper we demonstrate nanopatterned LSCs fabricated on flexible plastics that achieve a doubling of optical gain compared to its traditional rectangular counterparts. These LSCs can free VLC detectors from complex active pointing and tracking systems, making them compatible with smart mobile terminals in a simple fashion.

© 2017 Optical Society of America

1. Introduction

The growing demand for high data-rate wireless communication is now challenging the limited radio frequency (RF) and microwave spectra. Visible light communication, which has been accepted to 5GPP, utilises a much broader unlicensed spectrum from 400THz to 800THz and possesses unique applicability to electromagnetic sensitive scenarios [1–5]. Numerous high-speed wireless communication data-links based on VLC have been demonstrated [6–22], making VLC an important supplement to the traditional RF/microwave wireless network. A high-speed VLC data-link requires a combination of high bandwidth and large signal-to-noise ratio (SNR) not only for transmitters, but also for receivers. A typical photodetector with a bandwidth of GHz level has an active area of around 1 mm2 or less. A common way to increase the SNR of these detectors with such small active areas is to use focusing optics like lenses or compound parabolic concentrators (CPC), however, the achieved gain in SNR comes at a cost of reduced FoV due to the conservation of étendue in geometrical optics [23].

An effective solution to overcome the étendue limit is using a non-imaging optical concentrator named LSC. An LSC is typically composed of a high refractive index fluorescent material sandwiched by low-index cladding materials [24–31]. The fluorescent material absorbs the incident light from a large surface area and re-emits at red-shifted wavelengths. Due to the total internal reflection, a large portion of the re-emission is waveguided or retained inside the LSC, part of which can be collected by a photodetector attached at the narrow edge or a small end facet. The Stokes shift in wavelength breaks the conservation of étendue and enables a large FoV without affecting the achieved optical gain. LSCs have been widely used as a simple and inexpensive method to harvest solar energy, but their potential in optical communication has only been explored very recently. In 2016, Manousiadis et al. demonstrated a glass microscope slide-based LSC with a data-rate of 190 Mbps and a FoV of ± 60° [32]. In the meantime, Peyronel et al. designed a fibre-based LSC with omnidirectional sensitivity and achieved a data-rate of 2.1 Gbps [33]. The large light-collecting surface and FoV gives LSCs unparalleled advantages since they do not require any active pointing and tracking systems, leading to a reduced complexity and cost plus a better compatibility with smart mobile devices like wireless helmets of virtual reality or unmanned aerial vehicles. In spite of these merits provided by LSCs, the challenge of improving their efficiencies for optical communication is still remaining.

In this paper, we present a novel design to address this challenge. Our approach is to use a flat CPC-shape LSC structured by a blaze grating. The CPC focuses the in-plane propagating light onto a small-area export to ensure the geometrical gain of the LSC. The asymmetric grating pattern further changes the propagation constants so that a large amount of light originally not propagating within the acceptance angle of the CPC can now escape the LSC through the export and subsequently be collected by a high bandwidth photodetector. We demonstrate such LSCs fabricated on flexible plastics, which can fit curvy surfaces. The nanoimprint lithography used for nanopatterning is cost-effective, and compatible with up-scaling and mass production. The LSCs experimentally achieve a doubling of optical gain compared to their rectangular counterparts, operating at a data-rate of 400Mbps with a FoV up to ± 60°.

2. Sample fabrication

The schematic diagram of the LSC configuration is shown in Fig. 1(a). The LSC fabrication consists of the following steps. A nanopatterned hybrid polymer stamp (Microresist Technology, OrmoStamp) was first fabricated by UV curing using a 50 mm × 50 mm blaze grating with grooves of 1800/mm (Thorlabs, GR50-1850). The stamp was then used to imprint an UV-cured optical adhesive layer (Norland NOA68) coated on the bottom surface of a 0.11 mm-thick polyethylene terephthalate (PET) sheet by UV nanoimprint lithography. After the pattern was transferred, a fluorescent conjugated polymer named SuperYellow (Xi'an Polymer Light Technology Corp.) was spin-coated on the top surface of the same PET sheet and formed an approximately 80 nm-thick film. An identical SuperYellow film was also spin-coated on a planar PET sheet, which was then attached to the nanopatterned PET sheet from the top using NOA68 with the two SuperYellow layers facing each other. The total thickness of the attached PET sheets was controlled at 0.4 mm using spacers. With the absorption from the double layers of SuperYellow, the overall optical density can reach close to 1.0. The attached PET sheets were then cut into a CPC shape with a light-collecting surface of 1200 mm2 and an export width of 3 mm [Fig. 1(b)]. The shaped sheets were finally loaded into a vacuum chamber and a 200 nm-thick silver layer was evaporated onto the bottom surface and all side facets excluding the export. Same-size unpatterned CPC-shape LSCs and unpatterned rectangular LSCs (24 mm × 50 mm) were fabricated under the same conditions and tested as references. The two designs had the identical light-collecting surface area and overall thickness of their nanopatterned counterparts, and the corresponding surface and facets were also covered with the silver layer.

 figure: Fig. 1

Fig. 1 (a) The schematic diagram of a nanopatterned CPC-shape LSC. The inset figure shows the xz-plane cross section. Thicknesses shown are not to scale. (b) Sizes of the CPC shape. (c) Photograph of a nanopatterned CPC-shape LSC. The sample was excited by a 365nm UV lamp. The inset photo shows light diffraction occurring on the flexible LSC sample from ambient environment. (d) Absorption and photoluminescence spectra of the nanopatterned CPC-shape LSC.

Download Full Size | PPT Slide | PDF

3. Results and discussion

In principle, the optical gain is given by Eq. (1):

OpticalGain=AinAoutηabsηPLQYηpropηcol.
Ain is the area of the light-collecting surface, Aout is the overall export area and Ain/Aout is the geometrical gain. ηabs is the percentage of the incident light absorbed by the fluorescent emitter, ηPLQY is the photoluminescence quantum yield (PLQY) of the emitter, ηprop is the percentage of the re-emitted photons propagating towards the export, and ηcol is the ratio of the photons collected by the photodetector over the total photons escaping from the export. SuperYellow was used as the fluorescent emitter since it has a strong oscillator strength at the wavelength of 450 nm, a PLQY value of 60% and a low self-absorption loss of around 0.5 cm−1. The absorption and photoluminescence spectra are shown in Fig. 1(d). SuperYellow has an emission peak at 545 nm and the emission peak at the export is red-shifted to 575 nm due to self-absorption and interferences. More importantly, SuperYellow has a fluorescent lifetime of around 1.3ns, leading to a theoretical modulation bandwidth of around 100MHz for VLC. The detailed characterisation of SuperYellow can be found in Appendix A.

Compared to rectangular LSCs, the exports of CPC-shape LSCs have a better match with high bandwidth photodetectors, so the efficiency of photon collection ηcol can be greatly enhanced. The CPC shape shown in Fig. 1(b) has an acceptance angle of 37°, which means a large amount of re-emission has not been utilised. The subwavelength structure of the blaze grating shifts the propagation constants of re-emitted light so that more re-emitted light can now propagating within the acceptance angle, therefore achieving an improved ηprop. The subwavelength structure of the blaze grating formed on NOA68 by UV nanoimprint lithography is characterised by atomic force microscopy (AFM) and shown in Fig. 2(a). The nanopatterned structure has a groove depth of 140 nm, a blaze angle of 20.5° and a period of 555 nm. The unit cell of nanopatterned structure is shown in Fig. 2(b). Based on the calculation using rigorous simulation (COMSOL Multiphysics), the reflection efficiency and + 1st order diffraction efficiency of re-emitted light as a function of elevation and azimuthal angles are shown in Fig. 2(c) and (d). The elevation angle ranges from 0°to 85° and the azimuthal angle from 0° to 180°, both of which have an interval of 5°. Due to the presence of nanopatterned structure, the total internal reflection of the light originally propagating within the acceptance angle (blue solid) is no longer perfect, but slightly reduced, however, the + 1st order diffraction acting on the light which can subsequently propagate within the acceptance angle because of the addition of the grating vector (green solid) can strongly increase the amount of light collected at the export. By integrating all the propagation angles of re-emission which can contribute to light collection at the export, the calculation predicts a 71.5% enhancement in optical gain using a nanopatterned CPC-shape LSC compared to its unpatterned counterpart. The + 2nd order diffraction can also contribute to light collection at the export, but its efficiency is too low, so not worth considering.

 figure: Fig. 2

Fig. 2 (a) AFM image of nanopatterned subwavelength structure on NOA68.The red cutline indicates the scan position of groove depth. (b) Unit cell of the subwavelength structure. (c) Reflection and (d) + 1st order diffraction efficiencies of the re-emitted light as a function of the elevation and azimuthal angles. The blue area represents the light originally propagating within the acceptance angle, and the green area represents the light which can subsequently propagate within the acceptance angle due to the subwavelength grating structure.

Download Full Size | PPT Slide | PDF

The optical gains of LSCs were experimentally measured using a blue LED emitting at 450 nm placed at a distance of 1 m away. The illuminated area generated by the LED has a diameter of around 60 cm, which guarantees the complete coverage of the light-collecting surface of LSCs. An optical slit with an opening of 0.4 mm × 3 mm was mounted on the head of a power meter for direct comparison of the power coming from the blue LED and from the LSC export. The achieved optical gains of different LSC structures, given by the power ratio of the LSC over the LED, are listed in Fig. 3. The rectangular LSCs have an optical gain of 1.5, whereas the unpatterned and nanopatterned CPC-shape LSCs have an optical gain of 2.2 and 3.2, respectively. This indicates nanopatterned CPC-shape LSCs can achieve a doubling of optical gain compared to the conventional rectangular counterparts. Although the absolute values of achieved gain are not outstanding, this is due to the fact that a geometrical gain of only 100 was used in this paper. The optical gain can be further improved by an order of magnitude using ultrathin plastic substrates and optical adhesive layers. The reason to set the overall thickness of LSCs to be 0.4 mm is because the SNR of received signals through the optical slit directly from the blue LED is close to the detection limit for data-rate measurements. We also found the 3 mm-wide export can maximize the focusing effect of the CPC (Appendix B). Meanwhile, compared to unpatterned CPC-shape LSCs, the optical gain of nanopatterned ones was improved by close to 50%, which matches with the simulation results, considering the loss due to self-absorption and scattering.

 figure: Fig. 3

Fig. 3 Optical gains of different LSC structures.

Download Full Size | PPT Slide | PDF

Apart from the enhanced optical gain, nanopatterned CPC-shape LSCs also possess a wide FoV. Due to the asymmetric nature of the blaze grating, the FoV was measured from two orthogonal viewing planes (xz plane and yz plane) and the results are shown in Fig. 4. For the viewing plane parallel to the export (yz plane), the measured power at the export as a function of the incident angle of the blue emission is very close to a Lambertian distribution, leading to a FoV close to ± 60° in this plane. For the viewing plane perpendicular to the export (xz plane), the power versus the incident angle has an asymmetric distribution. It achieved the maximum value at −30° with a FoV of around ± 55°. This is due to the absorption enhancement caused by the in-coupling of the blue emission via the grating structure. The large FoV observed from both planes demonstrates the capability of overcoming the étendue limit using nanopatterned CPC-shape LSCs. The power values for the incident angles larger than + 50° in the xz plane were not given in the figure, since the incident light was blocked by the power meter head.

 figure: Fig. 4

Fig. 4 FoV of nanopatterned CPC-shape LSCs. (a) Normalised power versus the incident angle viewing from yz plane. The dashed line represents a Lambertian curve. (b) Normalised power versus the incident angle viewing from xz plane.

Download Full Size | PPT Slide | PDF

We measured the performance of the receiver (a nanopatterned CPC-shape LSC integrated photodiode) based on 32 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) in a VLC system. The block diagrams of 32QAM OFDM and the experimental setup are presented in Fig. 5(a) and (b). In the experiment, the original bit sequence was mapped into complex symbols of 32QAM to form OFDM signals which were generated from an arbitrary waveform generator (AWG, Tektronix AWG710B). To avoid inter-carrier interference (ICI), a cyclic prefix with 32 points was adopted. 20 of the OFDM symbols were used as the training symbols. The signals consist of 256 sub-carriers. After amplified by a mini-circuits electrical amplifier (EA, Mini- circuits, 25dB gain), the electrical signal and DC-bias voltage were combined by a bias tee and applied to the blue LED. At the receiver, a commercially available PIN photodiode (Hamamatsu S10784) was used to receive light from the export of LSC and realise optical/electrical conversion. The received signal was amplified by an EA and recorded by a digital storage oscilloscope (Agilent 54855A DSO) for further offline signal processing. It should be noted that differential receiving was used at the receiver to mitigate distortion and increase SNR. In offline signal processing, the symbols compensated the post-equalisation non-flat frequency response with zero forcing (ZF) algorithm in frequency domain. The data was subsequently decoded and demodulated to obtain the original bit sequence and calculate the BER.

 figure: Fig. 5

Fig. 5 (a) Block diagrams and (b) Experimental setup of the high-speed VLC system based on 32QAM OFDM. (c) Compared BER performance versus data-rate for nanopatterned CPC-shape LSCs using OFDM.

Download Full Size | PPT Slide | PDF

The BER performance versus data-rate is presented in Fig. 5(c). For nanopatterned CPC-shape LSCs, the BER stays less than the 7% forward error correction (FEC) limit of 3.8x10−3 with the data-rate of 400 Mb/s at the distance of 0.5 m. As a comparison, the data-rate can only reach 250 Mb/s when the same illuminated area of photodiode was directly excited by the blue LED, since the received SNR can only support a 4QAM OFDM though the modulation bandwidth of the blue LED is slightly higher than SuperYellow. This shows a 60% improvement in the data-rate can be achieved using nanopatterned CPC-shape LSCs. Since the adopted modulation scheme is uniform modulation, the achievable data-rate can potentially reach over 1Gbps with further employment of bit- and power-loading. It is worth noting that the omnidirectional re-emission from fluorescent molecules, the variation in distance between the molecules and export as well as the reflective facet [b in Fig. 1(b)] lead to multipath propagation and consequently cause the effect of pulse-spreading. The intersymbol interference due to the spreading eventually contributes to a limitation of the bandwidth.

4. Conclusion

We have demonstrated nanopatterned CPC-shape LSCs fabricated on flexible substrates by nanoimprinted lithography. LSC configuration overcomes the étendue limit, capable of achieving a large FoV without compromising the optical gain. The nanopatterned CPC structure enables more re-emitted light propagating towards the export and collected by the photodiode, therefore improving its efficiency for VLC. As a proof-of-concept, the nanopatterned CPC-shape LSCs experimentally achieve a 100% enhancement in optical gain compared to their rectangular counterparts, operating at a data-rate of 400 Mbps with a FoV of up to ± 60°. The large light-collecting surface and FoV frees LSCs from active pointing and tracking systems for VLC, making them a very promising candidate for high-speed data communication with smart mobile terminals.

Appendix A Characterisation of the colour converter SuperYellow.

To measure the self-absorption loss of SuperYellow, a fixed area of 2 mm × 2 mm was illuminated by a 450nm blue LED and the illuminated area was moved away from the edge of the sample with a constant interval. The emission intensity, calculated by the power received at the edge, is given by the expression as follows:

I=I0exp(αx)
I0 is the constant pump intensity, x is the distance between the illuminated area and the edge, α is the self-absorption loss. The measured self-absorption loss is 0.5 cm−1 [See Fig. 6(a)]. Figure 6(b) shows the time-resolved fluorescence of SuperYellow, fitted with a double exponential function y = y0 + Aexp(-x/t1) + Bexp(-x/t2). The calculated lifetime = (At1 + Bt2)/(A + B) = 1.3ns.

 figure: Fig. 6

Fig. 6 Characterisation of SuperYellow. (a) Normalised power received at the export as a function of distance between the illuminated area and the export. (b) Normalised time-resolved fluorescence.

Download Full Size | PPT Slide | PDF

Appendix B Optimisation of LSC export size

We fabricated unpatterned CPC-shape LSCs with different export size ranging from 2 mm to 5 mm (See Table 1). All samples have the same illuminated area as their rectangular counterparts, which is 1200mm2. It is found that the optical gain reaches maximum when the width of the export is 3mm.

Tables Icon

Table 1. Size and parabolic formula of different CPC shapes. The definition of each parameter is illustrated in Fig. 1(b).

Funding

National Natural Science Foundation of China (61705042, 51677031, 61571133); Shanghai Sailing Program (16YF1400700); and the Advanced and Key Technical Innovation of Special Funds of Guangdong Province 2016 (2016B010111002).

References and links

1. D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007). [CrossRef]  

2. P. Daukantas, “Optical wireless communications: the new ‘hot spots’?” Opt. Photonics News 25(3), 34–41 (2014). [CrossRef]  

3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). [CrossRef]  

4. S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015). [CrossRef]  

5. M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016). [CrossRef]  

6. R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016). [CrossRef]  

7. D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014). [CrossRef]  

8. H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014). [CrossRef]  

9. H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016). [CrossRef]  

10. S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017). [CrossRef]  

11. G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m),” Opt. Express 23(12), 15700–15705 (2015). [CrossRef]   [PubMed]  

12. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015). [CrossRef]   [PubMed]  

13. Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

14. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016). [CrossRef]  

15. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015). [CrossRef]   [PubMed]  

16. Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015). [CrossRef]  

17. J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015). [CrossRef]   [PubMed]  

18. X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015). [CrossRef]  

19. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015). [CrossRef]   [PubMed]  

20. X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015). [CrossRef]  

21. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017). [CrossRef]   [PubMed]  

22. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017). [CrossRef]   [PubMed]  

23. G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990). [CrossRef]  

24. F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017). [CrossRef]  

25. F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015). [CrossRef]   [PubMed]  

26. Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014). [CrossRef]  

27. N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015). [CrossRef]  

28. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016). [CrossRef]  

29. L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016). [CrossRef]  

30. H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012). [CrossRef]  

31. H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016). [CrossRef]  

32. P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016). [CrossRef]  

33. T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica 3(7), 787–792 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
    [Crossref]
  2. P. Daukantas, “Optical wireless communications: the new ‘hot spots’?” Opt. Photonics News 25(3), 34–41 (2014).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  4. S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
    [Crossref]
  5. M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
    [Crossref]
  6. R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
    [Crossref]
  7. D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  8. H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
    [Crossref]
  9. H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
    [Crossref]
  10. S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
    [Crossref]
  11. G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m),” Opt. Express 23(12), 15700–15705 (2015).
    [Crossref] [PubMed]
  12. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
    [Crossref] [PubMed]
  13. Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).
  14. C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
    [Crossref]
  15. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  16. Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
    [Crossref]
  17. J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
    [Crossref] [PubMed]
  18. X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
    [Crossref]
  19. X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
    [Crossref] [PubMed]
  20. X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
    [Crossref]
  21. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
    [Crossref] [PubMed]
  22. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
    [Crossref] [PubMed]
  23. G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
    [Crossref]
  24. F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
    [Crossref]
  25. F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
    [Crossref] [PubMed]
  26. Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
    [Crossref]
  27. N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
    [Crossref]
  28. A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
    [Crossref]
  29. L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
    [Crossref]
  30. H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
    [Crossref]
  31. H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
    [Crossref]
  32. P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
    [Crossref]
  33. T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica 3(7), 787–792 (2016).
    [Crossref]

2017 (4)

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

2016 (9)

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

A. Barbet, A. Paul, T. Gallinelli, F. Balembois, J. Blanchot, S. Forget, S. Chénais, F. Druon, and P. Georges, “Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers,” Optica 3(5), 465–468 (2016).
[Crossref]

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

T. Peyronel, K. J. Quirk, S. C. Wang, and T. G. Tiecke, “Luminescent detector for free-space optical communication,” Optica 3(7), 787–792 (2016).
[Crossref]

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

2015 (12)

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref] [PubMed]

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m),” Opt. Express 23(12), 15700–15705 (2015).
[Crossref] [PubMed]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

P. Daukantas, “Optical wireless communications: the new ‘hot spots’?” Opt. Photonics News 25(3), 34–41 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

2012 (1)

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

2007 (1)

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Ali, W.

Alias, M. S.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Alivisatos, A. P.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Alouini, M. S.

Alyamani, A. Y.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Ayyash, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Balembois, F.

Barbet, A.

Blanchot, J.

Bronstein, N. D.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Brovelli, S.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Bruni, F.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

Carulli, F.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Chen, H. Y.

Chen, S. Y.

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Chénais, S.

Chi, N.

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

X. Huang, Z. Wang, J. Shi, Y. Wang, and N. Chi, “1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver,” Opt. Express 23(17), 22034–22042 (2015).
[Crossref] [PubMed]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Chi, Y. C.

Chun, H.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Chun, H. C.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Chvojka, P.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Ciaramella, E.

Collins, S.

Colombo, A.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Corsini, R.

Cossu, G.

Darling, S. B.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Daukantas, P.

P. Daukantas, “Optical wireless communications: the new ‘hot spots’?” Opt. Photonics News 25(3), 34–41 (2014).
[Crossref]

Dawson, M. D.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

DenBaars, S. P.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Dhamo, L.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

Druon, F.

Ehrenberg, S.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

Eldesouki, M. M.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Elgala, H.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Faulkner, G.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ferreira, R.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Ferry, V. E.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Forget, S.

Freund, R.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Gallinelli, T.

Georges, P.

Ghassemlooy, Z.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Gu, E. D.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Haas, H.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Haigh, P. A.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

He, J. H.

Hernandez-Noyola, H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Herrnsdorf, J.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Hilt, J.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Holt, R. J.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Hsieh, D. H.

Huang, X.

Huang, X. X.

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Huang, Y. F.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

Janjua, B.

Jungnickel, V.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Kelly, A. E.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Khreishah, A.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Klimov, V. I.

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kortshagen, U.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

Kuo, H. C.

Leonard, J. T.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Levine, B. G.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Li, H. B.

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

Li, J. H.

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

Li, L.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

Lim, J.

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

Lin, G. R.

Little, T.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Lunt, R. R.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Makarov, N. S.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Manousiadis, P.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Manousiadis, P. P.

Mauri, M.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

McDaniel, H.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

McKendry, J.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Meek, G. A.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Meinardi, F.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Mulyawan, R.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Nakamura, S.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Ng, T. K.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Nuzzo, R. G.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

O’Brien, D.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
[Crossref]

O’Brien, D. C.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

O’Brien, E.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Ooi, B. S.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Oubei, H. M.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Parry, G.

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
[Crossref]

Paul, A.

Penty, R. V.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Peyronel, T.

Potterveld, D. H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

Pourhashemi, A.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Powers, A. S.

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Quirk, K. J.

Rahaim, M.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Rajbhandari, S.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Retamal, J. R.

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Samuel, I.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Samuel, I. D. W.

Schulz, D.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Shao, S.

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

Shen, C.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Shi, J.

Shi, J. Y.

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Simonutti, R.

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Song, H. J.

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

Speck, J. S.

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

Stavrinou, P.

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
[Crossref]

Tao, L.

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

Tiecke, T. G.

Tsai, C. T.

Tsonev, D.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Turnbull, G. A.

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Velizhanin, K. A.

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Videv, S.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express 23(2), 1627–1637 (2015).
[Crossref] [PubMed]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Vithanage, D. A.

P. P. Manousiadis, S. Rajbhandari, R. Mulyawan, D. A. Vithanage, H. Chun, G. Faulkner, D. C. O’Brien, G. A. Turnbull, S. Collins, and I. D. W. Samuel, “Wide field-of-view fluorescent antenna for visible light communications beyond the etendue limit,” Optica 3(7), 702–706 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Wang, H. Y.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

J. R. Retamal, H. M. Oubei, B. Janjua, Y. C. Chi, H. Y. Wang, C. T. Tsai, T. K. Ng, D. H. Hsieh, H. C. Kuo, M. S. Alouini, J. H. He, G. R. Lin, and B. S. Ooi, “4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode,” Opt. Express 23(26), 33656–33666 (2015).
[Crossref] [PubMed]

Wang, S. C.

Wang, Y.

Wang, Y. G.

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

Wang, Z.

Wang, Z. X.

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Watson, I. M.

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Watson, S.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

White, I. H.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Wu, K. F.

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

Xiao, J. N.

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Xie, E. Y.

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Y. Xie, J. McKendry, E. D. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “LED based wavelength division multiplexed 10 Gb/s visible light communications,” J. Lightwave Technol. 34(13), 3047–3052 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

Xu, L.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Yablonnovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Yao, Y.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Zvanovec, S.

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

ACS Photonics (3)

C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. DenBaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, “High-modulation-efficiency, integrated waveguide modulator-laser diode at 448 nm,” ACS Photonics 3(2), 262–268 (2016).
[Crossref]

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors,” ACS Photonics 3(2), 278–285 (2016).
[Crossref]

N. D. Bronstein, Y. Yao, L. Xu, E. O’Brien, A. S. Powers, V. E. Ferry, A. P. Alivisatos, and R. G. Nuzzo, “Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration,” ACS Photonics 2(11), 1576–1583 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. Zhao, G. A. Meek, B. G. Levine, and R. R. Lunt, “Near-infrared harvesting transparent luminescent solar concentrators,” Adv. Opt. Mater. 2(7), 606–611 (2014).
[Crossref]

Energy Environ. Sci. (1)

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5(2), 5798–5802 (2012).
[Crossref]

IEEE Commun. Mag. (1)

M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges,” IEEE Commun. Mag. 54(2), 64–71 (2016).
[Crossref]

IEEE Photonics J. (3)

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “Enhanced performance of a high-speed WDM CAP64 VLC system employing volterra series-based nonlinear equalizer,” IEEE Photonics J. 7(3), 7901907 (2015).
[Crossref]

X. X. Huang, S. Y. Chen, Z. X. Wang, J. Y. Shi, Y. G. Wang, J. N. Xiao, and N. Chi, “2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED,” IEEE Photonics J. 7(5), 7904008 (2015).
[Crossref]

Y. G. Wang, L. Tao, X. X. Huang, J. Y. Shi, and N. Chi, “8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 7904507 (2015).

IEEE Photonics Technol. Lett. (4)

X. X. Huang, J. Y. Shi, J. H. Li, Y. G. Wang, and N. Chi, “A Gb/s VLC transmission using hardware preequalization circuit,” IEEE Photonics Technol. Lett. 27(18), 1915–1918 (2015).
[Crossref]

R. Ferreira, E. Y. Xie, J. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O’Brien, and M. D. Dawson, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technol. Lett. 28(19), 2023–2026 (2016).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. McKendry, S. Videv, E. Y. Xie, E. D. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. Samuel, and D. C. O’Brien, “Visible light communication using a blue GaN µLED and fluorescent polymer color converter,” IEEE Photonics Technol. Lett. 26(20), 2035–2038 (2014).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Energy (1)

H. B. Li, K. F. Wu, J. Lim, H. J. Song, and V. I. Klimov, “Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators,” Nat. Energy 1, 16157 (2016).
[Crossref]

Nat. Nanotechnol. (1)

F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K. A. Velizhanin, N. S. Makarov, R. Simonutti, V. I. Klimov, and S. Brovelli, “Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots,” Nat. Nanotechnol. 10(10), 878–885 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, and S. Brovelli, “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Nat. Photonics 11(3), 177–185 (2017).
[Crossref]

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nat. Photonics 1(5), 245–247 (2007).
[Crossref]

Opt. Express (5)

Opt. Photonics News (1)

P. Daukantas, “Optical wireless communications: the new ‘hot spots’?” Opt. Photonics News 25(3), 34–41 (2014).
[Crossref]

Optica (3)

Radioengineering (1)

S. Zvanovec, P. Chvojka, P. A. Haigh, and Z. Ghassemlooy, “Visible light communications towards 5G,” Radioengineering 24(1), 1–9 (2015).
[Crossref]

Sci. Rep. (2)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Lin, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s,” Sci. Rep. 7(1), 11 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. Rajbhandari, J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multigigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32(2), 023001 (2017).
[Crossref]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonnovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2), 99–111 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic diagram of a nanopatterned CPC-shape LSC. The inset figure shows the xz-plane cross section. Thicknesses shown are not to scale. (b) Sizes of the CPC shape. (c) Photograph of a nanopatterned CPC-shape LSC. The sample was excited by a 365nm UV lamp. The inset photo shows light diffraction occurring on the flexible LSC sample from ambient environment. (d) Absorption and photoluminescence spectra of the nanopatterned CPC-shape LSC.
Fig. 2
Fig. 2 (a) AFM image of nanopatterned subwavelength structure on NOA68.The red cutline indicates the scan position of groove depth. (b) Unit cell of the subwavelength structure. (c) Reflection and (d) + 1st order diffraction efficiencies of the re-emitted light as a function of the elevation and azimuthal angles. The blue area represents the light originally propagating within the acceptance angle, and the green area represents the light which can subsequently propagate within the acceptance angle due to the subwavelength grating structure.
Fig. 3
Fig. 3 Optical gains of different LSC structures.
Fig. 4
Fig. 4 FoV of nanopatterned CPC-shape LSCs. (a) Normalised power versus the incident angle viewing from yz plane. The dashed line represents a Lambertian curve. (b) Normalised power versus the incident angle viewing from xz plane.
Fig. 5
Fig. 5 (a) Block diagrams and (b) Experimental setup of the high-speed VLC system based on 32QAM OFDM. (c) Compared BER performance versus data-rate for nanopatterned CPC-shape LSCs using OFDM.
Fig. 6
Fig. 6 Characterisation of SuperYellow. (a) Normalised power received at the export as a function of distance between the illuminated area and the export. (b) Normalised time-resolved fluorescence.

Tables (1)

Tables Icon

Table 1 Size and parabolic formula of different CPC shapes. The definition of each parameter is illustrated in Fig. 1(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Optical Gain = A in A out η abs η PLQY η prop η col .
I= I 0 exp(αx)

Metrics