Abstract

A novel multilayer photonic structure is proposed to achieve the strong enhancement of light absorption in monolayer molybdenum disulfide (MoS2). Both numerical and analytical results illustrate that the absolute absorption of light in this atomically thin layer can approach as high as 96% at the visible wavelengths due to the excitation of Tamm plasmon mode. It is also found that the operating wavelength and height of sharp absorption peak are particularly dependent on the layer thicknesses and period number of dielectric grating, MoS2 position in the spacer, and incident angle of light, which contribute to the tunability and selectivity of light-MoS2 interaction. These results would provide a new pathway for the improvement of MoS2 photoluminescence and photodetection.

© 2017 Optical Society of America

1. Introduction

Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides (TMDCs), have been regarded as a newly emerging platform for the development and revolution of photonic and optoelectronic devices due to their excellent mechanical, electric, and optical properties [1]. Graphene with extremely high carrier mobility, broad spectral range, dynamic tunability, and compatibility with other photonic structures facilitates novel functional devices including fiber polarizers [2], photodetectors [3], mode-locking lasers [4], and slow light components [5]. Unlike graphene, the TMDC materials possess unique band structures similar to semiconductors, which are beneficial to the optoelectronic applications. As a special TMDC semiconductor, molybdenum disulfide (MoS2) has attracted particular attention and found important applications in the photoluminescence, photodetection, and photovoltaic devices [6–8]. This is attributed to the appearance of direct bandgap (1.8 eV) for electronic transition when MoS2 multilayers are transformed to monolayer [9]. This fascinating property of monolayer MoS2 gives rise to the ultra-high on/off ratio for field effect transistors [10]. Even so, the atomically thin layer exhibits absolutely low absorption of light. For instance, the absorption of light in monolayer MoS2 on silica substrate is less than 8% in the visible range from 400 to 700 nm [8]. The average single-pass absorption in monolayer MoS2 is about 10% in this spectral range [11]. The intrinsically poor light absorption of monolayer MoS2 induces the weak light-matter interaction in MoS2 and thus, resists its substantial applications in optoelectronic devices [12]. Enhancing light absorption of this 2D atomic layer plays a crucial role in enabling broad applications of MoS2 in optoelectronics [11, 12]. Recently, several schemes were proposed to improve the light absorption of MoS2 [11–17]. The chirped Bragg reflector was used to realize the visible light absorption of 33% in the monolayer MoS2 [13]. The nanocavity with an aluminum reflector could increase the light absorption of monolayer MoS2 to nearly 70% at the wavelength of 450 nm [12]. Piper et al. proposed the photonic crystal slab with a perfect conductor mirror to achieve near-unity absorption at 450 nm and average absorption of 51% over the spectrum from 400 to 700 nm in the MoS2 layer [11]. The magnetic coupling metasurface could boost the light absorption of monolayer MoS2 to 72.7% [14]. Particularly, the plasmonic resonances in metallic nanostructures were widely used to improve the light absorption of MoS2, providing a feasible avenue toward the selective enhancement of the photocurrent and photoluminescence in MoS2 [6, 15–17]. But, the improvement of light absorption of monolayer MoS2 is limited by the inherent loss of plasmonic resonances [14].

In this paper, we propose a new multilayer photonic configuration consisting of a dielectric Bragg grating, a metal film, and a spacer between them for the enhancement of light absorption of monolayer MoS2 inserted in the spacer. The finite-difference time-domain (FDTD) simulations show that the absorption of light in monolayer MoS2 can reach as high as 96% due to the strong field confinement of Tamm plasmon (TP) modes in the spacer, which is a remarkable value compared with the previous results. The simulation results agree well with the analytical calculations. Meanwhile, the operating wavelength and efficiency of MoS2 absorption strongly rely on the layer thicknesses and period number of dielectric grating, MoS2 position in the spacer, and incident angle of light. These results can offer a promising way for the tunability and selectivity of the enhancement of light-matter interaction in 2D materials, and find special applications in the MoS2 photoluminescence and photodetection.

2. Structure and model

As depicted in Fig. 1(a), the proposed configuration is composed of a dielectric Bragg grating, a metal film deposited on a substrate, a spacer between the grating and metal film. The monolayer MoS2 is inserted in the spacer. The light with angle θ is incident and propagates in the multilayer structure. Here, the alternatively stacked layers of Bragg grating are selected as Silicon dioxide (SiO2) and Titanium dioxide (TiO2), whose refractive indices can be set as ns = 1.45 and nt = 2.13 in the wavelengths of interest, respectively [18,19]. The complex permittivity of metal (silver) can be typically described by the Drude model: εAg(ω) = ε-ωp2/[ω(ω + )] [20]. Here, ω = 2πc/λ is the angular frequency of light in air, c is the light speed in vacuum, and λ is the light wavelength. ε, ωp, and γ stand for the relative permittivity at the infinite frequency, bulk plasma frequency, and electron collision frequency, respectively. For silver, these parameters can be set as ε = 3.7, γ = 0.018 eV, and ωp = 9.1 eV [21–23]. The wavelength-dependent complex permittivity of monolayer MoS2 recently measured by Li et al. is employed in our calculations [24]. The thicknesses of MoS2, SiO2, TiO2, spacer, and metal layers are set as do = 0.615 nm, ds = 110 nm, dt = 60 nm, dc = 250 nm, and da = 200 nm, respectively. The distance between the MoS2 and metal film is initially set as dm = 100 nm. First, we consider that the p-polarized light normally impinges on the structure (θ = 0). The light propagation characteristics in the multilayer can be studied numerically by the FDTD method. In FDTD simulations, the perfectly matched layer absorbing boundary condition is utilized on the right and left sides of computational domain. The periodic boundary condition is set at the bottom and top of the domain. The light absorption of MoS2 layer is calculated using AM = |Pl-Pr|/Pin in the simulations. Here, Pl and Pr are the light powers passing through the planes on the left and right of MoS2 layer, respectively. Pin is the incident light power.

 figure: Fig. 1

Fig. 1 (a) Schematic diagram of the multilayer configuration consisting of a Bragg grating with stacked SiO2 and TiO2 layers, a metal (silver) film, a spacer between the grating and metal film, a monolayer MoS2 in the spacer, and substrate. Here, the thicknesses of SiO2 and TiO2 layers in Bragg grating are ds and dt, respectively. The thicknesses of spacer and metal film are dc, and da, respectively. The distance between the metal and MoS2 is dm. The light is incident on the left of the structure with angle θ. The period number of Bragg grating is N. (b) Light absorption of the structure with ds = 110 nm, dt = 60 nm, dc = 250 nm, da = 200 nm, dm = 100 nm, and N = 8. The circles and curve denote the TMM theoretical and FDTD simulation results, respectively.

Download Full Size | PPT Slide | PDF

3. Results and analysis

As shown in Fig. 1(b), the light absorption spectrum of the entire configuration with above geometrical parameters is achieved by the FDTD simulations. It is found that the absorption spectrum possesses a sharp peak at the visible wavelength of 662 nm, where the incident light is totally absorbed. This response in the hybrid photonic multilayer is regarded as Tamm plasmon polaritons [25]. To theoretically confirm the numerical results, the transfer matrix method (TMM) can be used to calculate the light propagation features of the photonic multilayer [25]. According to Maxwell’s equations and boundary conditions for electric fields between adjacent layers, the transfer matrixes separately characterizing the light propagation through the i-th boundary and i-th layer can be expressed as

Mi=12ni1cosθi1(ni1cosθi+nicosθi1ni1cosθinicosθi1ni1cosθinicosθi1ni1cosθi+nicosθi1),
Pi=(exp(j2πdinicosθi/λ)00exp(j2πdinicosθi/λ)),
where, ni and θi represent the refractive index of optical material and the light propagation angle in the i-th layer, respectively. They can be governed by Snell’s law: nisinθi = ni-1sinθi-1 (θ0 = θ). di is the thickness of the i-th layer. The total transfer matrix Q of electric fields can be written as a form of the multiplication of Mi and Pi. Thus, the light absorption of the structure can be described as A = 1-|Q21/Q11|2-|1/Q11|2. We find that the TMM theoretical results are in excellent agreement with the FDTD simulations, as shown in Fig. 1(b).

Subsequently, we investigate the properties of light-matter interaction in monolayer MoS2 in the multilayer structure. As depicted in Fig. 2(a), the light absorption of MoS2 layer can be strongly enhanced and approaches ~96% at the absorption peak (λ = 662 nm) in Fig. 1(b), which is remarkable when compared with the previous reports [12–14]. This absorption efficiency is an order of magnitude higher than that of free-standing monolayer MoS2.The full width at half maximum of MoS2 absorption peak is ~11.5 nm, which contributes to the selective enhancement of MoS2 light absorption. The light absorption in the dissipative material (silver film) is about 3.2%, which is 1/30 of light absorption in MoS2 layer. To explore the mechanism of light absorption enhancement, we plot the electric field and intensity profile in the multilayer at λ = 662 nm obtained by FDTD simulations. The results in Fig. 2(b) illustrate that the electric field with 12-fold enhancement near the MoS2 layer is confined in the spacer (see Visualization 1), which contributes to the strong light-matter interaction in MoS2. The electric field is hardly enhanced (around 1 V2/m2) above the multilayer structure. This kind of strongly confined TP mode plays a crucial role in improving the light absorption of active materials [26]. To make the physical mechanism clearer, we analyze the features of light absorption in monolayer MoS2. The light absorption of MoS2 layer can be calculated by the ratio of the absorbed power of MoS2 layer in the volume V to the input power passing through the MoS2 surface area S [27], which can be described as

α=Vw(x,y)dV0.5cε0|Ein|2Scosθ,
where, w(x,y) = 0.5ε0ωε”(x,y)|E(x,y)|2 is the power dissipation density (PDD) of incident light in the system. For the MoS2 layer, the distribution of electric field E(x,y) is obtained by the FDTD simulations. ε”(x,y) is the imaginary part of relative permittivity of monolayer MoS2. Thus, we can first achieve the value of w(x,y), and then calculate α by using Eq. (3). From Eq. (3), we can see that the light absorption of MoS2 layer is proportional to the electric field intensity in MoS2. By combing E(x,y) and ε”(x,y) in MoS2 layer at different wavelengths, we can obtain the light absorption of MoS2 layer, which is named as analytical result to differentiate from the simulation result. It is found that the analytical results are consistent with the numerical simulations, as depicted in Fig. 2(a).

 figure: Fig. 2

Fig. 2 (a) Light absorption of monolayer MoS2 with and without the photonic multilayer. The curves stand for the FDTD results. The ring and rectangular circles are the PDD analytical and TMM theoretical results. (b) Field distribution (see Visualization 1) and profile of |E|2 in the structure at 662 nm. The electric field Ein of incident light is set as 1 V/m.

Download Full Size | PPT Slide | PDF

The wavelength of TP mode is sensitive to the Bragg wavelength in the multilayer system [25]. The layer thicknesses of dielectric Bragg grating will contribute to the tunability of MoS2 light absorption. Here, we study the light absorption response of monolayer MoS2 with different layer thicknesses of Bragg grating. As shown in Fig. 3(a), the wavelength of absorption peak for monolayer MoS2 exhibits a red-shift with increasing the thickness ds of SiO2 layer in the Bragg grating. From Fig. 3(b), we can see that the operating absorption wavelength of MoS2 maintains a nearly linear relationship with the SiO2 layer thickness. The FDTD results are consistent with TMM theoretical calculations. The position of TP mode is linearly dependent on the Bragg wavelength described as λB = 2(nsds + ntdt) [26]. Thus, the above behavior of light absorption of MoS2 layer is understandable. Moreover, it can be seen in Fig. 3(b) that the light absorption of monolayer MoS2 drastically rises up, and then slowly falls down when ds increases. A maximum appears when ds approaches 110 nm. The analytical results calculated by Eq. (3) agree well with the FDTD simulations. As shown in Fig. 3(c), the electric field intensity around MoS2 layer is changed with the same field profiles in the spacer. The intensity nodes of electric field will move away from the spacer with the increase of ds. It is worth noting that the stronger field enhancement does not correspond to the stronger light absorption of MoS2 layer when ds is changed, as can be seen in Fig. 3(d). We find that ε” and electric field intensity of MoS2 layer together determine the light absorption of MoS2 layer. In the structure, the electric field intensity in MoS2 at the absorption peak changes in the opposite direction of the alternation of ε”. We further investigate the light absorption of monolayer MoS2 as a function of both ds and dt. The results illustrate that the MoS2 layer possesses the strongest light absorption when ds = 110 nm and dt = 60 nm, as shown in Fig. 3(e). As depicted in Fig. 3(f), the light absorption of MoS2 layer increases, and then decreases with increasing period number N when ds = 110 nm and dt = 60 nm. There is the maximal value (~96%) when N = 8, which may result in the approaching of critical coupling condition for MoS2 layer [19]. When N>8, the critical coupling condition is not satisfied, giving rise to the decrease of MoS2 absorption.

 figure: Fig. 3

Fig. 3 (a) Light absorption spectrum of monolayer MoS2 in the structures with different ds. (b) Wavelength and height of MoS2 absorption peak as a function of ds. The curves represent the FDTD results. The blue and red circles denote the TMM theoretical and PDD analytical results, respectively. (c) Electric field intensities at the absorption peaks of MoS2 in the structures with different ds. (d) Imaginary parts of relative permittivity of monolayer MoS2 and electric field intensities in MoS2 at the absorption peaks with different ds. (e) Peak values of the light absorption of monolayer MoS2 as a function of both ds and dt. The arrow denotes the position of ds = 110 nm and dt = 60 nm. (f) Peak values of light absorption of MoS2 layer in the structure with different grating period number N when ds = 110 nm and dt = 60 nm.

Download Full Size | PPT Slide | PDF

We also investigate the dependence of light absorption of monolayer MoS2 on the position of MoS2 in the spacer. From Fig. 4(a), we can see that the light absorption of MoS2 layer is related to the distance dm between the MoS2 and metal film. The light absorption of MoS2 layer possesses the high value of >92% when dm falls in the range from 40 to 140 nm. As shown in the inset of Fig. 4(a), the maximum intensities of electric fields in the spacer with dm = 40 and 140 nm are larger than that of the spacer with dm = 100 nm. However, the intensity of electric field in MoS2 has a slight change, which gives rise to the high-efficiency light absorption of MoS2 in the structure with different dm. When dm = 200 nm, the light absorption of MoS2 layer reaches a smallest value, which results from the appearance of the trough of electric field around MoS2 in the structure, as shown in Fig. 4(b). Finally, we study the light absorption in monolayer MoS2 with different incident angles θ of light. It is found that the wavelength of absorption peak exhibits a blue-shift with the increase of θ, which contributes to the easy tunability of light-MoS2 interaction. Moreover, the MoS2 absorption peaks for s- and p-polarized incident light separate from each other, which derives from the splitting between the TE and TM TP modes in the multilayer [25]. If the incident light is a Gaussian beam, the light absorption of MoS2 layer will be slightly influenced (see Fig. 5).

 figure: Fig. 4

Fig. 4 (a) Light absorption of monolayer MoS2 at the absorption peaks in the structure with different dm. The inset shows electric field intensities around MoS2 (dashed lines) when dm is 40, 100, and 140 nm. (b) Electric field intensity along the multilayer with dm = 200 nm. The inset shows the corresponding electric field distribution.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 Wavelength of light absorption peak of monolayer MoS2 in the multilayer structure with different incident angles θ for s- and p-polarized light. The curves and circles denote the FDTD numerical and TMM theoretical results.

Download Full Size | PPT Slide | PDF

4. Conclusions

We have proposed a novel multilayer architecture consisting of a dielectric grating, a spacer, and a metal film on the substrate, and investigated the enhancement of light absorption of monolayer MoS2 in the spacer. The numerical and analytical results demonstrate that the light absorption of the atomically thin MoS2 layer can reach 96% with a narrow spectral width of 11.5 nm in the visible range due to the generation of highly-confined TP mode in the structure. The achieved nearly perfect light absorption is an order of magnitude higher than that of free-standing monolayer MoS2. The operating wavelength and efficiency of light absorption of monolayer MoS2 are particularly dependent on the layer thicknesses and period number of dielectric grating, MoS2 position, and incident angle of light, which are meaningful for the tunability and selectivity of light-MoS2 interaction. Our results can offer another excellent pathway for improving light absorption in 2D materials and MoS2 optoelectronic applications.

Funding

National Key Research and Development Program of China (2017YFA0303800); National Natural Science Foundation of China (11634010, 61705186, 11774290, 61377035, and 61575162); Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ1023); and Fundamental Research Funds for the Central Universities (3102016OQD031).

References and links

1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

2. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]  

3. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014). [CrossRef]   [PubMed]  

4. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

5. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015). [CrossRef]   [PubMed]  

6. A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014). [CrossRef]  

7. H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015). [CrossRef]   [PubMed]  

8. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013). [CrossRef]   [PubMed]  

9. S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016). [CrossRef]  

10. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013). [CrossRef]   [PubMed]  

11. J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016). [CrossRef]  

12. C. Janisch, H. Song, C. Zhou, Z. Lin, A. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light-matter interaction,” 2D Mater. 3(2), 025017 (2016).

13. J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014). [CrossRef]  

14. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017). [CrossRef]  

15. S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015). [CrossRef]   [PubMed]  

16. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015). [CrossRef]   [PubMed]  

17. J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016). [CrossRef]   [PubMed]  

18. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011). [CrossRef]   [PubMed]  

19. J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014). [CrossRef]  

20. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017). [CrossRef]  

21. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

22. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015). [CrossRef]   [PubMed]  

23. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016). [CrossRef]   [PubMed]  

24. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014). [CrossRef]  

25. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]  

26. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012). [CrossRef]  

27. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  2. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  3. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
    [Crossref] [PubMed]
  4. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  5. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
    [Crossref] [PubMed]
  6. A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
    [Crossref]
  7. H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
    [Crossref] [PubMed]
  8. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  9. S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
    [Crossref]
  10. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  11. J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016).
    [Crossref]
  12. C. Janisch, H. Song, C. Zhou, Z. Lin, A. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light-matter interaction,” 2D Mater. 3(2), 025017 (2016).
  13. J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
    [Crossref]
  14. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100–110 (2017).
    [Crossref]
  15. S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
    [Crossref] [PubMed]
  16. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
    [Crossref] [PubMed]
  17. J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
    [Crossref] [PubMed]
  18. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
    [Crossref] [PubMed]
  19. J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  20. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
    [Crossref]
  21. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [Crossref] [PubMed]
  23. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
    [Crossref] [PubMed]
  24. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
    [Crossref]
  25. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  26. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
    [Crossref]
  27. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]

2017 (2)

2016 (4)

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016).
[Crossref]

2015 (5)

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[Crossref] [PubMed]

2014 (7)

J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

2013 (2)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

2012 (1)

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

2011 (2)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

2010 (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abram, R.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Aydin, K.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Bahauddin, S.

S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Barton, R.

J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Butun, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Chamberlain, J.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Chan, W.

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Chen, X.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Chenet, D.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Cheng, J.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Cumming, B. P.

Deng, H.

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Englund, D.

J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Fan, S.

J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016).
[Crossref]

J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Feng, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Gan, X.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

Gong, Q.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Gong, Y.

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Gu, M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[Crossref] [PubMed]

Guo, C.

Guo, W.

Halas, N.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Heinz, T.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hill, H.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Hu, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Huang, W.

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Ji, Q.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Jia, B.

Jing, Y.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kavokin, A.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lauchner, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Li, L.

Li, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Li, Y.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Liao, L.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Lim, C.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, H.

Liu, C.

Liu, K.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

Loh, K.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Long, Y.

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lou, J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Lu, H.

Lu, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Luo, W.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

Miao, J.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Najmaei, S.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Orozco, C.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Pan, A.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Peng, W.

Piper, J.

J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016).
[Crossref]

J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rana, F.

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Robatjazi, H.

S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Shelykh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Shen, L.

Shi, K.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Shih, E.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Sobhani, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Song, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Sun, H.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Sun, Z.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tang, D.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Thomann, I.

S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

Tiwari, S.

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

Tongay, S.

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, G.

Wang, H.

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, L.

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wen, F.

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Wu, S.

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xu, H.

Zande, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Zhang, C.

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, Q.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Zhang, Y.

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, B.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, J.

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zheng, J.

J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

ACS Nano (2)

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

ACS Photonics (4)

S. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
[Crossref]

J. Piper and S. Fan, “Broadband absorption enhancement in solar cells with an atomically thin active layer,” ACS Photonics 3(4), 571–577 (2016).
[Crossref]

J. Zheng, R. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

J. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Appl. Phys. Lett. (3)

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

A. Sobhani, A. Lauchner, S. Najmaei, C. Orozco, F. Wen, J. Lou, and N. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 031112 (2014).
[Crossref]

Nano Lett. (2)

S. Butun, S. Tongay, and K. Aydin, “Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays,” Nano Lett. 15(4), 2700–2704 (2015).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Wang, C. Zhang, W. Chan, S. Tiwari, and F. Rana, “Ultrafast response of monolayer molybdenum disulfide photodetectors,” Nat. Commun. 6, 8831 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Photonics Res. (1)

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photonics Res. 5(3), 162–167 (2017).
[Crossref]

Phys. Rev. B (3)

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. Hill, A. Zande, D. Chenet, E. Shih, J. Hone, and T. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B 90(20), 205422 (2014).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Sci. Rep. (2)

J. Li, Q. Ji, S. Chu, Y. Zhang, Y. Li, Q. Gong, K. Liu, and K. Shi, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Sci. Rep. 6(1), 23626 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5(1), 8443 (2015).
[Crossref] [PubMed]

Small (1)

J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small 11(20), 2392–2398 (2015).
[Crossref] [PubMed]

Other (1)

C. Janisch, H. Song, C. Zhou, Z. Lin, A. Elías, D. Ji, M. Terrones, Q. Gan, and Z. Liu, “MoS2 monolayers on nanocavities: enhancement in light-matter interaction,” 2D Mater. 3(2), 025017 (2016).

Supplementary Material (1)

NameDescription
» Visualization 1       Electric fields

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the multilayer configuration consisting of a Bragg grating with stacked SiO2 and TiO2 layers, a metal (silver) film, a spacer between the grating and metal film, a monolayer MoS2 in the spacer, and substrate. Here, the thicknesses of SiO2 and TiO2 layers in Bragg grating are ds and dt, respectively. The thicknesses of spacer and metal film are dc, and da, respectively. The distance between the metal and MoS2 is dm. The light is incident on the left of the structure with angle θ. The period number of Bragg grating is N. (b) Light absorption of the structure with ds = 110 nm, dt = 60 nm, dc = 250 nm, da = 200 nm, dm = 100 nm, and N = 8. The circles and curve denote the TMM theoretical and FDTD simulation results, respectively.
Fig. 2
Fig. 2 (a) Light absorption of monolayer MoS2 with and without the photonic multilayer. The curves stand for the FDTD results. The ring and rectangular circles are the PDD analytical and TMM theoretical results. (b) Field distribution (see Visualization 1) and profile of |E|2 in the structure at 662 nm. The electric field Ein of incident light is set as 1 V/m.
Fig. 3
Fig. 3 (a) Light absorption spectrum of monolayer MoS2 in the structures with different ds. (b) Wavelength and height of MoS2 absorption peak as a function of ds. The curves represent the FDTD results. The blue and red circles denote the TMM theoretical and PDD analytical results, respectively. (c) Electric field intensities at the absorption peaks of MoS2 in the structures with different ds. (d) Imaginary parts of relative permittivity of monolayer MoS2 and electric field intensities in MoS2 at the absorption peaks with different ds. (e) Peak values of the light absorption of monolayer MoS2 as a function of both ds and dt. The arrow denotes the position of ds = 110 nm and dt = 60 nm. (f) Peak values of light absorption of MoS2 layer in the structure with different grating period number N when ds = 110 nm and dt = 60 nm.
Fig. 4
Fig. 4 (a) Light absorption of monolayer MoS2 at the absorption peaks in the structure with different dm. The inset shows electric field intensities around MoS2 (dashed lines) when dm is 40, 100, and 140 nm. (b) Electric field intensity along the multilayer with dm = 200 nm. The inset shows the corresponding electric field distribution.
Fig. 5
Fig. 5 Wavelength of light absorption peak of monolayer MoS2 in the multilayer structure with different incident angles θ for s- and p-polarized light. The curves and circles denote the FDTD numerical and TMM theoretical results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M i = 1 2 n i 1 cos θ i 1 ( n i 1 cos θ i + n i cos θ i 1 n i 1 cos θ i n i cos θ i 1 n i 1 cos θ i n i cos θ i 1 n i 1 cos θ i + n i cos θ i 1 ) ,
P i = ( exp ( j 2 π d i n i cos θ i / λ ) 0 0 exp ( j 2 π d i n i cos θ i / λ ) ) ,
α = V w ( x , y ) d V 0.5 c ε 0 | E i n | 2 S cos θ ,

Metrics