Abstract

In this work, for the first time, we uncover that the level of security we have traditionally taken for granted on underwater wireless optical communication (UWOC) may not always be there. We first numerically investigate the security weaknesses of UWOC via Monte Carlo simulation. With the link distance increasing or the water becoming more turbid, the simulation results indicate that the possibility of information leakage increases, which may pose a great threat to the security of UWOC. By using a high-sensitivity multi-pixel photon counter (MPPC) placed aside the water tank, a 5-MHz square wave signal is successfully tapped at 1-m, 3-m, and 5-m underwater transmission distances, which preliminarily verifies the probability of information leakage. We further experimentally demonstrate an UWOC system with potential eavesdropping employing a 2.5-Gb/s orthogonal frequency division multiplexing (OFDM) signal. After transmitting through a 15-m underwater channel, the OFDM signal is eavesdropped by a mirror at 7.8 m. Both the normal receiver at 15 m and the eavesdropping receiver at 7.8 m can achieve a bit error rate (BER) below the forward error correction (FEC) limit of 3.8 × 10−3, which validates that UWOC indeed suffers potential safety hazard.

© 2017 Optical Society of America

1. Introduction

The ocean, which contains huge untapped resources, is full of mysteries and temptations to human beings. Underwater wireless sensor networks (UWSNs), as platforms for marine environment monitoring, resource investigation, and offshore exploration, have gained great attention from both academic and industrial communities [1, 2]. In the past, underwater acoustic communication with low bandwidth and large propagation delay was generally adopted for data acquisition and exchange among spatially distributed sensor nodes as well as randomly deployed underwater vehicles [2]. The communication quality is always significantly affected by noise, multipath effect, and Doppler spread. As a result, bit error rates (BERs) and packet loss probability are often high, which poses a serious threat to underwater acoustic communication [3, 4]. Nowadays underwater wireless optical communication (UWOC) with high bandwidth and low latency has motivated a worldwide interest and become a great complement to established acoustic communication in the new era of marine economy. In particular, UWOC is naturally regarded as a much securer solution compared with traditional underwater acoustic communication, because a very narrow light beam can be used as the information carrier. For this reason, while researchers engaged in studying the potential security issues of underwater acoustic communication and put forward a large number of effective solutions [5–11], the security issue of UWOC has been seldom investigated. Considerable work has been done in UWOC [12–24], but most of current studies mainly focused on how to improve the data rate-distance product of the UWOC system in tap water or simulated seawater. Laser diodes (LDs) and light emitting diodes (LEDs) used as light sources in UWOC systems are unconsciously considered to be secure, due to their directivity and impermeability. However, these features of LDs and LEDs should be considered with the combination of complex channel characteristics of UWOC links, which are usually studied by Monte Carlo simulation approach [25–27]. In real scenario, due to the inherently nonzero divergence angle of light beam and the scattering effect of water on light, the light spot diffuses as the transmission distance increases. The gradually diffused light beam may provide eavesdroppers with opportunities to wiretap or modify the transmitting signals, implying that the security of UWOC may become a serious and knotty problem in practical applications.

In this paper, for the first time, we uncover that UWOC exists security vulnerabilities. We first use Monte Carlo simulation to numerically study the security weaknesses of UWOC. Considering various link distance and water types, the simulation results prove that UWOC may suffer from serious security threat due to the scattering effect. To preliminarily investigate the probability of information leakage, we employ a high-sensitivity multi-pixel photon counter (MPPC) placed aside the light beam to successfully eavesdrop on a 5-MHz square wave signal at different transmission distances. We further experimentally demonstrate the UWOC system with potential eavesdropping based on a single-mode pigtailed green-light LD. In the experiment, 2.5-Gb/s orthogonal frequency division multiplexing (OFDM) signals transmitting through a 15-m underwater channel are eavesdropped by a mirror at 7.8 m. The BERs at 15 m and 7.8 m are 2.3173 × 10−3 and 1.9417 × 10−3, respectively, as the amplitude of the received signal at 15 m is 161.2 mV. The BERs at 15 m and 7.8 m are 1.6570 × 10−3 and 2.3301 × 10−3, respectively, as the amplitude of the received signal at 15 m is 129.5 mV. In these two cases, both the normal receiver at 15 m and the eavesdropping receiver at 7.8 m can simultaneously achieve BERs below the forward error correction (FEC) limit of 3.8 × 10−3. It is turned out that UWOC has the risk of information leakage.

2. Numerical study and preliminary validation on the security weaknesses of UWOC

Absorption and scattering are two dominant factors affecting light propagation in water. Absorption leads to the loss of light intensity and scattering causes the deflection of light from its original direction. We use the particle phase function (PPF) [28, 29] to model scattering. The absorption a and the scattering coefficient b are introduced, both of which are the function of wavelength λ and chlorophyll concentration C. The attenuation coefficient C is defined as the sum of a and b. The expressions are as follows [17, 28]:

a(λ)=[aw(λ)+0.06ac*'(λ)C0.65][1+0.2exp(0.014(λ440))]
b(λ)=0.30550λC0.62
c(λ)=a(λ)+b(λ)
where aw(λ) is the absorption coefficient of pure water and ac*'(λ) is a nondimensional, statistically derived chlorophyll-specific absorption coefficient [17, 28].

In this work, we numerically studied the potential influence of propagation distance and water type on the security of UWOC. Monte Carlo method was used to simulate the trajectories of emitted photons [25]. In the simulation, the number of photons was 2 x 104. The divergence angle of the transmitter was 0.5 rad. The field of view of the detector was 180 degrees. Four typical water types were considered, including pure sea water, clear ocean water, coastal ocean water, and turbid harbor water. The corresponding coefficient values (a,b, and c) at 520 nm are detailed in Table 1 [26, 28].

Tables Icon

Table 1. Coefficient values of typical water types at 520 nm

Figure 1 illustrates the light intensity distribution at the receiver after transmitting through 20-m, 30-m, 40-m, and 50-m pure sea water. With the increase of the propagation distance, the light intensity became weaker and the beam spot got larger at the reception plane. It was attributed to the initial divergence angle and light scattering in water. There is no doubt that longer transmission distance will offer more opportunities for eavesdroppers to steal information.

 

Fig. 1 The light intensity distribution at the reception plane after transmitting through (a) 20-m pure sea water, (b) 30-m pure sea water, (c) 40-m pure sea water, and (d) 50-m pure sea water.

Download Full Size | PPT Slide | PDF

Figure 2 presents the light intensity distribution at the reception plane after transmitting through 7.8-m pure sea water, clear ocean water, coastal ocean water, and turbid harbor water, respectively. For the four types of water, the corresponding attenuation coefficient c increases successively, which results in the decrease of light intensity. In addition, it is obvious to see that the light spot becomes larger in more turbid water due to the scattering effect. It turns out that more turbid water will pose greater threat to UWOC security.

 

Fig. 2 The light intensity distribution at the receiver after transmitting through 7.8-m (a) pure sea water, (b) clear ocean water, (c) coastal ocean water, and (d) turbid harbor water.

Download Full Size | PPT Slide | PDF

To preliminarily verify the probability of information leakage, we designed an experimental system employing a red-light LD and a high-sensitivity MPPC as shown in Fig. 3. A 5-MHz square wave signal was first output from a Tektronix AWG70002A arbitrary waveform generator (AWG). The sampling rate of the AWG was set at 20 MSamples/s and the amplitude of the output square wave signal was 0.5 V. To further adjust the voltage of the baseband square wave signal, a Mini-Circuits ZHL-6A-S + amplifier (AMP) and a key-press variable electrical attenuator (ATT) which was set at 8 dB were employed. Through a bias-tee (ZFBT-4R2GW + ), the baseband square wave signal was superimposed on a red-light LD (HL6501MG). The bias current of the LD was set at 78.0 mA. A water tank (length: 7 m, width: 0.4 m, height: 0.4 m) was filled with 542-L fresh tap water. 1-g Mg(OH)2 powder, acting as the scattering medium, was added to the water. The laser beam propagated from one end of the water tank to the other. The MPPC was located at the side of the water tank and its direction was adjusted to detect photons as many as possible. Note that the MPPC is very sensitivity to light, so the experiment was conducted in a dark room to reduce the influence of background light, as no narrow-band optical filter was used before the MPPC. The detected signals were captured by a Tektronix MSO 71254C mixed signal oscilloscope (MSO) and sent to a computer for demodulation. The sampling rate of the MSO was set at 125 MSamples/s. Figure 4 shows the waveforms of the captured 5-MHz square wave signal, when the MPPC was put at 1 m, 3 m, and 5 m away from the LD. All the waveforms are adequate for error free communication, indicating the potential risk of information leakage.

 

Fig. 3 The experimental setup for verifying information leakage using an MPPC placed aside the light beam.

Download Full Size | PPT Slide | PDF

 

Fig. 4 The waveforms of the captured 5-MHz square wave signal, when the MPPC was put at (a) 1 m, (b) 3 m, and (c) 5 m away from the LD.

Download Full Size | PPT Slide | PDF

3. Experimental setup

Figure 5 illustrates the experimental setup to study the potential eavesdropping of UWOC. The transmitter module, the eavesdropping mirror at 7.8 m, the normal receiver module at 15 m, and the experiment site are shown in the insets of Fig. 5. A real-valued 32-QAM OFDM signal was generated offline. Table 2 lists the specific parameters of the OFDM signal. The generated OFDM signal was first loaded into the Tektronix AWG70002A AWG and then output from the AWG with the sampling rate of 5 GSamples/s. A Mini-Circuits ZHL-6A-S + AMP and an ATT which was set at 8 dB were employed to adjust the voltage of the baseband OFDM signal. Through an LD and a thermoelectric cooler (TEC) mount (Thorlabs LDM9LP), the baseband OFDM signal was superimposed on a single-mode pigtailed 520-nm LD (Thorlabs LP520-SF15). The bias current of the LD was set at 80.86 mA by using a LD controller (Thorlabs LDC205C). A temperature controller (Thorlabs TED 200 C) was used to stabilize the output dynamics of the LD. The laser beam was focused into the water by using an air-spaced doublet collimator (Thorlabs FB10FC-543), namely, Lens 1. Mirror 1 and Mirror 2 were separately placed at the transmitting and normal receiving ends in a water tank to help reflect the laser beam into and off the underwater channel. The water tank was filled with tap water and the underwater channel was 15 meters long. An eavesdropping mirror, Mirror 3, with the diameter of 50.8 mm, was located at 7.8 m away from the transmitter module. At the beginning, Mirror 3 was near to the laser beam. To ensure that the laser beams reflected by Mirror 3 were vertically focused into the receiving surface of the avalanche photo diode (APD), we kept the angle of Mirror 3 unchanged and made Mirror 3 move towards the laser beam step by step to intercept different amounts of light. The normal receiving end and the eavesdropping end shared the same receiver module, due to limited equipment availability. The laser beams reflected by Mirror 2 and Mirror 3 were first focused into a 1-GHz APD (Menlo Systems, APD210) by a plano-convex lens (Lens 2). Then the detected signals were captured by the Tektronix MSO 71254C MSO with the sampling rate of 100 GSamples/s and sent to a computer for demodulation. Note that the detector diameter of the APD we used is only 0.5 mm (smaller than that of the light spot), the received optical power by the active area of the APD cannot be measured accurately. Therefore, we record the corresponding amplitude of the OFDM signal captured by the MSO in the experiment, which is proportional to the optical power injected to the active area of the APD.

 

Fig. 5 The experimental setup to study the potential eavesdropping of UWOC. Insets: (a) the transmitter module, (b) the eavesdropping mirror at 7.8 m, (c) the normal receiver module at 15 m, and (d) the experiment site.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Parameter values of OFDM parameters

4. Experimental results

We first generated a 32-QAM OFDM signal with a gross data rate of 2.51 Gb/s. After removing the overheads of CP, training symbols, and FEC (7%), the net bit rate of the OFDM signal was 2.06 Gb/s. In the experiment, the OFDM signal transmitting through a 15-m underwater channel was intercepted by an eavesdropping mirror at 7.8 m (Mirror 3).

In Table 3, Position 1-6 denote different positions of Mirror 3 that can eavesdrop on different amounts of light. Without information leakage (Position 1), the amplitude and BER of the received signal at the normal receiving end were 184.8 mV and 9.9676 × 10−4, respectively. The corresponding constellation map which is well converged is shown in Fig. 6. When Mirror 3 gradually moves into the light path (Position 2-6), the amplitudes of the received signals at the normal receiving end gradually decrease and the corresponding BERs become degraded, as listed in Table 3. On the contrary, the BERs at the eavesdropping end get better and better. In particular, Position 3 and Position 4 are two positions where both the eavesdropper end and the normal receiving end could achieve a BER below the FEC limit of 3.8 × 10−3. Figure 7 presents the constellation maps of the received signals at the normal receiving end and the eavesdropping end, as Mirror 3 is at Position 2, Position 4, and Position 6. The three positions represented three different conditions: only the normal receiver side could communicate successfully (Position 2), both the normal receiver and eavesdropping sides could communicate successfully (Position 4) and only the eavesdropping side could communicate successfully (Position 6). Here, communicating successfully means the achieved BER is below the FEC limit.

Tables Icon

Table 3. The measured BERs at the normal receiving end and the eavesdropping end, when Mirror 3 at the eavesdropping end is placed at different positions.

 

Fig. 6 The constellation map of the 2.5-Gb/s OFDM signal at the normal receiving end without information leakage.

Download Full Size | PPT Slide | PDF

 

Fig. 7 When Mirror 3 is at Position 2, Position 4, and Position 6, the constellation maps of the received signals (a-c) at the normal receiving end and (d-f) at the eavesdropping end.

Download Full Size | PPT Slide | PDF

When Mirror 3 is at Position 4, the BERs for different subcarriers at the normal receiving and eavesdropping sides are illustrated in Fig. 8. Note that most subcarriers have a BER of zero that is not suitable to be plotted in log scale. Higher BERs in the low-frequency region were attributed to larger beating noise among subcarriers. Figure 9 shows the captured waveform and spectrum of the received signal at the eavesdropping end, when Mirror 3 is at Position 4.

 

Fig. 8 BERs for different subcarriers at the normal receiving (15 m) and eavesdropping (7.8 m) sides, when Mirror 3 is at Position 4.

Download Full Size | PPT Slide | PDF

 

Fig. 9 (a) The captured waveform of the received signal at the eavesdropping end, when Mirror 3 is at Position 4 and (b) the corresponding spectrum.

Download Full Size | PPT Slide | PDF

5. Discussion

In this paper, for the first time, we numerically and experimentally investigate the security weaknesses of UWOC. However, in the past few years, most of the research effort has been devoted to improving the data rate-distance product of the UWOC system in tap water or simulated seawater. As the study of UWOC develops in depth, more and more researchers become aware of the considerable influence of complex underwater environment on UWOC [22, 30]. Nevertheless, security issues of UWOC, which are closely related to the scattering effect, have so far attracted very little attention. This work is the first step towards effective solutions to security issues of UWOC, which may rely on channel coding techniques.

6. Conclusion

In this paper, we reveal that UWOC has security vulnerabilities and potential risks. Monte Carlo simulation is first adopted to study the security weaknesses of UWOC. With the increased link distance or the deteriorated water quality, the effect of scattering turns more and more severe, which will offer attackers vast opportunities to eavesdrop on the information from the light path. To preliminarily investigate the probability of information leakage, a high-sensitivity MPPC placed aside the light beam is employed to successfully tap a 5-MHz square wave signal at 1-m, 3-m, and 5-m underwater transmission distances. We then further experimentally demonstrate an UWOC system with potential eavesdropping using a single-mode pigtailed green-emitting LD. 2.5-Gb/s OFDM signals transmitting through a 15-m underwater channel are intercepted by an eavesdropping mirror at 7.8 m. When the amplitude of the received signal at 15 m is 161.2 mV, the BERs at 15 m and 7.8 m are 2.3173 × 10−3 and 1.9417 × 10−3, respectively. When the amplitude of the received signal at 15 m is 129.5 mV, the BERs at 15 m and 7.8 m are 1.6570 × 10−3 and 2.3301 × 10−3, respectively. In the above two situations, both the eavesdropping receiver at 7.8 m and the normal receiver at 15 m can achieve BERs below the FEC limit of 3.8 × 10−3, which proves that UWOC suffers hidden dangers of information leakage.

Funding

National Natural Science Foundation of China (NSFC) (61671409, 61301141); The National Key Research and Development Program of China (2016YFC1401202, 2017YFC0306100, 2017YFC0306600).

Acknowledgments

The authors would like to thank Prof. Yong Liu from University of Electronic Science and Technology of China for valuable discussions on the security issues of UWOC at Photonics Asia 2016. The authors would like to thank Mr. Ming Liu for the assistance in the experiment.

References and links

1. J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

2. A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017). [CrossRef]  

3. M. C. Domingo, “Securing underwater wireless communication networks,” IEEE Wirel. Commun. 18(1), 22–28 (2011). [CrossRef]  

4. S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).

5. Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.

6. G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012). [CrossRef]   [PubMed]  

7. H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274. [CrossRef]  

8. P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21. [CrossRef]  

9. Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016). [CrossRef]   [PubMed]  

10. Y. Huang, “Exploration of physical layer security in underwater acoustic communications,” Doctoral Dissertations, 1169 (2016).

11. C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5. [CrossRef]  

12. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015). [CrossRef]   [PubMed]  

13. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015). [CrossRef]   [PubMed]  

14. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015). [CrossRef]   [PubMed]  

15. J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016). [CrossRef]  

16. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016). [CrossRef]   [PubMed]  

17. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016). [CrossRef]   [PubMed]  

18. S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016). [CrossRef]  

19. J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016). [CrossRef]   [PubMed]  

20. J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016). [CrossRef]  

21. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017). [CrossRef]   [PubMed]  

22. Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016). [CrossRef]   [PubMed]  

23. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017). [CrossRef]   [PubMed]  

24. C. M. Ho, C. K. Lu, H. H. Lu, S. J. Huang, M. T. Cheng, Z. Y. Yang, and X. Y. Lin, “A 10m/10Gbps Underwater Wireless Laser Transmission System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th3C.3. [CrossRef]  

25. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008). [CrossRef]  

26. J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012). [CrossRef]  

27. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013). [CrossRef]  

28. D. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

29. S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014). [CrossRef]  

30. H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photonics J. 9(2), 1–9 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).
  2. A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
    [Crossref]
  3. M. C. Domingo, “Securing underwater wireless communication networks,” IEEE Wirel. Commun. 18(1), 22–28 (2011).
    [Crossref]
  4. S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).
  5. Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.
  6. G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012).
    [Crossref] [PubMed]
  7. H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274.
    [Crossref]
  8. P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
    [Crossref]
  9. Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
    [Crossref] [PubMed]
  10. Y. Huang, “Exploration of physical layer security in underwater acoustic communications,” Doctoral Dissertations, 1169 (2016).
  11. C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
    [Crossref]
  12. H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref] [PubMed]
  13. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  14. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
    [Crossref] [PubMed]
  15. J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
    [Crossref]
  16. C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
    [Crossref] [PubMed]
  17. J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
    [Crossref] [PubMed]
  18. S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
    [Crossref]
  19. J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
    [Crossref] [PubMed]
  20. J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
    [Crossref]
  21. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
    [Crossref] [PubMed]
  22. Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
    [Crossref] [PubMed]
  23. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
    [Crossref] [PubMed]
  24. C. M. Ho, C. K. Lu, H. H. Lu, S. J. Huang, M. T. Cheng, Z. Y. Yang, and X. Y. Lin, “A 10m/10Gbps Underwater Wireless Laser Transmission System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th3C.3.
    [Crossref]
  25. B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
    [Crossref]
  26. J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
    [Crossref]
  27. C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  28. D. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  29. S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
    [Crossref]
  30. H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]

2017 (4)

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

2016 (8)

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
[Crossref] [PubMed]

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

2013 (2)

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
[Crossref]

S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).

2012 (2)

G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012).
[Crossref] [PubMed]

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

2011 (1)

M. C. Domingo, “Securing underwater wireless communication networks,” IEEE Wirel. Commun. 18(1), 22–28 (2011).
[Crossref]

2008 (1)

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Ahmed, N.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Alouini, M. S.

Alves, J.

C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
[Crossref]

Arbabi, A.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Arbabi, E.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Ashrafi, S.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Baghdady, J.

Bourennane, S.

Byrd, M.

Cao, Y.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Chi, Y. C.

Chizari, H.

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

Cochenour, B. M.

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
[Crossref] [PubMed]

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Conti, M.

C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
[Crossref]

Cui, J. H.

J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

Czernecki, R.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Dai, H. N.

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Deng, N.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Dini, G.

G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012).
[Crossref] [PubMed]

Domingo, M. C.

M. C. Domingo, “Securing underwater wireless communication networks,” IEEE Wirel. Commun. 18(1), 22–28 (2011).
[Crossref]

Dong, Y. H.

S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Duran, J. R.

ElAfandy, R. T.

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Faraon, A.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Gabriel, C.

Gerla, M.

J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

Gudpelliwar, N.

S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).

Guo, Y.

Han, J.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

Hanawa, M.

He, J. H.

Ho, K. T.

Hu, L.

Huang, Y.

Janjua, B.

Jia, W.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Jing, J. W.

Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.

Johnson, E. G.

Kaiwartya, O.

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

Kamali, S. M.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Kasture, S. S.

S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).

Kelly, A. E.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Khalighi, M. A.

Khasawneh, A.

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

Kong, J. J.

J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

Kong, M.

Kong, M. W.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Koutsonikolas, D.

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274.
[Crossref]

Kowalski, M.

P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
[Crossref]

Kucharski, R.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Kulhandjian, H.

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274.
[Crossref]

Kuo, H. C.

Lal, C.

C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
[Crossref]

Latiff, M. S. B. A.

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

Laux, A. E.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Léon, P.

Leszczynski, M.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Li, C.

Li, J.

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

Li, L.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Li, W.

Li, X.

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Lin, A.

Lin, A. B.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Lin, G. R.

Liu, C.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Liu, G.

Liu, R.

Liu, X.

Liu, Y. C.

Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.

Lo Duca, A.

G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012).
[Crossref] [PubMed]

Ma, Y.

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

Marona, L.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

McCulley, D.

P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
[Crossref]

Melodia, T.

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274.
[Crossref]

Miller, K.

Mizukoshi, I.

Morgan, K.

Mullen, L. J.

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Najda, S. P.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Nakamura, K.

Ng, T. K.

Ooi, B. S.

Osler, S.

Oubei, H. M.

Park, K. H.

Perlin, P.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Petroccia, R.

C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
[Crossref]

Qu, F. Z.

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

Ragusa, R.

Ren, Y.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Rigaud, V.

Shen, C.

Song, Y.

Song, Y. H.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Suski, T.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Tang, S. J.

S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Targowski, G.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Tian, P.

Tsai, C. T.

Tur, M.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Wang, H.

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Wang, H. Y.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

Wang, Q.

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Wang, Z.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Watson, M. A.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Watson, S.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

White, H.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Willner, A. E.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Willner, A. J.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Wisniewski, P.

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

Xiao, H.

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Xiao, P.

P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
[Crossref]

Xie, G.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Xu, J.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Yan, Y.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Yang, J.

Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.

Yi, S.

Yu, X.

Yu, X. Y.

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Zhang, S.

Zhang, X. D.

S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Zhao, Z.

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

Zheng, L.

Zhou, B.

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

Zhou, Q. Q.

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

Zhou, S. L.

J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

Zhou, X.

Zuba, M.

P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
[Crossref]

IEEE J. Oceanic Eng. (1)

B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” IEEE J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

IEEE Photonics J. (1)

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Xu, A. B. Lin, X. Y. Yu, M. W. Kong, Y. H. Song, F. Z. Qu, J. Han, W. Jia, and N. Deng, “High-speed underwater wireless optical communication using a compact OFDM-modulated green laser diode,” IEEE Photonics Technol. Lett. 28(20), 2133–2136 (2016).
[Crossref]

IEEE Trans. Commun. (1)

S. J. Tang, Y. H. Dong, and X. D. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

IEEE Wirel. Commun. (1)

M. C. Domingo, “Securing underwater wireless communication networks,” IEEE Wirel. Commun. 18(1), 22–28 (2011).
[Crossref]

Information (1)

A. Khasawneh, M. S. B. A. Latiff, O. Kaiwartya, and H. Chizari, “Next Forwarding Node Selection in Underwater Wireless Sensor Networks (UWSNs): Techniques and Challenges,” Information 8(1), 3 (2017).
[Crossref]

Int. J. Sci. Eng. Res. (1)

S. S. Kasture and N. Gudpelliwar, “Securing underwater wireless communication networks-literature,” Int. J. Sci. Eng. Res. 4(12), 73–78 (2013).

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

J. Xu, M. W. Kong, A. B. Lin, Y. H. Song, X. Y. Yu, F. Z. Qu, J. Han, and N. Deng, “OFDM-based broadband underwater wireless optical communication system using a compact blue LED,” Opt. Commun. 369, 100–105 (2016).
[Crossref]

Opt. Eng. (2)

J. Li, Y. Ma, Q. Q. Zhou, B. Zhou, and H. Y. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51(6), 066001 (2012).
[Crossref]

S. P. Najda, P. Perlin, T. Suski, L. Marona, M. Leszczyński, P. Wisniewski, R. Czernecki, R. Kucharski, G. Targowski, M. A. Watson, H. White, S. Watson, and A. E. Kelly, “AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water,” Opt. Eng. 55(2), 026112 (2016).
[Crossref]

Opt. Express (7)

J. Baghdady, K. Miller, K. Morgan, M. Byrd, S. Osler, R. Ragusa, W. Li, B. M. Cochenour, and E. G. Johnson, “Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing,” Opt. Express 24(9), 9794–9805 (2016).
[Crossref] [PubMed]

C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K. H. Park, K. T. Ho, M. S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 24(22), 25502–25509 (2016).
[Crossref] [PubMed]

J. Xu, Y. Song, X. Yu, A. Lin, M. Kong, J. Han, and N. Deng, “Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser,” Opt. Express 24(8), 8097–8109 (2016).
[Crossref] [PubMed]

H. M. Oubei, C. Li, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
[Crossref] [PubMed]

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
[Crossref] [PubMed]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23(18), 23302–23309 (2015).
[Crossref] [PubMed]

P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25(2), 1193–1201 (2017).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Ren, L. Li, Z. Wang, S. M. Kamali, E. Arbabi, A. Arbabi, Z. Zhao, G. Xie, Y. Cao, N. Ahmed, Y. Yan, C. Liu, A. J. Willner, S. Ashrafi, M. Tur, A. Faraon, and A. E. Willner, “Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications,” Sci. Rep. 6(1), 33306 (2016).
[Crossref] [PubMed]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, and G. R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep. 7, 40480 (2017).
[Crossref] [PubMed]

Sensors (Basel) (2)

G. Dini and A. Lo Duca, “A secure communication suite for underwater acoustic sensor networks,” Sensors (Basel) 12(11), 15133–15158 (2012).
[Crossref] [PubMed]

Q. Wang, H. N. Dai, X. Li, H. Wang, and H. Xiao, “On modeling eavesdropping attacks in underwater acoustic sensor networks,” Sensors (Basel) 16(5), 721 (2016).
[Crossref] [PubMed]

Other (8)

Y. Huang, “Exploration of physical layer security in underwater acoustic communications,” Doctoral Dissertations, 1169 (2016).

C. Lal, R. Petroccia, M. Conti, and J. Alves, “Secure underwater acoustic networks: Current and future research directions,” in 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (IEEE, 2016), pp. 1–5.
[Crossref]

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” in 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (IEEE, 2014), pp. 266–274.
[Crossref]

P. Xiao, M. Kowalski, D. McCulley, and M. Zuba, “An experimental study of jamming attacks in underwater acoustic communication,” in Proceedings of the 10th International Conference on Underwater Networks & Systems. (ACM, 2015), pp. 21.
[Crossref]

Y. C. Liu, J. W. Jing, and J. Yang, “Secure underwater acoustic communication based on a robust key generation scheme,” in 9th International Conference on Signal Processing (2008) pp. 1838–1841.

J. H. Cui, J. J. Kong, M. Gerla, and S. L. Zhou, “Challenges: building scalable and distributed Underwater Wireless Sensor Networks (UWSNs) for aquatic applications,” Channels, 1–17 (2005).

C. M. Ho, C. K. Lu, H. H. Lu, S. J. Huang, M. T. Cheng, Z. Y. Yang, and X. Y. Lin, “A 10m/10Gbps Underwater Wireless Laser Transmission System,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th3C.3.
[Crossref]

D. C. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The light intensity distribution at the reception plane after transmitting through (a) 20-m pure sea water, (b) 30-m pure sea water, (c) 40-m pure sea water, and (d) 50-m pure sea water.
Fig. 2
Fig. 2 The light intensity distribution at the receiver after transmitting through 7.8-m (a) pure sea water, (b) clear ocean water, (c) coastal ocean water, and (d) turbid harbor water.
Fig. 3
Fig. 3 The experimental setup for verifying information leakage using an MPPC placed aside the light beam.
Fig. 4
Fig. 4 The waveforms of the captured 5-MHz square wave signal, when the MPPC was put at (a) 1 m, (b) 3 m, and (c) 5 m away from the LD.
Fig. 5
Fig. 5 The experimental setup to study the potential eavesdropping of UWOC. Insets: (a) the transmitter module, (b) the eavesdropping mirror at 7.8 m, (c) the normal receiver module at 15 m, and (d) the experiment site.
Fig. 6
Fig. 6 The constellation map of the 2.5-Gb/s OFDM signal at the normal receiving end without information leakage.
Fig. 7
Fig. 7 When Mirror 3 is at Position 2, Position 4, and Position 6, the constellation maps of the received signals (a-c) at the normal receiving end and (d-f) at the eavesdropping end.
Fig. 8
Fig. 8 BERs for different subcarriers at the normal receiving (15 m) and eavesdropping (7.8 m) sides, when Mirror 3 is at Position 4.
Fig. 9
Fig. 9 (a) The captured waveform of the received signal at the eavesdropping end, when Mirror 3 is at Position 4 and (b) the corresponding spectrum.

Tables (3)

Tables Icon

Table 1 Coefficient values of typical water types at 520 nm

Tables Icon

Table 2 Parameter values of OFDM parameters

Tables Icon

Table 3 The measured BERs at the normal receiving end and the eavesdropping end, when Mirror 3 at the eavesdropping end is placed at different positions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a ( λ ) = [ a w ( λ ) + 0.06 a c * ' ( λ ) C 0.65 ] [ 1 + 0.2 exp ( 0.014 ( λ 440 ) ) ]
b ( λ ) = 0.30 550 λ C 0.62
c ( λ ) = a ( λ ) + b ( λ )

Metrics