Abstract

Photoacoustic signal enhancements were observed with a pair of time-delayed femtosecond pulses upon excitation of gold nanosphere colloidal suspension. A systematic experimental investigation of photoacoustic intensity within the delay time, Δt = 0 to 15 ns, was carried out. The results revealed a significant enhancement factor of ∼2 when the pre-pulse energy is 20–30% of the total energy. Pre-pulse and main pulse energy ratios, Ep(1):Es(2), were varied to determine the optimal ratio that yields to maximum photoacoustic signal enhancement. This enhancement was ascribed to the initial stage of thermalization and bubble generation in the nanosecond time scale. Pre-pulse scattering intensity measurements and numerical finite-difference time-domain calculations were performed to reveal dynamics and light field enchancement, respectively.

© 2017 Optical Society of America

1. Introduction

Recent studies on femtosecond (fs) laser-induced dielectric breakdown have gained a widespread interest in the fabrication of micro- and nano-functional devices [1–3] and real-time high resolution imaging due to its high emission frequency [4]. Fs-laser ablation offers significant advantages over nanosecond laser ablation such as a high precision with less of thermal damage and a high reproducibility [5,6]. On this basis, fs-laser pulses are suitable to improve high spatial resolution and sensitivity in biomedical photoacoustic imaging and photothermal therapy [7,8]. Photoacoustic technique is one of the most promising biophotonic diagnostic modalities that incorporates non-ionizing radiation, non-invasive imaging, high spatial resolution, and deep penetration depth [9–11]. Photoacoustic signals are usually generated by one of the four mechanisms: thermal expansion, vaporization, chemical reaction induced by light, or optically induced dielectric breakdown [12]. Thermal expansion that is accompanied by bubble generation results in efficient photoacoustic signal generation [13–15]. Formation mechanisms and dynamics of nano-bubbles around nanoparticles under pulsed laser irradiation are better understood following high resolution optical and X-ray imaging [16–19] and opened applications in cell laser optoporation and photothermal therapy [20,21].

The existing high-resolution optical imaging modalities such as confocal microscopy, two-photon microscopy, and optical coherence tomography limit its applications on deep penetration imaging due to optical scattering. Compared with these imaging techniques, photoacoustic imaging is known to surpass the optical diffusion limit, providing a deeper penetration imaging with high spatial resolution [22–24]. It is considered to be a potential imaging tool in neuroscience which allows penetration in thick brain tissue. In vivo studies on noninvasive transdermal and transcranial imaging of the structure and function of rat brains by laser-induced photoacoustic tomography were reported [25,26]. It allows accurate mapping of brain structures and functional cerebral hemodynamic changes in blood vessels. This neuroimaging modality is promising for significant applications in neurophysiology, neuropathology and neurotherapy.

Plasmonic gold nanoparticles are attractive in photoacoustics since they offer strong optical absorption when excited at the surface plasmon resonance wavelength. Nanoparticle-facilitated absorption of pulsed laser leads to a rapid and localized heating, which results in photoacoustic signal generation produced through thermo-elastic effect and bubble generation [27–31]. The efficiency of optical absorption and photothermal conversion can be tuned through nanoparticle chemistry and geometry [32]. It has been demonstrated that enhanced photoacoustic intensity was observed by tuning the nanoparticle shape [33] and controlling the laser parameters such as pulse energy and temporal chirp [34].

However, with the use of single fs-laser pulse, the pulse parameters that influence the ablation process are circumscribed to the pulse energy and pulse width. To achieve effective control, double pulse, which contains two-polarized fs-pulses separated from femtoseconds to nanoseconds, has been widely used in control of light-matter interaction [35–37]. It was found that ablation can be precisely controlled by optimizing the number of pulses, pulse separation, and pulse energy ratio [38,39]. Reports on semiconductor materials revealed that the ablation rate is higher for double-pulse compared to single-pulse irradiation of the same total fluence [40,41]. Double pulse excitation leads to a better coupling of the laser beam with plasma and target material, thus providing a more temporally effective energy delivery to plasma and target material. This results in significant signal enhancements in the intensity emission lines up to two orders of magnitude larger than a conventional single pulse excitation [42–44].

Here, photoacoustic signal enhancements under double-pulsed (horizontally- and vertically-polarized) excitation to Au nanosphere colloidal suspensions were systematically investigated. Pre-pulse power dependence and different pre-pulse to main pulse energy ratios with the same total fluence were studied. The experimental results demonstrated that maximum enhancement is obtained at the optimal separation time between pulses and pulse energy ratios.

2. Samples and procedures

2.1. Synthesis of Au nanospheres

Colloidal suspensions of gold nanospheres for photoacoustic generation were prepared via synthesis described elsewhere [45,46]. Briefly, a kinetically-controlled seeded growth synthesis of citrate-stabilized gold nanospheres was used. In a 250 mL three-necked round-bottomed flask, a solution of 2.2 mM sodium citrate in Milli-Q water (150 mL) was heated at 115°C for 15 min under vigorous stirring. A reflux condenser and an oil bath were used to prevent the evaporation of the solvent. After it reached the boiling point, 1 mL of HAuCl4(aq) (25 mM) was added. The color of the solution changed from yellow to bluish gray and then to light pink in 10 min. The resulting Au seed particles ∼10 nm in diameter were coated with negatively charged citrate ions and completely dispersed in water. Immediately after the synthesis of the Au seed solution, the temperature was cooled down to 90°C and seeded growth of Au nanospheres was carried out. Then, 1 mL of HAuCl4(aq) solution (25 mM) was injected on the reaction vessel. The reaction was finished after 30 min and the process was repeated twice. After that, the sample was diluted by extracting 55 mL of the sample and adding 53 mL of Milli-Q water and 2 mL of 60 mM sodium citrate. This solution was then used as seed solution, and the process was repeated again. By changing the volume in each growth step, it is possible to tune the seed particle concentration. Mono-dispersed gold nanosphere colloidal suspensions with an absorption peak at ∼520 nm corresponding to the diameter of 20 nm as shown in Fig. 1(a). Atomic concentration of ∼ 1.4 × 10−4 mol/L, particle concentration of ~3.5 × 1014 NPs/L and volume of ∼ 4 × 103 nm3 were used in the experiments. Separation between particles estimated as a cubic root of the volume-per-nanoparticle was ∼ 1.4 µm. At this high-density, the formation and evolution of a nano-bubbles is directly affected by pressure waves encountered from surrounded nano-bubbles [47].

 

Fig. 1 (a) Absorption spectrum of Au nanosphere colloidal suspension with a strong characteristic absorption band at ∼520 nm. TEM image of mono-dispersed colloidal suspension of Au nanosphere with a diameter of 20 nm is shown in the background. (b) Schematic diagram of the experimental setup for fs-double-pulsed excitation to Au nanoparticle suspension for photoacoustic detection. Fs-laser pulses: pulse duration t0 = 40 fs, central wavelength λ = 800 nm and pulse energy E = 0.1 mJ at 1 kHz repetition rate were focused inside the glass tube using 10× numerical aperture N A = 0.28 objective lens. The pre-pulse was p-polarized while the main pulse was s-polarized. Distance between the focal spot and transducer was set at 15 mm in all experiments.

Download Full Size | PPT Slide | PDF

2.2. Femtosecond double-pulse configuration

Figure 1(b) shows a schematic diagram of the experimental setup of fs double-pulse experiments conducted using Ti:sapphire amplified laser system with pulse duration of t0 = 40 ± 5 fs, central wavelength of λ = 800 nm, and pulse energy of Ep = 0.1 mJ at 1 kHz repetition±rate. Fs-laser pulses were directed through two cube polarizing beam splitters in order to create a pulse pair with s- and p-polarized beams. The first cube polarizing beamsplitter split the incoming laser pulse into two orthogonal optical paths while the second one was used to combine the beams after introducing time delay Δt between them in one of the arms. The delay was controlled automatically by mechanical stage with high precision. The maximum delay time range between the s- and p-polarized beams was 15 ns. A half waveplate which allows the rotation of the polarization vector was used to control the intensity ratio between the two polarized beams. The minimum s-pol. to p-pol. beam intensity ratio is 50/50, therefore measurements on pulse energy ratios with the same total fluence were restricted to 50/50, 60/40, 70/30, 80/20, 90/10, and 100/0. After the second cube polarizing beam splitter, the two polarized beams become collinear and were focused using 10× numerical aperture N A = 0.28 objective lens. Two independent switches for s- and p-pol. beams were installed to control excitation under single pulse and double-pulse irradiation. For instance, in s-pol. beam irradiation, the p-pol. beam was blocked and vice versa. In contrary, under double-pulse excitation, both beams are present.

2.3. Photoacoustic detection and measurements

Femtosecond double-pulse with a total laser fluence of 1.05 × 103 J/cm2 were tightly-focused onto a 5-mm-diameter glass capillary tube inside the water tank which is used to circulate colloidal suspensions of gold nanoparticles. An off-resonance (laser wavelength λ = 800 nm does not coincide with the characteristic absorption band of Au nanosphere at λ = 520 nm) pulsed laser excitation of gold nanosphere colloidal suspensions was performed, proving a higher thermal stability of gold nanoparticles. For the photoacoustic detection and measurements, a single element unfocused ultrasound transducer (A312-N-SU) with a detection frequency of 10 MHz was used. The distance between the ultrasound transducer and glass tube was kept constant at 15 mm in the entire experiment. Photoacoustic signals were detected and amplified using an ultrasound preamplifier (5678, Olympus) and the acquired signals were recorded and analyzed using digital oscilloscope (DSO-X 3034A, Agilent Tech.). The geometry of glass capillary tube in water [Fig. 1(b)] was used to simulate the experiments with biomedical relevance where the photoacoustic signal generation is separated from detection. The first peak of the time-dependent photoacoustic signal which corresponds to the fundamental ultrasound signal was used as a measure of photoacoustic response from the fs laser-irradiated gold nanosphere colloidal suspensions. Then, the average of the measured photoacoustic signal intensities was determined for three experimental trials.

2.4. Pre-pulse scattering intensity measurements

Near-IR fs-laser pulses (horizontally-polarized) was focused onto a water-filled quartz cuvette, creating a super-continuum white light (SWL) with a broad band emission wavelength of λ = 300 − 1000 nm. The SWL was used as a strobe light to perform dark field imaging and scattering measurements on pre-pulse (vertically-polarized) excited gold nanosphere colloidal suspensions. The pre-pulse energy was maintained at 100 µJ and its scattering intensity measurements were investigated throughout the time delay range of 0 to 15 ns. A photodiode was used as a detector for light scattering intensity measurements. The maximum scattering light intensity was observed at the wavelength λ = 600 nm, which was used as a basis for scattering intensity measurements.

3. Results

3.1. Photoacoustic intensity enhancement under double-pulse excitation

The photoacoustic intensity as a function of time delay between fs-laser pulses vertically (p-pol) and horizontally (s-pol) from Δt = 0 to 15 ns is shown in Fig. 2. The measurements of photoacoustic intensity were taken under single pulse (s-pol or p-pol) and double-pulse (s-pol and p-pol) excitation to Au nanosphere colloidal suspension. A significant increase in photoacoustic intensity was observed under polarized double-pulsed excitation (Ep(1):Es(2)=30:70μJ and Ep(1):Es(2)=10:70μJ) as the time delay between pre-pulse Ep(1) and the main pulse Es(2) increased from 0 to 15 ns. At Ep(1):Es(2)=30:70μJ (double-pulse), the photoacoustic intensity reached up to 3.2, 2.4 and 1.8 times higher than that of Es(2)=70μJ (main pulse), Ep(1)+Es(2)=30+70μJ (sum of pre-pulse and main pulse), and Es(2)=100μJ (main pulse), respectively. When the pre-pulse intensity was decreased from 30 to 70 µJ, the photoacoustic intensity decayed 1.8 times. The significant enhancement in photoacoustic intensity under double-pulse excitation is attributed to the efficient photon energy coupling to nanoparticles at the nanosecond time scale due to the initial state of thermal expansion and generation of nano-bubbles (Sec. 4).

 

Fig. 2 Photoacoustic intensity as a function of time delay between fs-laser pulses vertically (p-pol.) and horizontally (s-pol.) from Δt = 0 to 15 ns delay. Pulse energy ratio of pre-pulse to the main pulse Ep(1):Es(2) in µJ is shown at their approximate maximum signal levels.

Download Full Size | PPT Slide | PDF

In Fig. 3, pulse energy ratios for the same total fluence as a function of photoacoustic intensity at different time delays (Δt = 0, 2, 5, 10, 15 ns) were systematically investigated. Different pulse energy ratios of Es(2):Ep(1)=100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 µJ (same total fluence of 100 µJ) were used to determine the optimal ratio that could yield to the highest photoacoustic enhancement. At Δt = 0, the photoacoustic intensity was linearly dependent on the main pulse energy Es(2) upon varying the Es(2):Ep(1) ratio; highest photoacoustic intensity at Es(2):Ep(1)=100:0μJ and lowest at Es(2):Ep(1)=50:50μJ. This is ascribed to the main pulse and pre-pulse overlapped at Δt = 0, thus the photoacoustic intensity is completely dependent on the main pulse energy. When the time delay between the main pulse Es(2) and pre-pulse Ep(1) increase from Δt = 2 to 15 ns, a noticeable peak at Es(2):Ep(1)=80:20μJ starts to grow from Δt = 2 ns and reaches its maximum intensity at Δt = 15 ns. The Es(2):Ep(1)=80:20μJ was found to be the optimal ratio with the highest enhancement in photoacoustic intensity. Accordingly, with Es(2):Ep(1)=80:20μJ at Δt = 15 ns, the maximum enhancement in photoacoustic intensity was achieved which is ascribed to the bubble generation in the nanosecond time scale. The photoacoustic signal growing in two recognizable shorter ∼ 2 ns and longer ∼ 15 ns stages [Fig. (2)], which is consistent with light scattering data (Sec. 3.2). Light scattering is sensitive to the volume of the optically excited region, i.e., nano-bubbles and nanoparticles. The saturation of photoacoustic signal reached at the end of 15 ns was at the limit of the utilised delay line, however, further increase is not expected due to the observed scattering decay with the ~17 ns time constant (Sec. 3.2) and the known strong damping of nano-bubble oscillation and their short lifetime of up to few nanoseconds when nanoparticles of similar size were used [19].

 

Fig. 3 Pulse energy ratios with the same total fluence as a function of photoacoustic intensity at different time delays. The delay time between the pre-pulse and main pulse was varied from 0, 2, 5, 10 and 15 ns. A total fluence of 100 µJ was used in the experiments. Lines are drawn as eye guides.

Download Full Size | PPT Slide | PDF

3.2. Bubble generation by femtosecond double-pulse

In the early stage of excitation by fs-laser pulses which occurs in several picosecond time scale after electron-ion thermalization, pre-pulse plays an important role in the thermal excitation dynamics. The pre-pulse of the double delayed fs-laser pulses clearly affected the total laser energy coupling into gold nanoparticles and finally the ablation characteristics. To study the behavior of pre-pulse from 0 to 15 ns, the pulse energy was kept at 100 µJ and the dynamics was investigated. Figure 4 shows the pre-pulse scattering intensity as a function of time delay between the pulses. At 0 to 2 ns, a rapid increase in the scattering intensity was observed due to the nanoparticle ablation and nano-bubble generation. A single-exponential decay with 17.5 ns time constant was observed after initial faster 2 ns decay.

 

Fig. 4 Pre-pulse scattering intensity at the λ = 600 nm wavelength measured from 0 to 15 ns time delay between the pulses. A supercontinuum white light generated by fs-laser was used as strobe light to perform dark-field imaging and scattering measurements. Two single exponential decays with time constants τ = 2, 17.5 ns are shown as best fits.

Download Full Size | PPT Slide | PDF

For the focusing objective lens with numerical aperture N A = 0.28, the diameter of the focal spot is 2w0 = 1.22λ/N A = 3.5 µm. The 2 ns slope in the light side-scattering transient [Fig. (4)] can be considered as nano-bubble initiation out of the focal volume. Theoretical axial extent of the focal volume can be estimated as a double Rayleigh length 2zR=2nλNA2=27.1μm and is close to the estimate made above for pressure traverse time of 17.5 ns; n = 1.33 is the refractive index of water. In the previous single pulse excitation photoacoustic and X-ray generation experiments, the side view images of the optically excited expanding volume had an axial extent of ∼ 30 µm at E(1) = 30 µJ [33].

4. Discussion

Separation between gold nanoparticles in solution was only ∼ 1.4 µm which is smaller than 30 µm when growth of nano-bubbles is independent [47]. Size of nano-bubbles measured with X-ray scattering and shadowgraphy was around 1 µm diameter for ∼ 40-nm-diameter nanoparticles at typical range of pulse fluences 0.1–0.3 J/cm2 when nanosecond laser pulses were used [17,19]. For femtosecond laser pulses, the threshold of bubble formation is only twice lower for the optimum size for the lowest threshold of nano-bubble initiation with a wide minimum at 40–60 nm diameters [16,19]. It is defined by the plasmonic scattering and absorption contributions to extinction and Kapitza resistance at the nanoparticle-water interface which is responsible for a significant overheating of the nanoparticle. The observed 2 ns time constant in light scattering is consistent with the initial stages of nano-bubble growth reported in literature [18,48,49]. The long ∼ 17 ns decay is caused by bubble growth which has typical times of 15–25 ns and is longer for the higher fluence [17]. At the used high density solution, the pressure waves from adjacent bubbles (nanoparticles) inhibits bubble growth [47], but provides a homogenized volume of high pressure as a source of photoacoustic signal.

Another feature specific to this study is very high pulse fluence ∼1 kJ/cm2 far exceeding that typical for nano-bubble formation and cell perforation at < 0.1 J/cm 2 [20]. At such high intensity, air breakdown at the air-water interface, white light continuum generation, and filamentation are all contributing to significant reduction of the light intensity reaching the nanoparticle. It was established that once 0.24 J/cm2 fluence is exceeded, a repeated irradiation of the same nanoparticle did not produce nano-bubbles [17]. Particle reshaping and resizing was observed. We used flow of nanoparticles and the entire volume of the irradiated solution was smaller than 10% after entire experiment. Extinction spectra measured before and after photoacoustic measurements had the same spectral shape. Ablation and disintegration of nanoparticles can explain the observation. Initiation of nano-bubbles by plasma and electronic emission at the surface of nanoparticle was demonstrated for fs-laser pulses as an alternative to thermally initiated spinoidal water decomposition at strong overheating conditions typical for nanosecond pulsed irradiation [49]. Surface plasma emission from the light field enhancement locations (hot-spots) is relevant mechanism at the used high irradiance by fs-laser pulses employed in our study. Creation of hot-spots with light field enhancement by several times was modeled numerically.

Figure 5 shows finite-difference time-domain (FDTD) simulation results of light intensity distribution for a 20 nm diameter Au nanoparticle suspended in water, assuming that plasmonic hot-spots induce nano-bubble formation around localized high intensity regions, hence, the dipolar pattern of the vapor volume. Initial stages of nano-bubble generation are taken and the light field enhancement is shown for the major components of the E-field. The time estimate for pressure wave travel 20 nm in water takes ∼ 13.5 ps at velocity of sound and can be few times faster at shock wave conditions typical for such experiments [19,48]; this can be considered as an bubble initiation time. It is evident [Fig. (5)] that, there is no new energy deposition possibilities due to opening of vapor volumes around nanoparticles via an augmented light enhancement nor due to a resonant absorption at the interfaces liquid-vapor and gold-vapor which can be important in polarized double-pulsed experiment [51]; calculations were also carried out for spherical and toroidal volumes, however, there were no significant differences. However, this modeling is not capturing presence of plasma and conditions of white light continuum. In actual experiments additional energy deposition channels also exist via two photon absorption TPA [Fig. 5(b)] and opens an efficient energy deposition. The extinction cross section has a major component at TPA wavelength [Fig. 5(b)]. Due to absorption dominance in extinction σext = σabs + σscσabs the scattering and reflection for particles with diameter smaller than ∼40 nm are considerably weaker [32].

 

Fig. 5 (a) Schematic representation of the simulation geometry, with 800 nm wavelength light incident along z-axis and is linearly polarized along x-axis. (b) Simulated extinction cross section, σext, spectrum of the 20 nm diameter Au nanoparticle. The arrow marks the wavelength where two-photon absorption has maximum 0.7λex = 560 nm [50]. (c) Evolution of the absolute (|Etotal|2 as well as the |Ex|2 and |Ey|2 component electric field intensity profiles in the x-y plane around the nanoparticle as the bubbles expand. The intensity of the |Ez|2 components is three orders of magnitude lower, hence their plots are omitted.

Download Full Size | PPT Slide | PDF

Future studies of high-density solutions of nanoparticles within a small focal volume of excitation should provide optimized solutions for photoacoustic sources.

5. Conclusion

Double-pulsed fs laser irradiation to gold nanosphere colloidal suspension demonstrated a significant increase in photoacoustic intensity from 0 to 15 ns time scale. An efficient enhancement factor of ∼ 2 was achieved when the pre-pulse energy is 20–30% of the total energy. The initial stage of thermal expansion and bubble generation in the nanosecond time scale were maximized under double-pulsed femtosecond excitation, leading to a significant photoacoustic enhancement. The pre-pulse of the time-delayed fs-laser pulses affected the total laser energy coupling to gold nanoparticles and thereby enhancing the ablation and photoacoustic characteristics.

Funding

Australian Research Council (ARC) DP170100131; Murata Foundation

Acknowledgments

The nanotechnology ambassador fellowship program at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF) is acknowledged. FDTD simulations were performed on the swinSTAR supercomputer at Swinburne University of Technology.

References and links

1. G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015). [CrossRef]  

2. T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016). [CrossRef]  

3. Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015). [CrossRef]  

4. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011). [CrossRef]  

5. J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014). [CrossRef]  

6. J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014). [CrossRef]  

7. T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016). [CrossRef]  

8. V. I. Babushok, F. C. De Lucia Jr, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006). [CrossRef]  

9. J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010). [CrossRef]  

10. J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013). [CrossRef]  

11. M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014). [CrossRef]  

12. H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015). [CrossRef]   [PubMed]  

13. C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014). [CrossRef]   [PubMed]  

14. E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012). [CrossRef]   [PubMed]  

15. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012). [CrossRef]  

16. K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015). [CrossRef]  

17. C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015). [CrossRef]   [PubMed]  

18. A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004). [CrossRef]  

19. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011). [CrossRef]  

20. R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016). [CrossRef]   [PubMed]  

21. R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016). [CrossRef]  

22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006). [CrossRef]   [PubMed]  

23. T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017). [CrossRef]  

24. B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014). [CrossRef]  

25. R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

26. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003). [CrossRef]   [PubMed]  

27. M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016). [CrossRef]  

28. Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016). [CrossRef]  

29. H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016). [CrossRef]   [PubMed]  

30. T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger Jr., “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016). [CrossRef]  

31. M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004). [CrossRef]  

32. F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016). [CrossRef]  

33. F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016). [CrossRef]   [PubMed]  

34. F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016). [CrossRef]   [PubMed]  

35. Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016). [CrossRef]  

36. A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

37. G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006). [CrossRef]  

38. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008). [CrossRef]  

39. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007). [CrossRef]  

40. J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012). [CrossRef]  

41. S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013). [CrossRef]  

42. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005). [CrossRef]  

43. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007). [CrossRef]  

44. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron Jr., J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003). [CrossRef]  

45. N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011). [CrossRef]   [PubMed]  

46. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001). [CrossRef]  

47. T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016). [CrossRef]  

48. E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013). [CrossRef]  

49. R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014). [CrossRef]  

50. M. Malinauskas, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focused femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010). [CrossRef]   [PubMed]  

51. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
    [Crossref]
  2. T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
    [Crossref]
  3. Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
    [Crossref]
  4. S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
    [Crossref]
  5. J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
    [Crossref]
  6. J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
    [Crossref]
  7. T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
    [Crossref]
  8. V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
    [Crossref]
  9. J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
    [Crossref]
  10. J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
    [Crossref]
  11. M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
    [Crossref]
  12. H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
    [Crossref] [PubMed]
  13. C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
    [Crossref] [PubMed]
  14. E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
    [Crossref] [PubMed]
  15. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
    [Crossref]
  16. K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
    [Crossref]
  17. C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
    [Crossref] [PubMed]
  18. A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
    [Crossref]
  19. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
    [Crossref]
  20. R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
    [Crossref] [PubMed]
  21. R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
    [Crossref]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
    [Crossref] [PubMed]
  23. T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
    [Crossref]
  24. B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
    [Crossref]
  25. R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).
  26. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [Crossref] [PubMed]
  27. M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
    [Crossref]
  28. Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
    [Crossref]
  29. H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
    [Crossref] [PubMed]
  30. T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
    [Crossref]
  31. M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
    [Crossref]
  32. F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
    [Crossref]
  33. F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
    [Crossref] [PubMed]
  34. F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
    [Crossref] [PubMed]
  35. Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
    [Crossref]
  36. A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).
  37. G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
    [Crossref]
  38. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
    [Crossref]
  39. V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
    [Crossref]
  40. J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
    [Crossref]
  41. S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
    [Crossref]
  42. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
    [Crossref]
  43. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
    [Crossref]
  44. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
    [Crossref]
  45. N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
    [Crossref] [PubMed]
  46. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
    [Crossref]
  47. T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
    [Crossref]
  48. E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
    [Crossref]
  49. R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
    [Crossref]
  50. M. Malinauskas, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focused femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
    [Crossref] [PubMed]
  51. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
    [Crossref] [PubMed]

2017 (1)

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

2016 (14)

F. C. P. Masim, H. L. Liu, M. Porta, T. Yonezawa, A. Balčytis, S. Juodkazis, W.-H. Hsu, and K. Hatanaka, “Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation,” Opt. Express 24(13), 14781–14792 (2016).
[Crossref] [PubMed]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
[Crossref] [PubMed]

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
[Crossref]

2015 (6)

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

2014 (6)

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

2013 (3)

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

2012 (3)

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

2011 (3)

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

2010 (2)

M. Malinauskas, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focused femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[Crossref] [PubMed]

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

2008 (2)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
[Crossref] [PubMed]

2007 (2)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

2006 (3)

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

2005 (1)

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

2004 (2)

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

2003 (2)

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

2001 (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Aft, R. B.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Anglos, D.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Babushok, V. I.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Baffou, G.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Balcytis, A.

Bar, I.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Bastus, N. G.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Baumert, T.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Benedetti, P. A.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Boneberg, J.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Borden, M. A.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Boulais, E.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Boutopoulos, C.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Brixner, T.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Capitelli, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Chance Carter, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Chang, J.-H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Chatterjee, S.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Chen, A.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Chen, F.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Chen, Z.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Chiang, W.-Y.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Colstron, B.W.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Comenge, J.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Cristoforetti, G.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Danworaphong, S.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

De Lucia, F. C.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Deng, J.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Dimler, F.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Ding, D.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Diwakar, P. K.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Dong, G.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Dove, J. D.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Du, G.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Emelianov, S.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Fortin-Deschenes, M.

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Fotakis, C.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Fujita, M.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Fukumura, H.

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Gecevicius, M.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Geortz, D. E.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Gerber, G.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Giacomo, A. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Goode, S. R.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Gordon, R. J.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Gotte, N.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Gottfried, J. A.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Guo, J.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Hai, P.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Harilal, S. S.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Hartland, G. V.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Hasegawa, N.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Hassanein, A.

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Hatanaka, K.

Hatef, A.

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Hayashi, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Helfield, B. L

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Helfield, B. L.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Homan, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Hou, X.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Hsu, W.-H.

Hu, M.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Hu, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Huynh, E.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Ida, T.

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Jarrett, J. W.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Jeon, M.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Jiang, Y.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Jin, M.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Johnson, J. S.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Ju, H.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Juodkazis, S.

Kelf, T. A.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Kim, C.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Kim, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kim, J.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Kim, J.-M.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Knappenberger, K. L.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Kotaidis, V.

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Kumada, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Kumar, D.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Kupfer, R.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Lachaine, R.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Lajoie, P.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

Larson-Smith, K.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Legnaioli, S.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Leung, B. Y. C.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Li, S.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Lim, D.-K.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Liu, D.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Liu, H. L.

Liu, H.-L.

Lomardo, M.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Lovell, J. F.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Luo, S.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Ma, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Maeda, Y.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Malinauskas, M.

Masim, F. C. P.

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

Masuhara, H.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Matsuda, O.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Matsushima, S.-I.

Matula, T.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

McLaughlan, J. R.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Mensah, S.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Metwally, K.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

Meunier, M.

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Michael Angel, S.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Mildner, J.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Misawa, H.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express 16(17), 12650–12657, (2008).
[Crossref] [PubMed]

Miziolek, A. W.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Moon, H.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Munson, C. A.

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Muramatsu, M.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Murray, T. W.

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Nakajima, T.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Nguyen, M. T.

Nicolas, G.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Nishijima, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Nishikino, M.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Novack, D. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Nuernberger, P.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

O’Donell, M.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Oh, J.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Ono, H.

Otobe, T.

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Otsuka, M.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Ou, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Palleschi, V.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Pardini, L.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Park, K.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Pascale, O. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Pearman, W.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Pelivanov, I.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Penczak, J.

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Pender, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Perez, C.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Petrova, H.

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Pinon, V.

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

Plech, A.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Pleitez, M. A.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Porta, M.

Pozzo, D.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Puntes, V.

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Qi, H.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Qiu, J.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Raman, B.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Rao, B.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Rioux, D.

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

Rong, H.

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Roy, R. A.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Sakka, T.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Salvetti, A.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Sarpe, C.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Scaffidi, J.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Selle, R.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Shao, J.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Shen, T.-F.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Siems, A.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Sim, C.

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

Somekawa, T.

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Song, W.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Sui, L.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Sun, T.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Tanaka, Y.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Tognoni, E.

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

Tomada, M.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Tsai, C. H.

Ueno, L.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Urban, B. E.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Usman, A.

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

Vaia, R. A.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Vogt, G.

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Wang, L. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Wang, R.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Wang, T.

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Wang, X.

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

F. C. P. Masim, W.-H. Hsu, C. H. Tsai, H.-L. Liu, M. Porta, M. T. Nguyen, T. Yonezawa, A. Balčytis, X. Wang, S. Juodkazis, and K. Hatanaka, “MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions,” Opt. Express 24(15), 17050–17059 (2016).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, Y.

A. Chen, Y. Wang, L. Sui, S. Li, S. Li, D. Liu, Y. Jiang, and M. Jin, “Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation,” Opt. Express 23(19), 24650–24656 (2015).

Weber, S. A. L.

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Wei, C.-W.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Wilson, B. C.

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Wilson, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

Wollenhaupt, M.

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Wong, T. T. W.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Wright, O. B.

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

Wu, Y.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Xia, J.

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Yakovlev, V.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Yang, Q.

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Yi, J.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

Yonezawa, T.

Zhang, C.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Zhang, H.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

Zhang, H. F.

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

Zhang, R.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Zhao, T.

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

Zheng, G.

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

Zhou, S.

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. Zhang, Z. Hu, Z. Ma, M. Gecevicius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref] [PubMed]

ACS Nano (1)

H. Moon, D. Kumar, H. Kim, C. Sim, J.-H. Chang, J.-M. Kim, H. Kim, and D.-K. Lim, “Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods to sensitive photoacoustic imaging,” ACS Nano 9(3), 2711–2719 (2015).
[Crossref] [PubMed]

ACS Photonics (3)

F. C. P. Masim, M. Porta, W.-H. Hsu, M. T. Nguyen, T. Yonezawa, A. Balčytis, S. Juodkazis, and K. Hatanaka, “Au Nanoplasma as efficient hard X-ray emission source,” ACS Photonics 3, 2184–2190 (2016).
[Crossref]

R. Lachaine, E. Boulais, D. Rioux, C. Boutopoulos, and M. Meunier, “Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation,” ACS Photonics 3, 2158–2169 (2016).
[Crossref]

R. Lachaine, E. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

Adv. Materials (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of the spherical and rod-like gold nanoparticles using a surfactant template,” Adv. Materials 13(18), 1389–1393 (2001).
[Crossref]

Appl. Optics (1)

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B.W. Colstron, J. Chance Carter, and S. Michael Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Optics 42(30), 6099–6106 (2003).
[Crossref]

Appl. Phy. Lett. (1)

T. Kumada, T. Otobe, M. Nishikino, N. Hasegawa, and T. Hayashi, “Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses,” Appl. Phy. Lett. 108, 011102 (2016).
[Crossref]

Appl. Phys. Lett. (3)

S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomada, Y. Tanaka, O. B. Wright, Y. Nishijima, L. Ueno, S. Juodkazis, and H. Misawa, “Real-time imaging of acoustic rectification,” Appl. Phys. Lett. 99, 201919 (2011).
[Crossref]

C.-W. Wei, M. Lomardo, K. Larson-Smith, I. Pelivanov, C. Perez, J. Xia, T. Matula, D. Pozzo, and M. O’Donell, “Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions,” Appl. Phys. Lett. 104, 033701 (2014).
[Crossref] [PubMed]

S. S. Harilal, P. K. Diwakar, and A. Hassanein, “Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 103, 041102 (2013).
[Crossref]

Appl. Sur. Sci. (1)

J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, and T. Baumert, “Emission signal enhancement of laser ablation of metals (aluminum and titanium) by time delayed femtosecond double pulses from femtoseconds to nanoseconds,” Appl. Sur. Sci. 302, 291–298 (2014).
[Crossref]

Chem. Phy. Lett. (1)

M. Hu, H. Petrova, and G. V. Hartland, “Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phy. Lett. 391, 220–225 (2004).
[Crossref]

Int. J. Ther. Sci. (1)

G. Du, Q. Yang, F. Chen, Y. Ou, Y. Wu, and X. Hou, “Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses,” Int. J. Ther. Sci. 90, 197–202 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

E. Huynh, J. F. Lovell, B. L Helfield, M. Jeon, D. E. Geortz, B. C. Wilson, and G. Zheng, “Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties,” J. Am. Chem. Soc. 134(40), 16464–16467 (2012).
[Crossref] [PubMed]

J. Biomed. Optics (2)

M. Jeon, W. Song, E. Huynh, J. Kim, B. L. Helfield, B. Y. C. Leung, D. E. Geortz, G. Zheng, J. Oh, J. F. Lovell, and C. Kim, “Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging,” J. Biomed. Optics 19(1), 06005 (2014).
[Crossref]

B. E. Urban, J. Yi, V. Yakovlev, and H. F. Zhang, “Investigating femtosecond-laser-induced two-photon photoacoustic generation,” J. Biomed. Optics 19(8), 085001 (2014).
[Crossref]

J. Phys. Chem. C (2)

M. Muramatsu, T.-F. Shen, W.-Y. Chiang, A. Usman, and H. Masuhara, “Picosecond motional relaxation of nanoparticles in femtosecond laser trapping,” J. Phys. Chem. C 120, 5251–5256 (2016).
[Crossref]

T. Zhao, J. W. Jarrett, J. S. Johnson, K. Park, R. A. Vaia, and K. L. Knappenberger, “Plasmon dephasing in gold nanorod studied using single-nanoparticle interferometric nonlinear optical microscopy,” J. Phys. Chem. C 120, 4071–4079 (2016).
[Crossref]

J. Phys. Chem. C. (2)

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold of photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C. 119, 28586–28596 (2015).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water,” J. Phys. Chem. C. 7, 9386–9396 (2013).
[Crossref]

Jap. J. Appl. Phy. (1)

T. Somekawa, M. Otsuka, Y. Maeda, and M. Fujita, “Signal enhancement in femtosecond laser induced breakdown spectroscopy with a double-pulse configuration composed of two polarizers,” Jap. J. Appl. Phy. 55, 058002 (2016).
[Crossref]

Langmuir (1)

N. G. Bastus, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27, 11098–11105 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

R. Lachaine, C. Boutopoulos, P. Lajoie, E. Boulais, and M. Meunier, “Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation,” Nano Lett. 16, 3187–3194 (2016).
[Crossref] [PubMed]

Nanoscale (1)

C. Boutopoulos, A. Hatef, M. Fortin-Deschenes, and M. Meunier, “Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser,” Nanoscale 7, 11758–11765 (2015).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Nat. Comm. (1)

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat. Comm. 3, 1–10 (2012).
[Crossref]

New Journal of Physics (1)

A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New Journal of Physics 13, 043018 (2011).
[Crossref]

Opt. Express (5)

Opt. Laser Tech. (3)

Q. Wang, S. Luo, Z. Chen, H. Qi, J. Deng, and Z. Hu, “Drilling of aluminum and copper films with femtosecond double-pulse laser,” Opt. Laser Tech. 80, 116–124 (2016).
[Crossref]

Y. Lu, Q. Yang, F. Chen, G. Du, Y. Wu, Y. Ou, and X. Hou, “Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally-shaped femtosecond laser double pulses,” Opt. Laser Tech. 77, 6–10 (2016).
[Crossref]

Y. Ou, Q. Yang, G. Du, F. Chen, Y. Wu, Y. Lu, and X. Hou, “Ultrafast thermalisation dynamics in Au film excited by a polarization-shaped femtosecond laser double-pulse,” Opt. Laser Tech. 70, 71–75 (2015).
[Crossref]

Opt. Letters (1)

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Letters 35(13), 2127–2129 (2010).
[Crossref]

Optics Comm. (1)

J. Guo, T. Wang, J. Shao, T. Sun, R. Wang, A. Chen, Z. Hu, M. Jin, and D. Ding, “Emission enhancement ratio of metal irradiation by femtosecond double-pulse laser,” Optics Comm. 285, 1895–1899 (2012).
[Crossref]

Phys. Rev. A (1)

G. Vogt, P. Nuernberger, R. Selle, F. Dimler, T. Brixner, and G. Gerber, “Analysis of femtosecond quantum control mechanisms with colored double pulses,” Phys. Rev. A 74, 033413 (2006).
[Crossref]

Phys. Rev. B. (1)

A. Plech and V. Kotaidis, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B. 70, 195423 (2004).
[Crossref]

Proc. of SPIE (1)

R. Zhang, B. Rao, H. Rong, B. Raman, and L. V. Wang, “In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in disophila brain,” Proc. of SPIE 9708, 97082V (2016).

Sci. Advances (1)

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. B. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like human breast cancer by photoacoustic microscopy,” Sci. Advances 3, e1602168 (2017).
[Crossref]

Sci. Reports (1)

T. Nakajima, X. Wang, S. Chatterjee, and T. Sakka, “Observation of number-density dependent growth of plasmonic nanobubbles,” Sci. Reports 6, 28667 (2016).
[Crossref]

Soft Matter (1)

J. D. Dove, T. W. Murray, and M. A. Borden, “Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles,” Soft Matter 9, 7743–7750 (2013).
[Crossref]

Spectro Acta B. (1)

V. I. Babushok, F. C. De Lucia, J. A. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectro Acta B. 61, 999–1014 (2006).
[Crossref]

Spectro. Act. Part B (1)

J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, “The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy,” Spectro. Act. Part B 97, 34–41 (2014).
[Crossref]

Spectro. Acta. Part B (4)

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectro. Acta. Part B 63, 1006–1010 (2008).
[Crossref]

V. Pinon, C. Fotakis, G. Nicolas, and D. Anglos, “Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon,” Spectro. Acta. Part B 62, 1412–1418 (2007).
[Crossref]

P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration,” Spectro. Acta. Part B 60, 1392–1401 (2005).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectro. Acta. Part B 62, 721–738 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Absorption spectrum of Au nanosphere colloidal suspension with a strong characteristic absorption band at ∼520 nm. TEM image of mono-dispersed colloidal suspension of Au nanosphere with a diameter of 20 nm is shown in the background. (b) Schematic diagram of the experimental setup for fs-double-pulsed excitation to Au nanoparticle suspension for photoacoustic detection. Fs-laser pulses: pulse duration t0 = 40 fs, central wavelength λ = 800 nm and pulse energy E = 0.1 mJ at 1 kHz repetition rate were focused inside the glass tube using 10× numerical aperture N A = 0.28 objective lens. The pre-pulse was p-polarized while the main pulse was s-polarized. Distance between the focal spot and transducer was set at 15 mm in all experiments.
Fig. 2
Fig. 2 Photoacoustic intensity as a function of time delay between fs-laser pulses vertically (p-pol.) and horizontally (s-pol.) from Δt = 0 to 15 ns delay. Pulse energy ratio of pre-pulse to the main pulse E p ( 1 ) : E s ( 2 ) in µJ is shown at their approximate maximum signal levels.
Fig. 3
Fig. 3 Pulse energy ratios with the same total fluence as a function of photoacoustic intensity at different time delays. The delay time between the pre-pulse and main pulse was varied from 0, 2, 5, 10 and 15 ns. A total fluence of 100 µJ was used in the experiments. Lines are drawn as eye guides.
Fig. 4
Fig. 4 Pre-pulse scattering intensity at the λ = 600 nm wavelength measured from 0 to 15 ns time delay between the pulses. A supercontinuum white light generated by fs-laser was used as strobe light to perform dark-field imaging and scattering measurements. Two single exponential decays with time constants τ = 2, 17.5 ns are shown as best fits.
Fig. 5
Fig. 5 (a) Schematic representation of the simulation geometry, with 800 nm wavelength light incident along z-axis and is linearly polarized along x-axis. (b) Simulated extinction cross section, σext, spectrum of the 20 nm diameter Au nanoparticle. The arrow marks the wavelength where two-photon absorption has maximum 0.7λex = 560 nm [50]. (c) Evolution of the absolute (|Etotal|2 as well as the |Ex|2 and |Ey|2 component electric field intensity profiles in the x-y plane around the nanoparticle as the bubbles expand. The intensity of the |Ez|2 components is three orders of magnitude lower, hence their plots are omitted.

Metrics