K. Qu and G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid optoelectromechanical systems,” Phys. Rev. A 87(3), 031802 (2013).
[Crossref]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alù, “Fundamentals of optical non-reciprocity based on optomechanical coupling,” Phys. Rev. Applied 7(6), 064014 (2017).
[Crossref]
F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref]
[PubMed]
N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
S. A. R. Horsley, J.-H. Wu, M. Artoni, and G. C. La Rocca, “Optical nonreciprocity of cold atom Bragg mirrors in motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref]
[PubMed]
A. Arvanitaki and A. A. Geraci, “Detecting high-frequency gravitational waves with optically levitated sensors,” Phys. Rev. Lett. 110(7), 071105 (2013).
[Crossref]
[PubMed]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]
M. Aspelmeyer, P. Meystre, and K. C. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
L. Ranzani and J. Aumentado, “Graph-based analysis of nonreciprocity in coupled-mode systems,” New J. Physics, 17(2), 023024 (2015).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6(11), 768–772 (2012).
[Crossref]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature (London) 430(6997), 329–332 (2004).
[Crossref]
M. Cai, O. J. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74 (2000).
[Crossref]
[PubMed]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref]
[PubMed]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13(2), 023003 (2011).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
X. W. Xu, Y. Li, A. X. Chen, and Y. X. Liu, “Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems,” Phys. Rev. A 93(2), 023827 (2016).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature (London) 430(6997), 329–332 (2004).
[Crossref]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
A. Metelmann and A. A. Clerk, “Nonreciprocal photon transmission and amplification via reservoir engineering,” Phys. Rev. X 5(2), 021025 (2015).
A. Metelmann and A. A. Clerk, “Quantum-limited amplification via reservoir engineering,” Phys. Rev. Lett. 112(13), 133904 (2014).
[Crossref]
[PubMed]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref]
[PubMed]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3(2), 91–94 (2009).
[Crossref]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a classical nanomechanical two-level system,” Nat. Phys. 9(8), 485–488 (2013).
[Crossref]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
A. Arvanitaki and A. A. Geraci, “Detecting high-frequency gravitational waves with optically levitated sensors,” Phys. Rev. Lett. 110(7), 071105 (2013).
[Crossref]
[PubMed]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67(6), 699 (1991).
[Crossref]
[PubMed]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref]
[PubMed]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
S. A. R. Horsley, J.-H. Wu, M. Artoni, and G. C. La Rocca, “Optical nonreciprocity of cold atom Bragg mirrors in motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref]
[PubMed]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81(4), 041803 (2010).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91(4), 043843 (2015).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref]
[PubMed]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a classical nanomechanical two-level system,” Nat. Phys. 9(8), 485–488 (2013).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6(11), 768–772 (2012).
[Crossref]
J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref]
[PubMed]
C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
X. W. Xu, Y. Li, A. X. Chen, and Y. X. Liu, “Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems,” Phys. Rev. A 93(2), 023827 (2016).
[Crossref]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
X. W. Xu and Y. Li, “Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems,” Phys. Rev. A 91(5), 053854 (2015).
[Crossref]
X.-W. Xu and Y. Li, “Controllable optical output fields from an optomechanical system with mechanical driving,” Phys. Rev. A 92(2), 023855 (2015).
[Crossref]
W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91(4), 043843 (2015).
[Crossref]
L. Tian and Z. Li, “Nonreciprocal state conversion between microwave and optical Photons,” arXiv: 1610.09556 (2016).
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6(11), 768–772 (2012).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref]
[PubMed]
X. W. Xu, Y. Li, A. X. Chen, and Y. X. Liu, “Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems,” Phys. Rev. A 93(2), 023827 (2016).
[Crossref]
W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91(4), 043843 (2015).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature (London) 430(6997), 329–332 (2004).
[Crossref]
S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90(13), 137901 (2003).
[Crossref]
[PubMed]
S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref]
[PubMed]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391 (2014).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
A. Metelmann and A. A. Clerk, “Nonreciprocal photon transmission and amplification via reservoir engineering,” Phys. Rev. X 5(2), 021025 (2015).
A. Metelmann and A. A. Clerk, “Quantum-limited amplification via reservoir engineering,” Phys. Rev. Lett. 112(13), 133904 (2014).
[Crossref]
[PubMed]
P. Meystre, “A short walk through quantum optomechanics,” Ann. Phys. (Berlin) 525(3), 215–233 (2013).
[Crossref]
M. Aspelmeyer, P. Meystre, and K. C. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alù, “Fundamentals of optical non-reciprocity based on optomechanical coupling,” Phys. Rev. Applied 7(6), 064014 (2017).
[Crossref]
F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref]
[PubMed]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13, 465 (2017).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6(11), 768–772 (2012).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13(2), 023003 (2011).
[Crossref]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
M. Cai, O. J. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74 (2000).
[Crossref]
[PubMed]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
K. Qu and G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid optoelectromechanical systems,” Phys. Rev. A 87(3), 031802 (2013).
[Crossref]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
L. Ranzani and J. Aumentado, “Graph-based analysis of nonreciprocity in coupled-mode systems,” New J. Physics, 17(2), 023024 (2015).
[Crossref]
C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]
T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a classical nanomechanical two-level system,” Nat. Phys. 9(8), 485–488 (2013).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref]
[PubMed]
S. A. R. Horsley, J.-H. Wu, M. Artoni, and G. C. La Rocca, “Optical nonreciprocity of cold atom Bragg mirrors in motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref]
[PubMed]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alù, “Fundamentals of optical non-reciprocity based on optomechanical coupling,” Phys. Rev. Applied 7(6), 064014 (2017).
[Crossref]
F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref]
[PubMed]
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature (London) 430(6997), 329–332 (2004).
[Crossref]
D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67(6), 699 (1991).
[Crossref]
[PubMed]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys. 13(2), 023003 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
M. Aspelmeyer, P. Meystre, and K. C. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]
T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a classical nanomechanical two-level system,” Nat. Phys. 9(8), 485–488 (2013).
[Crossref]
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).
[Crossref]
F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London) 480(7377), 351–354 (2011).
[Crossref]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]
N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, Søren Stobbe, and P. Lodahl, “Deterministic photon–emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10(9), 775–778 (2015).
[Crossref]
[PubMed]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref]
[PubMed]
X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90(4), 043848 (2014).
[Crossref]
F. Lecocq, L. Ranzani, G. A. Peterson, K. Cicak, R. W. Simmonds, J. D. Teufel, and J. Aumentado, “Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier,” Phys. Rev. Applied 7(2), 024028 (2017).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref]
[PubMed]
C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[Crossref]
G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Demonstration of efficient nonreciprocity in a microwave optomechanical circuit,” arXiv: 1703.05269.
L. Tian, “Optoelectromechanical transducer: Reversible conversion between microwave and optical photons,” Ann. Phys. (Berlin) 527(1–2), 1–14 (2015).
[Crossref]
L. Tian and Z. Li, “Nonreciprocal state conversion between microwave and optical Photons,” arXiv: 1610.09556 (2016).
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90(13), 137901 (2003).
[Crossref]
[PubMed]
D. Malz, L. D. Toth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, and A. Nunnenkamp, “Quantum-limited directional amplifiers with optomechanics,” arXiv: 1705.00436.
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “Nonreciprocal reconfigurable microwave optomechanical circuit,” arXiv: 1612.08223 (2016).
T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]
[PubMed]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref]
[PubMed]
M. Cai, O. J. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74 (2000).
[Crossref]
[PubMed]
S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref]
[PubMed]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
M. A. Miri, F. Ruesink, E. Verhagen, and A. Alù, “Fundamentals of optical non-reciprocity based on optomechanical coupling,” Phys. Rev. Applied 7(6), 064014 (2017).
[Crossref]
F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref]
[PubMed]
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88(1), 013804 (2013).
[Crossref]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
S. Mancini, D. Vitali, and P. Tombesi, “Scheme for teleportation of quantum states onto a mechanical resonator,” Phys. Rev. Lett. 90(13), 137901 (2003).
[Crossref]
[PubMed]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
Sh. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Phys. Rev. Lett. 114(8), 080503 (2015).
[Crossref]
[PubMed]
W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91(4), 043843 (2015).
[Crossref]
T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, “Coherent control of a classical nanomechanical two-level system,” Nat. Phys. 9(8), 485–488 (2013).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]
[PubMed]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London), 471(7337), 204–208 (2011).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photon. 6(11), 768–772 (2012).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472(7341), 69–73 (2011).
[Crossref]
S. A. R. Horsley, J.-H. Wu, M. Artoni, and G. C. La Rocca, “Optical nonreciprocity of cold atom Bragg mirrors in motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref]
[PubMed]
L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).
[Crossref]
X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90(4), 043848 (2014).
[Crossref]
X. W. Xu, Y. Li, A. X. Chen, and Y. X. Liu, “Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems,” Phys. Rev. A 93(2), 023827 (2016).
[Crossref]
X. W. Xu and Y. Li, “Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems,” Phys. Rev. A 91(5), 053854 (2015).
[Crossref]
X.-W. Xu and Y. Li, “Controllable optical output fields from an optomechanical system with mechanical driving,” Phys. Rev. A 92(2), 023855 (2015).
[Crossref]
H. Okamoto, A. Gourgout, C. Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, “Coherent phonon manipulation in coupled mechanical resonators,” Nat. Phys. 9(8), 480–484 (2013).
[Crossref]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photon. 8(7), 524–529 (2014).
[Crossref]
H. Fu, Z. Gong, T. Mao, C. Sun, S. Yi, Y. Li, and G. Cao, “Classical analog of Stuckelberg interferometry in a two-coupled-cantilever based optomechanical system,” Phys. Rev. A 94(4), 043855 (2016).
[Crossref]
Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3(2), 91–94 (2009).
[Crossref]
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98(3), 030405 (2007).
[Crossref]
[PubMed]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys. 9(3), 179–184 (2013).
[Crossref]
F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14(12), 123037 (2012).
[Crossref]
D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref]
[PubMed]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117(12), 123902 (2016).
[Crossref]
[PubMed]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
Y. L. Zhang, C. H. Dong, C. L. Zou, X. B. Zou, Y. D. Wang, and G. C. Guo, “Optomechanical devices based on traveling-wave microresonators,” Phys. Rev. A 95(4), 043815 (2017).
[Crossref]
Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photon. 10(10), 657–661 (2016).
[Crossref]
L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).
[Crossref]