Abstract

We have demonstrated the realization of on-line temperature-controlled random lasers (RLs) in the polyhedral oligomeric silsesquioxanes (POSS) nanoparticles (NPs) as well as Pyrromethene 597 (PM597) laser dye, Fe3O4/SiO2 NPs as well as PM597, and only PM597 doped polymer optical fibers (POFs), respectively. The RLs can be obtained from the gained POFs system caused by multiple scattering of emitted light. The refractive index of the fiber core materials can be easily tuned via temperature due to the polymer with large thermo-optic coefficient. Meanwhile, the scattering mean free path of core in the POFs, which is the key role for the emission wavelength of RLs, is strongly dependent on the matrix refractive index. Thus emission wavelength of RLs in the POF temperature can be controlled through changing the temperature. With the increasing the temperature, the RL emission wavelength has occurred red-shift effect for the POFs.

© 2017 Optical Society of America

1. Introduction

Since RLs was firstly proposed by Letokhov in 1967 [1], RLs have attracted much attention in disorder photonics due to their special features, such as low cost, small size, easy to integrate, and low spatial coherence [2–8]. Different from the traditional lasers emitting from conventional reflector cavity, the optical feedback of RLs is provided solely by multiple scattering within the gain medium [9–13]. Due to the absence of cavity for RLs, the control for the emission wavelength and directionality is lost, which seriously hinder the prospect for this otherwise simple laser. Therefore, it is necessary to study the control of random laser emission. N. Bachelard et al. have demonstrated numerically the selection of any desired lasing mode from the emission spectrum by controlling over the distribution of lasing thresholds via the pump geometry [14]. S. Gottardo et al. have reported that the lasing wavelength could be controlled by means of Mie resonance of polystyrene spheres [15]. R. G. S. EI-Dardiry et al. have achieved controlling over the emission wavelength of a random laser experimentally by adjusting the amount of absorption of emission light [16]. After that Nicolas’s team has achieved single-mode operation at any selected wavelength by actively shaping the optical pump within the random laser [17]. Hisch et al demonstrate, in particular, how to obtain customized pump profiles to achieve highly directional emission [18]. There are also ways to control the random laser through mode-locking, directional stimulated emission and the spatial profile of the pump beam [19–22]. Wiersma has created a random laser that can be brought above and below its threshold for laser emission by small changes in its temperature [23]. Mujumdar described Monte Carlo simulations that model the behavior of such a system through a three-dimensional random walk of light in a temperature-dependent disordered medium with amplification [24]. Ferjani’s study evidenced an important temperature dependence of the random lasing characteristics in the nematic phase and in close proximity of the nematicisotropic (N-I) phase transition [25]. These work have only solved the control for RLs wavelength emission. However, it still is a challenge to control both the wavelength and directionality of RLs.

To solve the problem of high threshold and non-direction of RLs, increasing attention has focused on the effects of two-dimensional confinement on the lasing properties of a classical RL system. In 2007, C. J. S. de Matos first reported the random fiber laser (RFLs) in the photonic crystal fibers filled by rutile (TiO2) particles in a rhodamine 6G solution [26]. To simplify the structure and boost the application of RFLs [27,28], Turitsyn’s group has reported a novel type of RFLs—the random distributed feedback fibre laser—in the randomly distributed refractive index inhomogeneities throughout the length of the silica fiber due to the Raman amplified Rayleigh backscattering in different types of cavities with and without conventional point-action reflector.

Recently, polymer optical fibers (POFs) have received a lot of attention [29, 30] due to their flexibility, low Young modulus, ease of handing, economy, biocompatible, and large numerical aperture. The most important characteristic of POFs is the polymer with a large negative thermo-optic coefficient [31–33]. The scattering mean free path–key factor for RLs emission–is closely related to the refractive index [34]. Thus the random lasing emission wavelength can been easily online controlled through temperature. Therefore, the new random polymer fiber lasers (RPFLs) with low pump threshold, directional and controlled random lasing emission characters will be designed in the POFs.

2. Materials and methods

The POFs used in our experiment were fabricated using the “Teflon technique” [35]. To study the controlled RLs ability of POFs, three different types of POFs have been fabricated, including one only 0.14 wt. % PM597 doped POF (mark as PMPOF), one 2.0 wt. % Fe3O4/SiO2 NPs as well as 0.14 wt. % PM597 doped POF (mark as FePOF), and another 22.9 wt. % POSS NPs as well as 0.14 wt. % PM597 doped POF (mark as POPOF). The host core materials of PMPOF and FePOF are both poly(methylmethacrylate-co-benzylmethacrylate) [poly(MMA-co-BzMA], and that of POPOF is poly(methylmethacrylate-co-benzylmethacrylate-co-methacrylisobutyl polyhedral oligomeric silsesquioxanes) [poly(MMA-co-BzMA-co-MMAPOSS)]. The cladding materials of the three kinds of disorder POFs are all poly(methylmethacrylate-co-butyl acrylate) [ poly(MMA-co-BA)].

The preparation of PMPOF and POPOF has been reported in our previous work [36]. The preparation method of FePOF is similar with the fabricated process of PMPOF and POPOF. The dopant of Fe3O4/SiO2 core/shell NPs is prepared based on Ref. 37. In brief, a micro-emulsion was obtained by dissolving 3.5 g of sodium dodecyl-enzenesulfonate in 30 ml xylene by sonication. 2 mmol of FeCl2·4H2O, 4 mmol of Fe(NO3)3·9H2O as well as 1.1 mL deionized (DI) water were added to the micro-emulsion under vigorous stirring for about 12 hours. Then, the reverse-micelle solution was slowly heated to 90 °C under continuously flowing nitrogen gas. 3 mL of hydrazine (34 wt. % aqueous solution) was added into the solution as well as aged at 90 °C for 3 hours, and then cooled down to 40 °C within an hour. 0.04 g of NaOH and 0.6 mL of DI water were added to the three mouth flask with the temperature maintaining at 40 °C, and then 6 mL of TEOS was dropped into the mixture of the as-synthesized magnetite NPs and xylene under vigorous stirring. In this way, we prepared Fe3O4/SiO2 core/shell NPs as shown in Fig. 1(a). The diameter of core dopant of Fe3O4 NPs is 5 ± 1 nm, and the thickness of SiO2 shell is 3 ± 0.5 nm. Figures 1(b) and 1(c) show the optical microscope cross-sectional and fluorescence images for the Fe3O4/SiO2 NPs doped POF, respectively. It can be seen that the core (cladding) diameter of the Fe3O4/SiO2 doped POF is 61 (485) μm from optical microscope image.

 figure: Fig. 1

Fig. 1 (a) TEM image of Fe3O4/SiO2 NPs; (b) the optical microscope cross-sectional image, and (c) fluorescence image for the FePOF.

Download Full Size | PPT Slide | PDF

The experimental setup of the entire random lasing controlling measurement for the POFs is shown in Fig. 2. A Q-switched Nd:YAG laser which outputs wavelength of 532 nm (pulse duration 10 ns, repetition rate 10 Hz) is used to end pump the POF system (2 cm long) with an convex lens. A heating temperature panel (JFTOOIS, JF-986SS, 200w, 0-400°C, Φ 60mm) under the POF was used to control the temperature. The pump pulse energy and polarization is controlled by a Glan Prism group. A filter for 532 nm is placed behind POFs to filter the residual pump pulse. The emitted light along the POF axis is collected by a fiber spectrometer (QE65PRO, ocean optics, resolution ∼0.4 nm, integration time 100 ms).

 figure: Fig. 2

Fig. 2 The experimental setup for the temperature controlling random polymer fiber laser experiment.

Download Full Size | PPT Slide | PDF

3. Results and discussions

Figure 3(a) shows the RL emission spectra for the three kinds of POFs at the pump energy of 0.465 mJ. There all are multimode lasing on the spontaneous emission band for these POFs. For FePOF, it can be seen that a sharp peak at 573.7 nm with FWHM 0.9 nm at the top of the emission spectra. Similarly, a sharp peak at 564.5nm (585.2nm) with FWHM 0.6 nm (1.5 nm) can be observed in the POPOF and PMPOF, respectively. It can be seen from Fig. 3(a) that the range of the random lasing peak wavelength varies with the disorder of POFs. This is also a method of controlling the wavelength of RL emission, which has been studied in our previous work [36]. However, this method cannot provide a way to online control RL emission wavelength. As we can see from Figs. 4(a), 4(c) and 4(e), the wavelength of the laser spectra has not changed in different pump energies. Figures 4(b), 4(d) and 4(f) show the corresponding random laser threshold for FePOF, POPOF and PMPOF is 0.128mJ, 0.114mJ and 0.026mJ.

 figure: Fig. 3

Fig. 3 (a) The RLs emission spectra for FePOF (black line), POPOF (red line), and PMPOF (blue line) at the same pump energy; (b) The dependence of the core refractive index on the temperature for POPOF.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Evolution of emission spectra with different pump energy for (a) FePOF; (c) POPOF;and (e) an PMPOF, and integrated intensity as a function of pump energy for (b) FePOF, (d) POPOF, and (f) PMPOF.

Download Full Size | PPT Slide | PDF

In a scattering system, scattering mean free path can be obtained by

ls=λ4fπ4(λd)3(n2+2n2-1)2=λ4fπ4(λd)3(1+3n2-1)2,
where λis the emission wavelength of RLs, ddiameter of scatterers, f filling fraction (f=4πr33ρ, ris the radius of scatters, and ρthe density of scatterers), andn the core refractive index of optical fiber [34]. In our previous work, the random lasing wavelength can be tuned through changing ls. The lasing wavelength for POF with short lsexhibits blue-shift effect compared to that with long ls [36]. The ncan influence the ls, and polymer has a large negative thermo-optic coefficient. Therefore, increasing temperature will decrease the n of core material for POF, which further enhance the value of ls. Thus, high temperature will boost random lasing at long-wavelengths. Therefore, we can realize temperature online controlling the RL emission wavelength based on NPs doped POF in this method.

According to the above idea, we looked at the relationship between temperature and the core refractive index of POF in the experiment. The same materials for the core materials of POFs were polymerized in the glass tube at the same heating process of the preparation for POFs preform. The films of the core polymer materials of POF were prepared by drop-casting from the cyclopentanone solutions onto glass substrates. The films were dried in air for one night. The refractive index of core material was measured using the prism coupling device in the 632 nm laser. As show in Fig. 3(b), there is a nonlinear relationship between the refractive index (n) for POSS NPs doped POF and temperature (T). This relationship can be obtained as

n={-1.8228×10-4T+1.4976(25°CT50°C)-3.2229×10-4T+1.5047(50°C<T100°C).

The value of thermo-optic coefficient of 3.2229×10-4/°Cfor POPOF at 50°C<T100°C is larger than that of1.8228×10-4/°C at25°C<T50°C . Then core material of POSS NPs doped POF has a large negative thermal coefficient. The core refractive index of POPOF at 25 °C and 100 °C are 1.4931 and 1.4722, respectively. In the heating process, the refractive index has been greatly reduced by 0.0209. Figure 5 shows the threshold for the three POFs under different temperatures. It can been seen that the threshold of POPOF and PMPOF has little change at different temperature. The threshold for FePOF increase by 173 μJ from 128 to 301 μJ when the temperature increase from 25 to 65°C.

 figure: Fig. 5

Fig. 5 The threshold for POPOF, PMPOF, and FePOF under different temperatures.

Download Full Size | PPT Slide | PDF

To find the temperature controlling RLs emission ability for POFs, the dependence of temperature on the RL emission wavelength is researched. Figure 6 gives the RL spectra at different temperatures for the three kinds of POFs and the inset shows the relationship between main random lasing peak wavelength and temperature. Figure 6(a) shows the emission spectra recorded for the FePOF. At the low temperature (25 °C), the main random lasing peak wavelength is 573.7nm. With the increase of temperature to 70 °C, the peak wavelength red shifts to 592.2 nm, which red shifts ~18.5nm with increasing temperature by 45 °C. As show in Fig. 6(b), we also can directly see the random lasing emission wavelength with red shift phenomenon for the POPOF system from the emission spectrum. The main peak wavelength changes from 568.2nm to 586.1nm, and red shifts ~17.9 nm with the increase of temperature from 25 °C to 70 °C. Figure 6(c) shows the random lasing action for the PMPOF system. In the increasing temperature process from 25 °C to 70 °C, the main peak changes from 585.2nm to 597.5nm, which has red shifted ~12.3nm. From the above controlled experiments, we can find that there is a large red shift in the three kinds of POFs, which prove a way to online temperature-control RL emission.

 figure: Fig. 6

Fig. 6 The random lasing emission spectra at different temperatures for FePOF (a), POPOF (b), and PMPOF (c). Inset: the dependence of the main peak wavelength on the temperature.

Download Full Size | PPT Slide | PDF

The online tunability of RLs in the POFs only has been studied in the temperature rising process in Fig. 6. Next, as shown in Fig. 7, the online tunability of RLs in the temperature cooling process has been also researched. It can be seen that the online controlling RLs emission wavelength can also be realized in the decreasing temperature process. As shown in the Fig. 7(a), in the decreasing temperature process from 70 °C to 25 °C, there occurs an ~14.8 nm blue-shift from 592.2 nm to 577.4 nm for the FePOF system, which is less than the red-shift value of 18.5 nm in the increasing temperature process from 25 °C to 70 °C. For the POPOF system, as shown in the Fig. 7(b), in the same decreasing temperature process the main peak wavelength blue-shifts ~17.2 nm, which is also less than the red-shifted value of ~17.9 nm in the increasing process. For the PPOF system, as shown in Fig. 7(c), in the decreasing temperature process the main peak wavelength blue-shifts ~17.8 nm, which is more than the red-shifted value of ~12.3 nm in the increasing process. The glass transition temperature of PMMA polymer is 104 °C,and the highest temperature in our experiment is 70 °C. Therefore, there is not a phase transition in the temperature. Meanwhile, the vicat softening temperature for the PMMA polymer is 113 °C. There is also not a structural change in the 70°C. We also verify the result using transmittance. The light transmitted intensity of PMMA POF without nanoparticles and dye at different temperatures is almost constant using halogen lamp as light source, as shown in the Fig. 8, which further indicates that there is no phase transition and structural change in the material. We think the main reason for the difference between redshift and blueshift is the thermal relaxation effect of the polymer fiber. The polymer need some times to recover the original structure [38].

 figure: Fig. 7

Fig. 7 The dependence of main peak wavelength on the temperature in the increasing (black squares) and decreasing (blue dots) temperature process for FePOF at pump energy of 0.465mJ (a), POPOF at 0.465mJ(b), and PMPOF at 0.428mJ (c).

Download Full Size | PPT Slide | PDF

 figure: Fig. 8

Fig. 8 The light transmitted intensity of PMMA POF at different temperatures.

Download Full Size | PPT Slide | PDF

In order to further analyze the on-line temperature controlled RL emission wavelength, the repeatability of controlling experiment is studied. Figure 9 shows the RL emission wavelength as a function of the temperature for three times. In the three times circulation experiments, it can see that the random lasing emission wavelength all occurred red-shift effect with the increasing of temperature in the FePOF, POPOF, and PMPOF. Therefore, the on-line temperature tunability for RLs in the three kinds of POFs can be cycled.

 figure: Fig. 9

Fig. 9 The cycled control experiment for random lasing emission wavelength in FePOF(a), POPOF(b) and PMPOF(c).

Download Full Size | PPT Slide | PDF

4. Conclusion

To summary, we have reported the realization of an online temperature controlling RLs emission in the POFs based on polymer with large negative thermal coefficient. The random lasing emission wavelength is related with scattering mean free path, which can be influenced by the refractive index of materials. Therefore, we can easily control the random lasing emission wavelength in the large thermal coefficient materials through changing temperature. Increasing the temperature from 25 to 70 °C, the RL emission wavelength for FePOF, POPOF, and PPOF system red shift18.5 nm, 17.9 nm and 12.3 nm, respectively. Then the tunability for RLs in POFs can be cycled. Compared with other studies, the temperature-control random laser in the POF has some characteristics, such as simple POF fabricated method, convenient control method, and large wavelength control range. We envision that the polymer fiber random laser demonstrated in this work may open a window to future random laser applications aiming at directionality, random laser sensors and wavelength tunability. This work will be of great significance for the development of the control of RL emission.

Funding

National Natural Science Foundation of China (11404087, 11574070, 11404086), Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation (2015M571918, 2017T100442), STCSM, and the Natural Science Foundation of Anhui Province (1508085QA23).

References and links

1. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5(8), 212–215 (1967).

2. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000). [CrossRef]  

3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]  

4. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001). [CrossRef]  

5. Y. Sun, Z. Wang, X. Shi, Y. Wang, X. Zhao, S. Chen, J. Shi, J. Zhou, and D. Liu, “Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires,” J. Opt. Soc. Am. B 30(9), 2523–2528 (2013). [CrossRef]  

6. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012). [CrossRef]   [PubMed]  

7. M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012). [CrossRef]  

8. M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012). [CrossRef]  

9. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999). [CrossRef]  

10. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995). [CrossRef]   [PubMed]  

11. H. Cao, “Lasing in Random Media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]  

12. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994). [CrossRef]  

13. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009). [CrossRef]   [PubMed]  

14. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012). [CrossRef]   [PubMed]  

15. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008). [CrossRef]  

16. R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011). [CrossRef]  

17. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014). [CrossRef]  

18. T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013). [CrossRef]   [PubMed]  

19. M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011). [CrossRef]  

20. M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

21. M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013). [CrossRef]  

22. J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

23. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001). [CrossRef]   [PubMed]  

24. S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21(1), 201–207 (2004). [CrossRef]  

25. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009). [CrossRef]   [PubMed]  

26. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef]   [PubMed]  

27. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]  

28. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014). [CrossRef]  

29. J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017). [CrossRef]  

30. J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001). [CrossRef]  

31. G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012). [CrossRef]  

32. H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010). [CrossRef]  

33. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006). [CrossRef]  

34. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004). [CrossRef]  

35. G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996). [CrossRef]  

36. Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39(24), 6911–6914 (2014). [CrossRef]   [PubMed]  

37. J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008). [CrossRef]   [PubMed]  

38. K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000). [CrossRef]   [PubMed]  

References

  • View by:

  1. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5(8), 212–215 (1967).
  2. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
    [Crossref]
  3. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  4. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
    [Crossref]
  5. Y. Sun, Z. Wang, X. Shi, Y. Wang, X. Zhao, S. Chen, J. Shi, J. Zhou, and D. Liu, “Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires,” J. Opt. Soc. Am. B 30(9), 2523–2528 (2013).
    [Crossref]
  6. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  7. M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
    [Crossref]
  8. M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
    [Crossref]
  9. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  10. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
    [Crossref] [PubMed]
  11. H. Cao, “Lasing in Random Media,” Waves Random Media 13(3), R1–R39 (2003).
    [Crossref]
  12. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  13. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
    [Crossref] [PubMed]
  14. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
    [Crossref] [PubMed]
  15. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
    [Crossref]
  16. R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011).
    [Crossref]
  17. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
    [Crossref]
  18. T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
    [Crossref] [PubMed]
  19. M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
    [Crossref]
  20. M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).
  21. M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013).
    [Crossref]
  22. J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).
  23. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  24. S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21(1), 201–207 (2004).
    [Crossref]
  25. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
    [Crossref] [PubMed]
  26. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [Crossref] [PubMed]
  27. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
    [Crossref]
  28. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
    [Crossref]
  29. J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
    [Crossref]
  30. J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
    [Crossref]
  31. G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
    [Crossref]
  32. H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
    [Crossref]
  33. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
    [Crossref]
  34. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004).
    [Crossref]
  35. G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
    [Crossref]
  36. Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39(24), 6911–6914 (2014).
    [Crossref] [PubMed]
  37. J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
    [Crossref] [PubMed]
  38. K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000).
    [Crossref] [PubMed]

2017 (1)

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

2014 (4)

Z. Hu, P. Gao, K. Xie, Y. Liang, and H. Jiang, “Wavelength control of random polymer fiber laser based on adaptive disorder,” Opt. Lett. 39(24), 6911–6914 (2014).
[Crossref] [PubMed]

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

2013 (3)

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Y. Sun, Z. Wang, X. Shi, Y. Wang, X. Zhao, S. Chen, J. Shi, J. Zhou, and D. Liu, “Coherent plasmonic random laser pumped by nanosecond pulses far from the resonance peak of silver nanowires,” J. Opt. Soc. Am. B 30(9), 2523–2528 (2013).
[Crossref]

M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013).
[Crossref]

2012 (6)

M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

2011 (2)

M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
[Crossref]

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

2010 (2)

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

2009 (2)

2008 (3)

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

2007 (1)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

2006 (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

2004 (2)

2003 (1)

H. Cao, “Lasing in Random Media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

2001 (3)

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

2000 (2)

K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1996 (1)

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

1995 (1)

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1967 (1)

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5(8), 212–215 (1967).

Abeywickrema, U.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Adamovsky, G.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Andreasen, J.

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

Ania-Castañón, J. D.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Arrue, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Bachelard, N.

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Barna, V.

Bhaktha, S. B. N.

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

Blanco, A.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Bonefacino, J.

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Burin, A. L.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

Cao, H.

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004).
[Crossref]

H. Cao, “Lasing in Random Media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

Chang, H. N.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Chang, R. P. H.

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004).
[Crossref]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chaplin, R. P.

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Chen, S.

Cheng, X.

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Chu, P. K.

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Conti, C.

M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
[Crossref]

de Araújo, C. B.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

De Luca, A.

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

EI-Dardiry, R. G. S.

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

El-Taher, A. E.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Fedin, I.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Ferjani, S.

Floyd, B. M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Fukao, K.

K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000).
[Crossref] [PubMed]

Gao, P.

García, P. D.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Gigan, S.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

Gomes, A. S.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Harper, P.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Hisch, T.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hu, Z.

Hwang, M.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Hyeon, T.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Jiang, H.

Kablukov, S. I.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Karalekas, V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Kim, H.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Kim, J.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Koo, Y.-M.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Kwak, J. H.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Lagendijk, A.

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lee, J.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Lee, S.-M.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Lee, Y.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Leonetti, M.

M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013).
[Crossref]

M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5(8), 212–215 (1967).

Liang, Y.

Liertzer, M.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Ling, Y.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

Liu, D.

Liu, X.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

Lopez, C.

M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
[Crossref]

López, C.

M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013).
[Crossref]

M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
[Crossref]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Lyuksyutov, S. F.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Mackey, J. R.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

Mintert, F.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Miyamoto, Y.

K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000).
[Crossref] [PubMed]

Mujumdar, S.

Na, H. B.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Nikulin, M.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Noblin, X.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Noh, H.

Park, H. G.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Park, J.-G.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Peng, G. D.

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Pogany, D.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Pun, C.-F. J.

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Rackaitis, M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Ratner, M. A.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Rotter, S.

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Sebbah, P.

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

Seelig, E. W.

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21(1), 159–167 (2004).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shi, J.

Shi, X.

Strangi, G.

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Sun, Y.

Tam, H. Y.

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Tse, M. L. V.

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

Vanneste, C.

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

Vatnik, I. D.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Versace, C.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

Wang, Z.

Whitbread, T. W.

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21(1), 201–207 (2004).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

Wu, X. H.

Xie, K.

Xiong, Z. J.

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

Yamilov, A.

Youn, J. K.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Yu, T.

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhao, X.

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zhou, G.

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Zhou, J.

Zubia, J.

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

Appl. Phys. Lett. (4)

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “Tunable degree of localization in random lasers with controlled interaction,” Appl. Phys. Lett. 101(5), 051104 (2012).
[Crossref]

R. G. S. EI-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,”, Appl. Phys. Lett. 98(16), 161106 (2011).
[Crossref]

M. Leonetti and C. López, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102(7), 071105 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonefacino, X. Cheng, M. L. V. Tse, and H. Y. Tam, “Recent progress in polymer optical fiber light sources and fiber Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–11 (2017).
[Crossref]

Int. J. Mod. Phys. B. (1)

J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, “Partially Pumped Random Lasers,” Int. J. Mod. Phys. B. 28(5), 1430001 (2014).

J. Lightwave Technol. (1)

G. D. Peng, P. K. Chu, Z. J. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol. 14(10), 2215–2223 (1996).
[Crossref]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett. 5(8), 212–215 (1967).

Nat. Photonics (3)

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-Driven Random Lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

M. Leonetti, C. Conti, and C. López, “The mode-locking transition of random lasers,” Nat. Photonics 5(10), 615–617 (2011).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Nat. Phys. (2)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, “Adaptive pumping for spectral control of random lasers,” Nat. Phys. 10(6), 426–431 (2014).
[Crossref]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285(5), 766–773 (2012).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (2)

J. Zubia and J. Arrue, “Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications,” Opt. Fiber Technol. 7(2), 101–140 (2001).
[Crossref]

H. Y. Tam, C.-F. J. Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol. 16(6), 357–366 (2010).
[Crossref]

Opt. Lett. (1)

Phys. Rep. (1)

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilov, “Random distributed feedback fibre lasers,” Phys. Rep. 542(2), 133–193 (2014).
[Crossref]

Phys. Rev. (1)

M. Leonetti, C. Conti, and C. López, “A random laser tailored by directional stimulated emission,” Phys. Rev. 85(4), 4233–4237 (2012).

Phys. Rev. A (3)

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64(6), 063808 (2001).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “A random laser tailored by directional stimulated emission,” Phys. Rev. A 85(4), 043841 (2012).
[Crossref]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Fukao and Y. Miyamoto, “Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1743–1754 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random Fiber Laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

D. S. Wiersma, M. P. van Albada, and A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75(9), 1739–1742 (1995).
[Crossref] [PubMed]

T. Hisch, M. Liertzer, D. Pogany, F. Mintert, and S. Rotter, “Pump-controlled directional light emission from random lasers,” Phys. Rev. Lett. 111(2), 023902 (2013).
[Crossref] [PubMed]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109(3), 033903 (2012).
[Crossref] [PubMed]

Polymer (Guildf.) (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Small (1)

J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J.-G. Park, J. Kim, and T. Hyeon, “Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts,” Small 4(1), 143–152 (2008).
[Crossref] [PubMed]

Waves Random Media (1)

H. Cao, “Lasing in Random Media,” Waves Random Media 13(3), R1–R39 (2003).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) TEM image of Fe3O4/SiO2 NPs; (b) the optical microscope cross-sectional image, and (c) fluorescence image for the FePOF.
Fig. 2
Fig. 2 The experimental setup for the temperature controlling random polymer fiber laser experiment.
Fig. 3
Fig. 3 (a) The RLs emission spectra for FePOF (black line), POPOF (red line), and PMPOF (blue line) at the same pump energy; (b) The dependence of the core refractive index on the temperature for POPOF.
Fig. 4
Fig. 4 Evolution of emission spectra with different pump energy for (a) FePOF; (c) POPOF;and (e) an PMPOF, and integrated intensity as a function of pump energy for (b) FePOF, (d) POPOF, and (f) PMPOF.
Fig. 5
Fig. 5 The threshold for POPOF, PMPOF, and FePOF under different temperatures.
Fig. 6
Fig. 6 The random lasing emission spectra at different temperatures for FePOF (a), POPOF (b), and PMPOF (c). Inset: the dependence of the main peak wavelength on the temperature.
Fig. 7
Fig. 7 The dependence of main peak wavelength on the temperature in the increasing (black squares) and decreasing (blue dots) temperature process for FePOF at pump energy of 0.465mJ (a), POPOF at 0.465mJ(b), and PMPOF at 0.428mJ (c).
Fig. 8
Fig. 8 The light transmitted intensity of PMMA POF at different temperatures.
Fig. 9
Fig. 9 The cycled control experiment for random lasing emission wavelength in FePOF(a), POPOF(b) and PMPOF(c).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l s = λ 4 f π 4 ( λ d ) 3 ( n 2 + 2 n 2 - 1 ) 2 = λ 4 f π 4 ( λ d ) 3 ( 1 + 3 n 2 - 1 ) 2 ,
n = { - 1 . 8 2 2 8 × 1 0 - 4 T + 1 . 4 9 7 6 ( 2 5 ° C T 5 0 ° C ) - 3 . 2 2 2 9 × 1 0 - 4 T + 1 . 5 0 4 7 ( 5 0 ° C < T 1 0 0 ° C ) .

Metrics