Abstract

We employed a patterned current blocking layer (CBL) to enhance light output power of GaN-based light-emitting diodes (LEDs). Nanoimprint lithography (NIL) was used to form patterned CBLs (a diameter of 260 nm, a period of 600, and a height of 180 nm). LEDs (chip size: 300 × 800 µm2) fabricated with no CBL, a conventional SiO2 CBL, and a patterned SiO2 CBL, respectively, exhibited forward-bias voltages of 3.02, 3.1 and 3.1 V at an injection current of 20 mA. The LEDs without and with CBLs gave series resistances of 9.8 and 11.0 Ω, respectively. The LEDs with a patterned SiO2 CBL yielded 39.6 and 11.9% higher light output powers at 20 mA, respectively, than the LEDs with no CBL and conventional SiO2 CBL. On the basis of emission images and angular transmittance results, the patterned CBL-induced output enhancement is attributed to the enhanced light extraction and current spreading.

© 2017 Optical Society of America

1. Introduction

InGaN/GaN-based light-emitting diodes (LEDs) are of significant importance because of their use in various applications such as backlight unit (BLU) for display and solid-state lighting [1–3]. Regardless of substantial advances in their performance, however, the external quantum efficiency (EQE) of conventional lateral-geometry LEDs is still low and hence a further enhancement of EQE is essential [4,5]. Thus, in addition to the enhancement of current injection (by forming low contact resistances) [6,7], different techniques for increasing light extraction efficiency (LEE), e.g., surface roughening [8–10], patterned sapphire substrate (PSS) [11–13], and photonic crystal (PC) structures [14–16], have been actively investigated in order to increase EQE. These efforts notwithstanding, both electrical and optical losses that originate from current crowding (due to resistive p-GaN) and photon absorption around the opaque p-type pad still remain to be challenging issues. For lateral-configuration LEDs, most of current is crowded around the p-pad [17], so that some of photons generated from the active region are absorbed by the p-pad, decreasing LEE [18]. Thus, to spread current efficiently, current blocking layers (CBLs) were inserted underneath the p-pad [18–25]. For example, Huh et al. [19] reported that the introduction of a SiO2 CBL beneath the p-pad dramatically improved the EQE of LEDs compared to conventional LEDs without a CBL. To insert the CBL, they were partially etched the surface region of the p-GaN layer beneath the p-pad until the n-GaN layer was exposed. The improvement was attributed to the fact that the insulating CBL effectively spread the current away from the p-pad, consequently reducing current crowding and optical loss. In this structure, however, some of photons emitted from the active region pass through the transparent SiO2 CBL and then can be absorbed by the topmost opaque p-pad. To minimize the optical absorption, reflective Ag or Al layers were employed below p-pad, which effectively prevented the photon absorption [22]. Nonetheless, the insertion of such reflective layers degraded contact properties and caused poor adhesion. Furthermore, Kao et al. [23] proposed a reflective CBL combined with a distributed Bragg reflector (DBR) and showed that the use of the DBR CBL minimized both the current crowding and p-pad-induced photon absorption, leading to increase in the light output power. In the case of reflective CBLs, however, some of reflected photons can be also absorbed in the LED chips during propagation, causing internal absorption loss. Thus, in order to maximize the LEE, it is important to minimize photon absorption associated with the opaque p-pad and the LED chip, and current crowding.

Recently, nanoimprint lithography (NIL) has been widely used in optoelectronic devices for the fabrication of nano-/micro-scale patterns because of its advantages such as mass production, high resolution, and large area capability [26–28]. For instance, Kim et al. [28] investigated the effect of NIL-defined PC structures on the optical performance of green LEDs and reported that LEDs with 2-dimensional (2D) PC structures (with a period of 295 nm, a hole diameter of 180 nm, and a depth of 100 nm) yielded nine-fold higher photoluminescence intensity than LEDs without 2D PC structures. The enhancement was explained in part by Bragg scattering, which is directly related to the extraction efficiency. In this study, SiO2 CBLs that were patterned by using NIL were inserted beneath the p-pad to increase the light output power of blue (440 nm) InGaN-based LEDs. As shown by Lee et al. [25], CBLs can be inserted not only under the p-pad but also over the active region. The CBL can improve current crowding, but reduces the emission area. Thus, the two must be optimized to maximize the output power, depending on the chip size. Unlike Lee et al.’ work (1150 × 600 μm2), our CBL was inserted only under the p-pad because our LEDs are small (800 × 300 µm2). To understand the patterned CBL-induced performance enhancement, the angular transmittance of LEDs with different CBLs was characterized.

2. Experimental procedure

A metalorganic chemical vapor deposition (MOCVD) system was used to grow blue (440 nm) InGaN/GaN multi-quantum wells (MQWs) LED structures on (0001) sapphire substrates. The epitaxial structures were composed of a 2.0 µm-thick undoped GaN layer, a 4.0 µm-thick n-type GaN:Si (nd = 5 × 1018 cm−3), a 2.0 µm-thick spreading layer, a 0.1 µm-thick active layer, a 20 nm-thick AlGaN electron blocking layer, and a 0.1 µm-thick p-type GaN:Mg (na = 5 × 1017 cm−3). To fabricate LEDs (chip size: 300 × 800 µm2), standard photo lithography, imprint lithography, and inductively coupled plasma reactive-ion etching (ICP-RIE) were employed. For instance, the fabrication procedure of LEDs with patterned SiO2 CBL is as follows: To obtain lateral-geometry LEDs, a 1 µm-thick mesa was defined by ICP-RIE. Polydimethylsiloxane (PDMS) mold with concave patterns (a diameter of 300, a distance of 300, a period of 600, and a height of 240 nm) was coated with a hydrogen silsesquioxane (HQS, Fox-16) solution, and was imprinted on the mesa-etched sample. The imprinted sample was treated by UV-O3 plasma for 10 min, followed by annealing at 450 °C for 1 h in order to transform the imprinted HSQ resin into SiO2 [29,30]. CBL pattern was defined by buffered oxide etch (BOE) solution-etching for 30 s. A 200 nm-thick Sn-doped indium oxide (ITO) film was deposited on the p-GaN area including CBL by electron-beam evaporator and subsequently annealed at 550 °C for 1 min in an oxygen ambient. A Cr/Ni/Au (20 nm/25 nm/100 nm) film was deposited as both p-pad and n-pad. For comparison purpose, LEDs without and with conventional SiO2 CBL were also fabricated. As for conventional SiO2 CBL, a 150 nm-thick SiO2 layer was deposited by plasma-enhanced chemical vapor deposition (PECVD). The surface morphologies were characterized using a scanning electron microscope (SEM). The light output-current-voltage (L-I-V) measurements were carried out by a Keithley 238 and a Newport dual channel powermeter. To obtain the typical electrical and optical characteristics of the samples, 10 LED chips for each sample were examined.

3. Results and discussion

Figure 1 shows schematic diagram of a LED with patterned SiO2 CBL and an SEM image of NIL-patterned SiO2 layer on p-GaN. The patterned layer consists of pillars with a diameter of 260 nm, a distance of 340 nm, a period of 600 nm, and a height of 180 nm. It is noted that compared to the PDMA mold, the diameter and the height were reduced, whereas the distance increased because HSQ resin was shrunk during annealing. The patterned SiO2 is expected to serve as CBL as well as light scattering centers.Figure 2 exhibits typical current-voltage (I-V) characteristics of blue (440 nm) LEDs (chip size: 300 × 800 µm2) fabricated with and without CBLs. LEDs without CBL gave a forward voltage of 3.02 V at an injection current of 20 mA, while both LEDs with SiO2 CBL and patterned SiO2 CBL exhibited forward voltages of 3.1 V. The LEDs without CBL showed series resistance of 9.8 Ω, while the LEDs with SiO2 CBL and patterned SiO2 CBL produced 11.0 Ω.

 

Fig. 1 (a) Schematic diagram of an LED with a patterned SiO2 CBL. (b) A plan-view SEM image of NIL-patterned SiO2 layer on p-GaN. Inset in (b) shows a cross-section image.

Download Full Size | PPT Slide | PDF

 

Fig. 2 Current-voltage (I-V) characteristics of blue (440 nm) LEDs with and without CBLs.

Download Full Size | PPT Slide | PDF

Figure 3(a) shows typical light output-current (L-I) properties of LEDs fabricated with and without CBLs. The LEDs with patterned SiO2 CBL yielded 39.6 and 11.9% higher light output powers at 20 mA, respectively, than the LEDs with no CBL and conventional SiO2 CBL. In addition, electroluminescence (EL) spectra of the LEDs were characterized, Fig. 3(b). At 20 mA, the peak wavelength of LEDs with no CBL, CBL, and patterned CBL was 440.6, 440.5 and 442.1 nm, respectively, and their wavelength shifted by only Δ1 ± 0.1 nm when the current increased from 10 to 100 mA. Furthermore, at 20 mA, FWHMs were 19.03, 19.20, and 19.93 nm for LEDs with no CBL, CBL, and patterned CBL, respectively. The reason why the LEDs with different CBLs showed different behavior is presently not clearly understood.

 

Fig. 3 (a) Light output-current (L-I) properties and (b) EL spectra of LEDs fabricated with and without CBLs.

Download Full Size | PPT Slide | PDF

To characterize the light emission and current spreading behavior of the LEDs with different CBLs, the emission images of the chips were obtained at a forward-bias voltage of 0.3 mA. It is noted that the original monochromatic emission images were transformed into 256 different colors by using the MATLAB program. The plan-view emission images obtained from the LEDs with no CBL, conventional SiO2 CBL, and patterned SiO2 CBL are shown in Fig. 4. For the LED with no CBL (Fig. 4(a)), the photoemission is localized and not uniform. As shown in Fig. 4(b), the LED with conventional SiO2 CBL exhibits much better light emission across the chip area than the LEDs without CBL, which can be attributed to the enhanced current spreading. As can be seen in Fig. 4(c), the LED with patterned SiO2 CBL yielded much uniform light emission across the whole chip area than the LEDs with SiO2 CBL. This implies that the patterned SiO2 CBL effectively minimizes photon absorption by serving as efficient photon scattering centers and current crowding.

 

Fig. 4 Plan-view emission images obtained from LEDs with (a) no CBL, (b) conventional SiO2 CBL, and (c) patterned SiO2 CBL. The images taken at 0.3 mA.

Download Full Size | PPT Slide | PDF

Furthermore, to better understand the enhanced light output associated with patterned SiO2 CBL, we obtained the angular transmittance of four structures (namely, a sapphire substrate, an ITO layer on a sapphire substrate, ITO/SiO2 multilayers on a sapphire substrate, and ITO/patterned SiO2 multilayers on a sapphire substrate) with a blue laser diode (λ = 455 nm) [31]. For the patterned SiO2 structure, the same pattern parameters as those given in Fig. 1 were used. To characterize the internal reflection occurring in a high-refractive-index LED medium, the structures considered were bonded to a cylindrical BK7 prism with an index matching gel. In Fig. 5(a) is shown typical camera images that describe light incident into and reflected from planar and patterned SiO2 structures at θ = 45°. This result suggests that the patterned structures are capable of diminishing reflection above a critical angle (i.e., optical tunneling) [31,32]. Figure 5(b) illustrates the angular transmittance of the four structures considered, for which an integrating sphere was used to collect both specular and diffuse transmission. The transmittance data exhibit two remarkable features: (i) at θ < 42° (i.e., a critical angle), the patterned structure yields transmittance lower than all of the planar structures and (ii) the patterned structure results in non-zero transmittance above the critical angle. Because CBL is placed right underneath the metal electrode, the transmittance around normal incidence is less significant. Therefore, the improved light output due to the patterned SiO2 CBL can be ascribed to the increased transmittance above the critical angle.

 

Fig. 5 (a) Typical camera images showing light incident into and reflected from planar and patterned SiO2 structures for θ = 45°. (b) Measured angular transmittance of four structures.

Download Full Size | PPT Slide | PDF

It was found that the LEDs with CBLs exhibited slightly higher forward-bias voltage than the LEDs without CBL, as shown in Fig. 2. This can be explained by a reduction in the Ohmic contact area between p-GaN and ITO caused by the presence of CBLs. Note that the LEDs with both the CBLs gave the same forward-bias voltages. As shown in Fig. 2, the LEDs with conventional SiO2 CBL exhibited higher light output than the LEDs without CBL. This can be attributed to reduced current crowding effect. On the one hand, the LEDs with patterned SiO2 CBL produced higher light output than LEDs with conventional CBL. This improvement can be explained by the fact that the patterned SiO2 structure can scatter the photons, resulting in an increase in the light extraction. This is in good agreement with the measured angular transmittance (Fig. 5). Consequently, the improved light output power of the LEDs with the patterned SiO2 CBL can be attributed to the enhanced light extraction and current spreading.

4. Conclusion

We investigated the effect of patterned SiO2 CBL on the light output power of InGaN-based LEDs. The periodic pillar-pattern array was defined by means of NIL. The LEDs fabricated with the patterned SiO2 CBL yielded higher light output and more uniform emission across chip area than the LEDs with and without conventional SiO2 CBLs. The improved performance was ascribed to the combined effect of better photon extraction and current spreading. The result shows that the use of patterned CBL could be a promising processing tool for the fabrication of high-performance InGaN-based LEDs.

Funding

Global Research Laboratory program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (MOSIFP) (NRF-2017K1A1A2013160); Basic Science Research Program through the NRF funded by MOSIFP (NRF-2017R1A2B4005480).

References and links

1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002). [CrossRef]  

2. M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009). [CrossRef]  

3. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007). [CrossRef]  

4. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015). [CrossRef]  

5. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013). [CrossRef]  

6. H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008). [CrossRef]  

7. J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005). [CrossRef]  

8. H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006). [CrossRef]  

9. S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003). [CrossRef]  

10. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]  

11. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002). [CrossRef]  

12. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006). [CrossRef]  

13. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

14. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009). [CrossRef]  

15. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004). [CrossRef]  

16. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005). [CrossRef]  

17. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001). [CrossRef]  

18. M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009). [CrossRef]  

19. C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

20. H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010). [CrossRef]  

21. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007). [CrossRef]  

22. J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008). [CrossRef]  

23. C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011). [CrossRef]  

24. J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015). [CrossRef]  

25. K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015). [CrossRef]  

26. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]  

27. E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009). [CrossRef]  

28. S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007). [CrossRef]  

29. C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002). [CrossRef]  

30. C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006). [CrossRef]  

31. J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016). [CrossRef]   [PubMed]  

32. Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
    [Crossref]
  2. M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
    [Crossref]
  3. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [Crossref]
  4. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
    [Crossref]
  5. S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
    [Crossref]
  6. H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
    [Crossref]
  7. J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
    [Crossref]
  8. H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
    [Crossref]
  9. S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
    [Crossref]
  10. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
    [Crossref]
  11. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
    [Crossref]
  12. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
    [Crossref]
  13. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).
  14. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
    [Crossref]
  15. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
    [Crossref]
  16. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
    [Crossref]
  17. X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
    [Crossref]
  18. M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
    [Crossref]
  19. C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).
  20. H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
    [Crossref]
  21. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
    [Crossref]
  22. J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
    [Crossref]
  23. C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
    [Crossref]
  24. J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
    [Crossref]
  25. K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
    [Crossref]
  26. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
    [Crossref]
  27. E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
    [Crossref]
  28. S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
    [Crossref]
  29. C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
    [Crossref]
  30. C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
    [Crossref]
  31. J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
    [Crossref] [PubMed]
  32. Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
    [Crossref] [PubMed]

2016 (2)

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

2015 (3)

J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
[Crossref]

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

2013 (1)

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

2011 (1)

C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
[Crossref]

2010 (1)

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

2009 (4)

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

2008 (4)

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

2007 (3)

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

2006 (3)

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
[Crossref]

2005 (2)

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
[Crossref]

2004 (2)

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

2003 (1)

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

2002 (4)

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
[Crossref]

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

2001 (1)

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

Bae, D.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Chang, S. J.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Chen, J. R.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Chen, W. S.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Chen, W.-C.

C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
[Crossref]

Chiou, Y. Z.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Chiu, C. H.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Cho, C.-O.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Cho, J.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Cho, J. H.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Choi, K. K.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

Choi, W. J.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Costner, E. A.

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Deduchi, K.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

DenBaars, S. P.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Epler, J. E.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Fan, Y.-M.

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Farrell, R.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Feezell, D.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Gao, H.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Gardner, N. F.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Guo, X.

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

Han, J.

J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
[Crossref]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Henderson, E. J.

C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
[Crossref]

Hessel, C. M.

C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
[Crossref]

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Hong, H.-G.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Hsieh, M. H.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Hsu, J.-T.

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Hsu, T. C.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Huang, J. K.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Huh, C.

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

Hung, I.-H.

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

Hwang, J. M.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Im, J. S.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Iveland, J.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Iza, M.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Jang, J.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Jen, W.-L.

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

Jeon, H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Jeong, H. H.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

Jeong, K.-H.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Jeong, Y. K.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

Jou, M. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Kao, C. C.

C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
[Crossref]

Kelchner, K.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Keller, S.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Kim, D.-H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Kim, D.-J.

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

Kim, D.-Y.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Kim, H.

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

Kim, H. G.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Kim, J.-J.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Kim, J.-Y.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Kim, S.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Kim, S. H.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Kim, S.-K.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Kim, S.-S.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Ko, T. K.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Kuo, C. T.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Kuo, H. C.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Kwak, J. S.

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
[Crossref]

Kweon, H.-S.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Kwon, M.-K.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Lai, W. C.

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

Lee, B. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Lee, J.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Lee, J.-M.

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

Lee, K. H.

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

Lee, K.-D.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Lee, M. L.

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

Lee, S. Y.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

Lee, S.-N.

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

Lee, T.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

Lee, Y. J.

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Lee, Y.-H.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

Li, J.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Lin, C. L.

C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
[Crossref]

Lin, M. W.

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

Lin, S. H.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Lu, T. C.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Martinelli, L.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Mishra, U.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Mitani, T.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Moon, D.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Moon, Y.-J.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Moon, Y.-T.

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Mukai, T.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Na, J.-Y.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Nakamura, S.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Narukawa, Y.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Niki, I.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Oh, S. K.

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

Pan, C.-C.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Pan, S.-M.

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Park, E. H.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Park, J.-S.

J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
[Crossref]

Park, Q.-H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Park, S.-J.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

Park, Y.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Park, Y. S.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Peretti, J.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Pfaff, N.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Piccardo, M.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Pimputkar, S.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Roh, Y.-G.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Sano, M.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Schift, H.

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Schubert, E. F.

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

Seo, M.-K.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Seong, T.-Y.

J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
[Crossref]

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
[Crossref]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Shei, S. C.

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Shen, C. F.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Sheu, J. K.

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

Shioji, S.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Sigalas, M. M.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Simmons, J. A.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Sonabe, S.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Sone, C.

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Song, J.-H.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Song, J.-O.

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
[Crossref]

Speck, J. S.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

Su, Y. K.

C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
[Crossref]

Tanaka, S.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Tsai, M.-A.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Tu, R.-C.

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Veinot, J. G. C.

C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
[Crossref]

Wang, G.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Wang, S. C.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Wendt, J. R.

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

Willson, C. G.

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

Yamada, M.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Yan, F.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Yang, C.-C.

C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
[Crossref]

Yang, S.-P.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Yeh, R.-C.

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Yen, C.-C.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Yoo, S.

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Yoon, E.

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Yu, K. H.

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

Yu, P.

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

Zeng, Y.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Zhang, Y.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

Zhao, Y.

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Acta Mater. (1)

S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, “Development of gallium-nitride-based light-emitting diodes and laser diodes for energy-efficient lighting and displays,” Acta Mater. 61(3), 945–951 (2013).
[Crossref]

Annu. Rev. Mater. Res. (1)

E. A. Costner, M. W. Lin, W.-L. Jen, and C. G. Willson, “Nanoimprint lithography materials development for semiconductor device fabrication,” Annu. Rev. Mater. Res. 39(1), 155–180 (2009).
[Crossref]

Appl. Phys. Lett. (9)

C. Huh, J.-M. Lee, D.-J. Kim, and S.-J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” Appl. Phys. Lett. 92(5), 2248–2250 (2002).

J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads,” Appl. Phys. Lett. 93(10), 103507 (2008).
[Crossref]

H. Kim, S.-N. Lee, Y. Park, J. S. Kwak, and T.-Y. Seong, “Metallization contacts to nonpolar a-plane n-type GaN,” Appl. Phys. Lett. 93(3), 032105 (2008).
[Crossref]

J.-O. Song, J. S. Kwak, and T.-Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip LEDs,” Appl. Phys. Lett. 86(6), 062103 (2005).
[Crossref]

H.-G. Hong, S.-S. Kim, D.-Y. Kim, T. Lee, J.-O. Song, J. H. Cho, C. Sone, Y. Park, and T.-Y. Seong, “Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process,” Appl. Phys. Lett. 88(10), 103505 (2006).
[Crossref]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004).
[Crossref]

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Appl. Phys. Lett. 103(1), 014314 (2008).

J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84(19), 3885–3887 (2004).
[Crossref]

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[Crossref]

Chem. Mater. (1)

C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-surface-terminated silicon nanoparticles,” Chem. Mater. 18(26), 6139–6146 (2006).
[Crossref]

Electrochem. Solid-State Lett. (2)

H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J.-O. Song, Y.-H. Lee, and T.-Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett. 13(7), H237–H239 (2010).
[Crossref]

S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-Based LEDs with an Insulating SiO2 Layer Underneath p-Pad Electrodes,” Electrochem. Solid-State Lett. 10(6), H175–H177 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8(2), 310–320 (2002).
[Crossref]

M. H. Crawford, “LEDs for solid-state lighting: Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (5)

S.-M. Pan, R.-C. Tu, Y.-M. Fan, R.-C. Yeh, and J.-T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured ITO transparent ohmic contacts,” IEEE Photonics Technol. Lett. 15(5), 649–651 (2003).
[Crossref]

Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photonics Technol. Lett. 18(10), 1152–1154 (2006).
[Crossref]

M.-A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo, T. C. Lu, S. H. Lin, and S. C. Wang, “Improving light output power of the GaN-based vertical-injection light-emitting diodes by Mg+ implanted current blocking layer,” IEEE Photonics Technol. Lett. 21(11), 688–690 (2009).
[Crossref]

C. C. Kao, Y. K. Su, and C. L. Lin, “Enhancement of Light Output Power of GaN-Based Light-Emitting Diodes by a Reflective Current Blocking Layer,” IEEE Photonics Technol. Lett. 23(14), 986–988 (2011).
[Crossref]

K. H. Lee, Y.-T. Moon, S. K. Oh, and J. S. Kwak, “High efficiency and ESD of GaN-based LEDs with patterned ion-damaged current blocking Layer,” IEEE Photonics Technol. Lett. 27(2), 149–152 (2015).
[Crossref]

J. Appl. Phys. (1)

X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90(8), 4191–4195 (2001).
[Crossref]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. Mater. Chem. (1)

C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem. 12(4), 1138–1141 (2002).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonabe, K. Deduchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41(12B), L1431–L1433 (2002).
[Crossref]

Nano Lett. (2)

J.-J. Kim, J. Lee, S.-P. Yang, H. G. Kim, H.-S. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Nano Lett. 16(5), 2994–3000 (2016).
[Crossref] [PubMed]

Y.-J. Moon, D. Moon, J. Jang, J.-Y. Na, J.-H. Song, M.-K. Seo, S. Kim, D. Bae, E. H. Park, Y. Park, S.-K. Kim, and E. Yoon, “Microstructured air cavities as high-index contrast substrates with strong diffraction for light-emitting diodes,” Nano Lett. 16(5), 3301–3308 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18(5), 055306 (2007).
[Crossref]

Nat. Photonics (1)

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, “The efficiency challenge of nitride light-emitting diodes for lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 212(5), 899–913 (2015).
[Crossref]

Superlattices Microstruct. (1)

J.-S. Park, J. Han, and T.-Y. Seong, “Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer,” Superlattices Microstruct. 83, 361–366 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of an LED with a patterned SiO2 CBL. (b) A plan-view SEM image of NIL-patterned SiO2 layer on p-GaN. Inset in (b) shows a cross-section image.
Fig. 2
Fig. 2 Current-voltage (I-V) characteristics of blue (440 nm) LEDs with and without CBLs.
Fig. 3
Fig. 3 (a) Light output-current (L-I) properties and (b) EL spectra of LEDs fabricated with and without CBLs.
Fig. 4
Fig. 4 Plan-view emission images obtained from LEDs with (a) no CBL, (b) conventional SiO2 CBL, and (c) patterned SiO2 CBL. The images taken at 0.3 mA.
Fig. 5
Fig. 5 (a) Typical camera images showing light incident into and reflected from planar and patterned SiO2 structures for θ = 45°. (b) Measured angular transmittance of four structures.

Metrics