Abstract

In recent years, single-pixel imaging has become one of the most interesting and promising imaging technologies for various applications. In this paper, a big data environment for the first time to my knowledge is designed and introduced into single-pixel ghost imaging for securing information. Many series of one-dimensional ciphertexts are recorded by a single-pixel bucket detector to form a big data environment. Several hidden inputs are further encoded based on ghost imaging by using hierarchical structure, and their corresponding ciphertexts are synthesized into the big data environment for verifying the hidden ghosts and identifying the targeted ghosts. This new finding could open up a different research perspective for exploring more applications based on single-pixel imaging.

© 2017 Optical Society of America

1. Introduction

Ghost imaging [1–5] has attracted much current attention, and its corresponding applications have been continually explored. Fundamental principle of single-pixel ghost imaging is established based on intensity correlation between object signals and reference signals [1–5]. Both quantum and classical ghost imaging can be applicable, and remarkable characteristics of ghost imaging, such as high capability against turbulence [6,7], are useful for some applications, such as remote sensing [8]. A number of algorithms and infrastructures, such as high-order [9], compressed sensing [10] and differential [11], have been developed and applied to improve the performance of ghost imaging, and computational ghost imaging [1,12] has also been proposed to simplify the experimental setup.

In recent years, ghost imaging [13–15] has been applied as a promising approach for optical security [16–19]. Random phase-only profiles can be applied as security keys, and one-dimensional signals recorded at object beam arm are used as ciphertexts. However, conventional ghost-secured imaging systems seem to be simple without the use of a sufficiently large number of varied strategies, and the encoding strategies may be estimated by attackers. In this paper, a big data environment [20,21], for the first time to my knowledge, is designed and introduced into single-pixel ghost imaging to significantly enhance system security. Many series of one-dimensional ciphertexts are recorded by single-pixel bucket detector to form a big data environment. Several hidden inputs are further encoded based on single-pixel ghost imaging by using hierarchical structure, and their corresponding ciphertexts are synthesized into the big data environment for verifying the hidden ghosts and identifying the targeted ghosts.

2. Ghost identification analysis

Figure 1 shows a schematic for the generation of many series of one-dimensional ciphertexts to establish a big data environment. As shown in Fig. 1, a large number of different inputs are sequentially encoded, and among them only four inputs are employed as target inputs. A series of random phase-only masks Mh (h = 1,2,3,...,30000) are repeatedly applied for encoding each input, hence many series of one-dimensional ciphertexts can be generated as shown in Fig. 2. Each series of the ciphertexts is defined as Th (h = 1,2,3,...,30000). These ciphertexts form a big data environment, and this strategy can effectively confuse the unauthorized receivers. However, it is also important to design an effective approach to identify the targeted ciphertexts in the big data environment for authorized receivers.

 figure: Fig. 1

Fig. 1 Schematic for illustrating the generation of many series of one-dimensional ciphertexts to form a big data environment: SLM, phase-only spatial light modulator; BD, bucket detector; h = 1,2,3,...,30000. A collecting lens can be placed between the input and bucket detector.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2

Fig. 2 Data big environment established by using the recorded ciphertexts.

Download Full Size | PPT Slide | PDF

In this study, only four series of one-dimensional ciphertexts in Fig. 2 are the targeted ciphertexts corresponding to the four different target inputs. In the proposed optical security system, four hidden inputs are further encoded based on single-pixel ghost imaging using a hierarchical structure as shown in Fig. 3. At each hierarchical level, a hidden input is encoded, and a series of one-dimensional ciphertexts are correspondingly generated. For instance, at the first hierarchical level, random phase-only masks Mi (i = 1,2,3,...,650) are arbitrarily selected from the sequence Mh (h = 1,2,3,...,30000) as schematically illustrated in Fig. 4, and a series of one-dimensional ciphertexts [i.e., Ci (i = 1,2,3,...,650)] can be obtained. Similarly, random phase-only masks Mj (j = 1,2,3,...,650), Mk (k = 1,2,3,...,650) and Ml (l = 1,2,3,...,650) are arbitrarily selected from the sequence Mh (h = 1,2,3,...,30000), and other three series of one-dimensional ciphertexts, i.e., Cj (j = 1,2,3,...,650), Ck (k = 1,2,3,...,650) and Cl (l = 1,2,3,...,650), are obtained at the second, third and fourth hierarchical level, respectively.

 figure: Fig. 3

Fig. 3 Schematic setup for computationally encoding the hidden inputs based on single-pixel imaging using a hierarchical structure: i, j, k, l = 1,2,3,...,650. For hierarchically encoding the hidden inputs, computational approach is applied based on single-pixel ghost imaging. In practice, different architectures can be flexibly designed and computationally applied for encoding the hidden inputs.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Schematic for illustrating the arbitrary selection of phase-only masks (Mi, Mj, Mk and Ml) from the phase-mask sequence Mh. The maximum value for i, j, k and l is 650, and the maximum value for h is 30000.

Download Full Size | PPT Slide | PDF

After the four series of ciphertexts Ci, Cj, Ck and Cl (i, j, k and l = 1,2,3,...,650) are obtained, each series is further embedded into one specific series of ciphertexts Th (h = 1,2,3,...,30000) corresponding to a target input. For instance, as shown in Fig. 5, each pixel in Ci (i = 1,2,3,...,650) can randomly replace a pixel in the series Th (h = 1,2,3,...,30000). After all pixels in Ci are processed, a new series of synthesized ciphertexts T'h (h = 1,2,3,...,30000) are generated and hidden in the big data environment. Figure 6(a) shows a series of targeted ciphertext Th (h = 1,2,3,...,30000) before the replacement, and Fig. 6(b) shows the series of synthesized ciphertexts T'h (h = 1,2,3,...,30000) after ciphertexts Ci (i = 1,2,3,...,650) generated for a hidden input are embedded for the replacement. It can be seen in Figs. 6(a) and 6(b) that the ciphertexts generated for a hidden input are fully hidden into the designed big data environment. Here, only four series of one-dimensional ciphertexts in Fig. 2 contain the hidden ciphertexts, and other series of ciphertexts in Fig. 2 also play an important role to form the big data environment and confuse the unauthorized receivers.

 figure: Fig. 5

Fig. 5 Schematic for illustrating the embedding and replacement process to generate the synthesized ciphertexts: one-dimensional ciphertexts Ci (generated for a hidden input) randomly replace the pixels in a series of ciphertexts Th (generated for a target input).

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 (a) Typical one-dimensional ciphertexts Th generated for a target input, and (b) typical one-dimensional synthesized ciphertexts T'h after the ciphertexts generated for a hidden input are embedded for the replacements.

Download Full Size | PPT Slide | PDF

When the big data, i.e., ciphertexts, are transmitted to authorized receivers, the steps as follows are implemented to extract the target inputs: (1) Embedding positions of the ciphertexts Ci (i = 1,2,3,...,650) should be available to the receiver. According to the embedding positions, a series of the hidden ciphertexts are sequentially chosen from each series of cipherexts in Fig. 2 for the verification. For instance, one series of ciphertexts C'i (i = 1,2,3,...,650) is sequentially extracted from each series of cipherexts in the big data environment. (2) Reference intensity patterns, calculated at the first hierarchical level using phase keys Mi (i = 1,2,3,...,650), are obtained through the function |FrTλ,d1[Mi(x,y)]|2 (where λ denotes the wavelength and FrT denotes free-space wave propagation [22]), which are correlated with each series of extracted ciphertexts C'i (i = 1,2,3,...,650). Hence, a series of recovered inputs can be obtained, which are sequentially correlated with the original hidden input for data verification [15,19,23,24]. In practice, the original hidden inputs can be stored in a remote database, and only one interface is given for data authentication without direct observation. (3) Only when one remarkable peak is obtained in a generated correlation distribution, one series of ciphertexts in the big data environment can be correspondingly determined as targeted ciphertexts. (4) Similarly to steps (1)-(3), other three series of targeted ciphertexts can also be extensively searched in the big data environment and determined according to the phase keys at the higher hierarchical levels and the embedding positions of the hidden ciphertexts Cj, Ck and Cl (j, k and l = 1,2,3,...,650). (5) After all four series of targeted ciphertexts are identified, each target input can be decoded by using correlation function [BRh(m,n)BRh(m,n)], where . denotes ensemble average, {B} denotes each series of the targeted ciphertexts identified by the aforementioned method, and Rh(m,n) denotes reference intensity patterns for the target inputs. Other reconstruction methods, such as differential [11], normalized [25], high-order [9] and compressed sensing [10], may also be employed in order to reduce the number of measurements during the encoding. In practice, the decoded target inputs can be combined to visually render the complete information to authorized receivers.

3. Results and discussion

Validity of the proposed method is further illustrated. As shown in Fig. 1, plane wave, with a waist of 740μm and wavelength of 600.0 nm, is applied. Each phase-only mask Mh (h = 1,2,3,...,30000) is randomly distributed in the range of [0,2π]. As seen in Fig. 1, when the series of random phase-only masks Mh (h = 1,2,3,...,30000) is repeatedly applied and sequentially embedded into spatial light modulator (pixel pitch of 18μm and pixel number of 64×64) for encoding each input, many series of ciphertexts can be correspondingly recorded by using single-pixel bucket detector (without spatial resolution) to form the big data environment (see Fig. 2). The proposed method can be implemented by using either optical approach or virtual-optics (computational) approach in practical applications, and computational single-pixel (ghost) imaging is considered and applied, such as for the encoding using the designed hierarchical structure. In addition, chaotic functions can also be used to generate the series of random phase-only masks, which will facilitate data transmission (such as the security keys) and generate the consistent authentication and decoding results.

Each series of hidden ciphertexts should be extensively searched and verified in the big data environment, when accurate keys, such as the embedding positions and phase-mask keys, are available. Figure 7(a) shows a recovered hidden input, and its corresponding authentication distribution is shown in Fig. 7(b). As seen in Fig. 7(b), only one remarkable peak is generated to confirm that the series of ciphertexts in the big data environment containing these hidden ciphertexts [used for the recovery in Fig. 7(a)] is the targeted ciphertexts. Hence, one target input can be correspondingly recovered as shown in Fig. 7(c). Peak signal-to-noise ratio (PSNR) for Fig. 7(c) is 13.37 dB. Similarly, other three target inputs can also be recovered as shown in Figs. 7(f), 7(i) and 7(l), when their hidden inputs are correspondingly identified and verified in the big data environment as illustrated in Figs. 7(d) and 7(e), 7(g) and 7(h), and 7(j) and 7(k), respectively. The PSNRs for Figs. 7(f), 7(i) and 7(l) are 11.59 dB, 12.17 dB and 14.36 dB, respectively. Here, the series of random phase-only masks, arbitrarily-selected positions for random phase-only masks Mi, Mj, Mk and Ml, and ciphertext embedding positions can be considered as security keys. It is worth noting that since only 650 measurements (for the hidden input) are embedded into the targeted ciphertexts (each sequence of 30000), the influence due to cross-talk term can be ignored during the decoding of target inputs.

 figure: Fig. 7

Fig. 7 (a) A recovered hidden input, (b) data authentication corresponding to (a), and (c) the correspondingly recovered target input; (d) A recovered hidden input, (e) data authentication corresponding to (d), and (f) the correspondingly recovered target input; (g) A recovered hidden input, (h) data authentication corresponding to (g), and (i) the correspondingly recovered target input; (j) A recovered hidden input, (k) data authentication corresponding to (j), and (l) the correspondingly recovered target input.

Download Full Size | PPT Slide | PDF

In the proposed optical security system, an extensive search is conducted in the big data environment to find out a series of hidden ciphertexts for recovering the hidden input. When the series of hidden ciphertexts is not extracted from the series of targeted ciphertexts, typical authentication distributions are shown in Figs. 8(a)-8(h). It can be seen that only noisy correlation distributions are obtained, which are largely different from those in Figs. 7(b), 7(e), 7(h) and 7(k). Through this design using hidden ciphertexts in the big data environment, the target inputs can be effectively identified and extracted without implementation of a complex procedure. Here, each hidden input is individually encoded, and its series of one-dimensional ciphertexts replaces some pixels in one specific series of one-dimensional targeted ciphertexts for ghost verification. In practice, several series of hidden ciphertexts corresponding to multiple hidden inputs can be simultaneously hidden into one specific series of targeted ciphertexts for verifying one specific target input. Only when these hidden inputs are correctly decoded and simultaneously authenticated, the recovered input can be confirmed as a target input in the designed big data environment. Hence, high flexibility is guaranteed in the proposed optical system.

 figure: Fig. 8

Fig. 8 (a)-(d) Four recovered inputs when the hidden ciphertexts are respectively selected from a wrong series of ciphertexts in the big data environment for the decoding and verification, and (e)-(h) authentication distributions respectively corresponding to (a)-(d).

Download Full Size | PPT Slide | PDF

4. Conclusions

A big data environment, for the first time to my knowledge, has been successfully designed and integrated into single-pixel imaging for securing information. It has been effectively demonstrated that many series of one-dimensional ciphertexts can be recorded by single-pixel bucket detector to form the big data environment. In addition, several hidden inputs are further encoded based on single-pixel ghost imaging by using a hierarchical structure, and their corresponding ciphertexts are synthesized into the big data environment for effectively verifying the hidden ghosts and correctly identifying the targeted ghosts. This new approach using big data environment could open up a different research perspective for single-pixel imaging [1–5,25–28] and optical security [16,23]. Either virtual-optics (computational) approach or optical approach can be flexibly designed and implemented for the proposed system. It is expected that different big-data concepts can be continuously explored and applied to enrich single-pixel ghost-secured imaging area.

Funding

National Natural Science Foundation of China (NSFC) (61605165); Hong Kong Research Grants Council Early Career Scheme (25201416); Shenzhen Science and Technology Innovation Commission through Basic Research Program (JCYJ20160531184426473); The Hong Kong Polytechnic University (1-ZE5F).

References and links

1. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010). [CrossRef]  

2. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995). [CrossRef]   [PubMed]  

3. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995). [CrossRef]   [PubMed]  

4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002). [CrossRef]   [PubMed]  

5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004). [CrossRef]   [PubMed]  

6. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011). [CrossRef]  

7. R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012). [CrossRef]  

8. B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012). [CrossRef]   [PubMed]  

9. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009). [CrossRef]   [PubMed]  

10. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009). [CrossRef]  

11. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010). [CrossRef]   [PubMed]  

12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008). [CrossRef]  

13. M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012). [CrossRef]  

14. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013). [CrossRef]   [PubMed]  

15. W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013). [CrossRef]  

16. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef]   [PubMed]  

17. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997). [CrossRef]  

18. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996). [CrossRef]  

19. W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016). [CrossRef]  

20. L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014). [CrossRef]  

21. R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015). [CrossRef]  

22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

23. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014). [CrossRef]  

24. W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015). [CrossRef]  

25. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012). [CrossRef]  

26. L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013). [CrossRef]  

27. W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014). [CrossRef]  

28. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010). [CrossRef]   [PubMed]  

References

  • View by:

  1. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
    [Crossref]
  2. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref] [PubMed]
  3. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
    [Crossref] [PubMed]
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref] [PubMed]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref] [PubMed]
  6. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
    [Crossref]
  7. R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
    [Crossref]
  8. B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
    [Crossref] [PubMed]
  9. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref] [PubMed]
  10. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  11. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref] [PubMed]
  12. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  13. M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
    [Crossref]
  14. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
    [Crossref] [PubMed]
  15. W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
    [Crossref]
  16. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  17. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
    [Crossref]
  18. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
    [Crossref]
  19. W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
    [Crossref]
  20. L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
    [Crossref]
  21. R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
    [Crossref]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  23. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
    [Crossref]
  24. W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
    [Crossref]
  25. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  26. L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
    [Crossref]
  27. W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
    [Crossref]
  28. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010).
    [Crossref] [PubMed]

2016 (1)

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

2015 (2)

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

2014 (3)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

2013 (3)

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

2012 (4)

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
[Crossref] [PubMed]

2011 (1)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

2010 (3)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010).
[Crossref] [PubMed]

2009 (2)

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

1997 (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

1996 (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

1995 (3)

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Ahmadi-Kandjani, S.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Baddorf, A. P.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Belianinov, A.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Boyd, R. W.

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Chan, K. W. C.

Chen, W.

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

Chen, X.

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38(4), 546–548 (2013).
[Crossref] [PubMed]

Clemente, P.

Deacon, K. S.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Durán, V.

Edgar, M. P.

Erkmen, B. I.

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Gianfrancesco, A. G.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Javidi, B.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Jesse, S.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Jiang, C.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Kalinin, S. V.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Kheradmand, R.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Kong, L. J.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Lancis, J.

Li, S. M.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Li, Y.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

O’Sullivan, M. N.

Padgett, M. J.

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Qian, S. X.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Refregier, P.

Ren, Y.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Sun, B.

Tajahuerce, E.

Tanha, M.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

Torres-Company, V.

Tselev, A.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Tu, C.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Tunick, A. D.

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

Vasudevan, R. K.

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Wang, H. T.

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Wang, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Welsh, S. S.

Xu, L.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Yuan, J.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

Adv. Opt. Photonics (2)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2(4), 405–450 (2010).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Appl. Phys. Lett. (7)

R. K. Vasudevan, A. Belianinov, A. G. Gianfrancesco, A. P. Baddorf, A. Tselev, S. V. Kalinin, and S. Jesse, “Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity,” Appl. Phys. Lett. 106(9), 091601 (2015).
[Crossref]

W. Chen and X. Chen, “Marked ghost imaging,” Appl. Phys. Lett. 104(25), 251109 (2014).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

R. E. Meyers, K. S. Deacon, A. D. Tunick, and Y. Shih, “Virtual ghost imaging through turbulence and obscurants using Bessel beam illumination,” Appl. Phys. Lett. 100(6), 061126 (2012).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101(10), 101108 (2012).
[Crossref]

W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103(22), 221106 (2013).
[Crossref]

EPL (1)

W. Chen and X. Chen, “Grayscale object authentication based on ghost imaging using binary signals,” EPL 110(4), 44002 (2015).
[Crossref]

IEEE Access (1)

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: privacy and data mining,” IEEE Access 2, 1149–1176 (2014).
[Crossref]

IEEE Photonics J. (1)

W. Chen, “Single-shot imaging without reference wave using binary intensity pattern for optically-secured-based correlation,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric optical pattern-recognition system for security verification,” Nature 383(6595), 58–60 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

L. J. Kong, Y. Li, S. X. Qian, S. M. Li, C. Tu, and H. T. Wang, “Encryption of ghost imaging,” Phys. Rev. A 88(1), 013852 (2013).
[Crossref]

Phys. Rev. Lett. (4)

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-Photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref] [PubMed]

Phys. Today (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

Other (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic for illustrating the generation of many series of one-dimensional ciphertexts to form a big data environment: SLM, phase-only spatial light modulator; BD, bucket detector; h = 1,2,3,...,30000. A collecting lens can be placed between the input and bucket detector.
Fig. 2
Fig. 2 Data big environment established by using the recorded ciphertexts.
Fig. 3
Fig. 3 Schematic setup for computationally encoding the hidden inputs based on single-pixel imaging using a hierarchical structure: i, j, k, l = 1,2,3,...,650. For hierarchically encoding the hidden inputs, computational approach is applied based on single-pixel ghost imaging. In practice, different architectures can be flexibly designed and computationally applied for encoding the hidden inputs.
Fig. 4
Fig. 4 Schematic for illustrating the arbitrary selection of phase-only masks (M i , M j , M k and M l ) from the phase-mask sequence M h . The maximum value for i, j, k and l is 650, and the maximum value for h is 30000.
Fig. 5
Fig. 5 Schematic for illustrating the embedding and replacement process to generate the synthesized ciphertexts: one-dimensional ciphertexts C i (generated for a hidden input) randomly replace the pixels in a series of ciphertexts T h (generated for a target input).
Fig. 6
Fig. 6 (a) Typical one-dimensional ciphertexts T h generated for a target input, and (b) typical one-dimensional synthesized ciphertexts T' h after the ciphertexts generated for a hidden input are embedded for the replacements.
Fig. 7
Fig. 7 (a) A recovered hidden input, (b) data authentication corresponding to (a), and (c) the correspondingly recovered target input; (d) A recovered hidden input, (e) data authentication corresponding to (d), and (f) the correspondingly recovered target input; (g) A recovered hidden input, (h) data authentication corresponding to (g), and (i) the correspondingly recovered target input; (j) A recovered hidden input, (k) data authentication corresponding to (j), and (l) the correspondingly recovered target input.
Fig. 8
Fig. 8 (a)-(d) Four recovered inputs when the hidden ciphertexts are respectively selected from a wrong series of ciphertexts in the big data environment for the decoding and verification, and (e)-(h) authentication distributions respectively corresponding to (a)-(d).

Metrics