Abstract

We propose theoretically various kinds of filaments via the Mathieu modulation. Our results indicate curved filaments, in-phase and out-of-phase quasi-solitons and nonlinear light bullets can be formed successfully in air. Through calculated initial Mathieu accelerating beam (MAB), curved filament is able to propagate along a predesigned elliptical trajectory. By transforming the MAB into an axial symmetrical structure with in-phase and out-of-phase modulations, we obtain two kinds of quasi-solitons in air, respectively. The latter case can even propagate in a breathing fashion. With a ring structure of MAB, we successfully form a light bullet in air that generates a chain of intensity peaks over extended distances. These unique filaments can offer significant advantages for numerous applications, such as micro engineering of materials, THz radiation generation and attosecond physics.

© 2017 Optical Society of America

1. Introduction

Filamentation has stimulated growing research interest since the first observation of filament generated by an intense femtosecond laser pulse in air [1]. Owing to a number of nonlinearities during the propagation of Gaussian beams in air [2–5], the counterbalance between the optical Kerr nonlinearity and plasma de-focusing effect leads the beam to become a self-guided propagating mode and numerous peculiar phenomena occur, including spectral broadening, self-pulse compression and plasma channel, etc. Possible applications of filaments have also been proposed and demonstrated in laser induced electrical discharge [6,7] particle acceleration [8], LIDAR remote sensing [9], THz radiation generation [10], and pulse compression [11].

The continuing quest on how to manipulate filaments propagating in an expected way has constantly been pursued in the intense femtosecond laser pulse area. Recently, research efforts have been devoted to generate unique filaments via utilizing the nondiffracting and self-healing properties of Airy beams [12–15]. In 2009, Pavel Polynkin et al proposed a scheme that uses ultraintense Airy beams to generate curved plasma channel in air for the first time [16]. This unusual propagation regime inspires many ways of controlling filaments so that multiple applications can be achieved. One instance is that Matteo Clerici et al guided the electric discharge around objects in air in a controllable manner by taking advantage of the nondiffracting property of Bessel and Airy beams [17]. Furthermore, in the way of adding an Airy profile in time domain, Daryoush Abdollahpour et al illustrated intense Airy-Airy-Airy (Airy3) light bullets [18], showing that the Airy3 light bullets possess the self-healing nature in both temporal and spatial domains. The self-reconstruction characteristic exhibited by Airy beams contributes to form an intense steep intensity peak on axis on the condition of using ring-Airy wave packets. Unfortunately, the Airy beams always propagate along a parabolic trajectory that always deteriorated by nonlinearities and cannot be predesigned. As such, when filaments are generated by Airy beams, Kerr and multiphoton nonlinearities would make the main lobe with high powers are reshaped into a multifilamentary pattern [19].

During recent years, on the one hand, numerous efforts have been dedicated to moving the main lobe’s intensity of Airy beams along a predesigned trajectory [20–23]. The Quasi-Airy beams proposed by Yixian Qian et al serve as a typical example [24]; on the other hand, novel nonparaxial accelerating beams have been introduced theoretically and demonstrated experimentally [25,26]. Those beams are not subject to a single parabolic trajectory. Lately, Peng Zhang et al found that the circular nonparaxial accelerating beams are only one special case of the Mathieu accelerating beams (MABs) [27]. In this concept, the MAB can propagate in a different fashion travelling along an ellipse with any predesigned ellipticity. The wave packet modulated by radial and angular Mathieu functions results in a scalable acceleration control without the paraxial limit. In our previous work, we have found the amplitude modulation of a Mathieu beam offers a new approach to control filaments’ onset, distribution and elongate the whole length of filamentation [28]. From the results simulated by Vincotte et al, the stability of femtosecond optical vortices propagating in the atmosphere was verified for the first time [29]. However, the value of Mathieu modulation has never been fully disclosed in the filamentation regime in this paper, because there are abundant kinds of wave packets initialed by certain modulations. For instance, concerning spatial solitons formed with the Airy beams in nonlinear media, in-phase and out-of-phase initial packets are two kinds of ways to form novel breathing solitons [30]. If rotating the Airy modulation into a rotational symmetry structure, a ring Airy wave packet can also be formed. Naturally, this brings about following relevant questions: Whether could an MAB with high intensity generate a filament propagating along a predesigned trajectory when assisted by nonlinearities? If so, would the wave packet with Mathieu modulations, including in-phase and out-of-phase situations as well as ring structure, generate novel phenomena as depicted in previous works?

In this context, we theoretically investigate various kinds of filaments via the Mathieu modulation. We find that curved filament could propagate along a predesigned elliptical trajectory. By transforming the MAB into an axial symmetrical structure with in-phase and out-of-phase modulation, different kinds of quasi-solitons in air are constructed. Finally, we successfully form a light bullet in air using intense ring MAB that generate a chain of intensity peaks. For their potential applications, the elliptical trajectory of MAB and two kinds of quasi-solitons may produce different microchannels; the bullet may be beneficial to high aspect ratio nanochannel machining, supercontinuum and THz generation.

2. Model

In the nonlinear optical regime, several types of well-established numerical models such as Forward Maxwell’s Equation (FME), Nonlinear Envelop Equation (NEE) and Non-linear Schrödinger Equation (NLSE) were used in the simulations. These propagation equations are under one roof that is named Unidirectional Pulse Propagation Equation (UPPE) [31–33]. Even though UPPE put a much heavier burden on the computer when compared to other envelope models with paraxial approximation, it is necessary to concern the non-paraxial nature of MABs. The propagation equation along the propagation direction z for the pulse envelop E(x,y,z,t)in the Fourier domain reads:

E^ω,kz=iKω0(ω,k)E^ω,k+iQω0(ω)(Pω,kε0+iωJω,kε0).
where
Kω0(ω,k,xky)=k2(ω)kx2ky2.
accounts for the linear effects of dispersion, diffraction, space-time coupling and normal group-velocity dispersion (GVD). k0=2π/λ0(λ0=800nm)is the central wave number corresponding to angular frequency ω0=2πc/λ0, and kx,kydenote the Fourier variables to spatial coordinatexandy, respectively. The self-steepening effect is described by the non-linear dispersion functionQω0(ω)=ω2/2c2Kω0(ω,kx,ky)where cis the speed of light in vacuum.

The nonlinear polarizationPω,kcaused by the Kerr effect possesses the relation with the pulse analytic signal as:

P(τ,x,y,z)=2n0n2ε0|E|2E.
wheren2andn0are the Kerr nonlinearity coefficient and linear refractive index, respectively. Here, the instantaneous Kerr effect parametern2=0.96×1019cm2/Wis determined by the critical power for self-focusing Pcr=3.77λ02/8πn2equivalent to 10GW in air. The new time variableτ=tk'0zis utilized changing the reference frame from laboratory to local time with the group velocityvg=k'01.

The nonlinear absorption and plasma defocusing are described by a current density spectrumJω,kcorresponding to the optical field ionization of the air with oxygen molecules densityρnt=5×1018cm3.

J(τ,x,y,z)=cσε0(1+iω0τc)ρE+cn0ε0βK(1ρρnt)|E|2K2E.
whereρrepresents the density of the plasma generated by multiphoton ionization (MPI) corresponding to the number of photonsK=8with the cross sectionβ(K)=Kω0ρntσKfor MPA which is calculated from the Keldysh formulation . The inverse Bremsstrahlung cross section σ=5.5×1020cm2is calculated from the Drude model.

The electron density generated by MPI and avalanche is modeled by the relation:

ρt=β(K)Kw0|E|2K(1ρρnt)+σUiρ|E|2.
Ui=12.1eVis the ionization potential of oxygen molecules.

It has to be emphasized that the third-harmonic generation is discarded in Eq. (3) for the nonlinear polarizationP. The reason behind it is that we intend to investigate the evolution process of filamentation instead of third-harmonic generation. To be specific, in the work explored by N. Aközbek et al, the energy conversion efficiency from fundamental to third-harmonic is never up to 0.4% in air, and when the input power is abovePcr, the conversion efficiency does not increase with further increasing input power [34]. Therefore, for the filamentation in air, the intensity of third harmonic would not cause significant influence on the refractive index, which is not similar to the filamentation in noble gases.

MAB is one of the solutions for Helmholtz equation in the elliptical coordinate system [35]. Assuming that(y,z)=(hsinhξsinhη,hcoshξcoshη)is the transformation from elliptical coordinate system to Cartesian coordinate system, where the interfocal separationh=|a2b2|1/2is determined by the two semiaxesa,bof the ellipse [Fig. 1(a)], andη[0,2π), ξ[0,)are the angular and radial variables, respectively. In the elliptic cylindrical coordinate system, the MAB can be described asM(ξ,η)=R(ξ)Θ(η), where R(ξ)andΘ(η)are the solutions of modified and canonical Mathieu differential equations [Eq. (6)] that are split from Helmholtz equation.

d2R(ξ)dξ2=(β2qcosh2ξ)R(ξ),
d2Θ(η)dη2=(β2qcos2η)Θ(η).
where a parameter which is related to the ellipticity isq=k20h2/4, βis a separation constant. The solutions of Eqs. (6)a) and (6b) are radical and angular Mathieu function, respectively [36]. So, the first kind Mathieu beam’s amplitude in elliptical cylindrical coordinate system(ξ,η)are given by [37]:
M(ξ,η,z=0)={m=0AmqCem(ξ,q)cem(η,q)(even)m=0BmqSem(ξ,q)sem(η,q)(odd)
whereAmqandBmqare amplitude coefficients.Cem(ξ,q)andSem(η,q)are the even and odd radial Mathieu functions of the first kind, respectively. cem(ξ,q)andsem(η,q)are the even and odd angular Mathieu functions of the first kind, respectively. qis a parameter which can determine the profile of the Mathieu beam. Let us consider the Mathieu modulation in theydirection. In the case ofm>(2q)1/2, the finite MAB in the Cartesian coordinates atz=0 is given by:

 figure: Fig. 1

Fig. 1 (a) Illustration of elliptical trajectory associated with MABs; (b) Amplitudes of the MABs in the y direction at z=0(normalized), case 1 to case 3 corresponding to three different semiaxesa=4,2,1mm, respectively.

Download Full Size | PPT Slide | PDF

M(y,z=0)=exp(αy)H(-y-m22q/k)×Cem(Re(arccosh(i(y+m22q/k)/h));q).

Here, αis the parameter to confine the energy to be finite, H(y)is a Heaviside function, Re represents the real part. Note again that the modulation just takes place in theydirection approximately fory>0due to the Heaviside function. For simplicity, we can add a Gaussian modulation in thexdirection so that the accelerating actions can be observed in theydirection. Furthermore, we can make this special modulation axial symmetry or even rotational symmetry, which construct not only the in-phase and out-of-phase initial packets, but also the ring Mathieu bullet. In our work, we adopt the parameter b as 30 cm and selecta=4,2,1mmto achieve different trajectories in the y direction whose corresponding initial normalized amplitude in the y direction at z=0 is sketched in Fig. 1(b).

For the initial femtosecond laser pulse, the temporal duration of a Gaussian profile is tFWHM=2ln2tp withtp=42.5fs and central wavelength is800nm.

3. Discussion

Let us start with the Mathieu accelerating beams which possess the corresponding predesigned ellipticities and those beams’ initial amplitude profiles are sketched in Fig .1(b), respectively. In order to examine the beam propagation dynamics, Eqs. (1) and (3) are integrated numerically by using initially pulses taken with norm Gaussian in the x direction as:

E(x,y,z=0,t)=I0M(y,z=0)exp(x2/r02)exp(t2/tp2).
which can accelerate in the y direction. r0=0.4mmis the beam waist andtpis the1/e2pulse half-width. The initial intensity is assumed asI0=40TW/cm2.

Figure 2 illustrates 2D representations of the filament intensity for three cases in transverse plane (x=0,y) as a function of propagation distancez. Apparently, all of them propagate along the elliptical trajectories as predesigned by the two semiaxesa,b. Since the main lobe having a larger size than satellite lobes carries the highest power, it will be clamped after several centimeters of propagation and the corresponding clamping intensities for three cases can be seen intuitively in Fig. 3(b). By contrast, it is clear that the length of curved filament tends to be shorter with a higher ellipticity. As one can notice, unlike the beam propagating in the linear regime, the intensity of the main lobe is constantly clamped into a relatively stable level exhibiting one or several plateau until the filament terminates. During this evolution process, the beam patterns of the main lobe are not only influenced by two nonlinearities, Kerr and plasma defocusing effects, but also significantly susceptible to the initial phase distribution. On the one hand, according to the energy replenishment theory of filamentation [38], the narrow core of the filament is refilled by the surrounding laser energy that is named energy reservoir. Consequently, if the background energy is insufficient to support central area, the filament will end up immediately; on the other hand, when adjacent lobes are introduced aπphase lag, the filaments will form independently within each lobe possessing enough power [39]. Accordingly, for MABs with aπphase shift between adjacent lobes, the lobes would propagate separately at the beginning of propagation and then numerous filaments are generated, as shown in Fig. 2, and the length of filament decreases with higher order lobe due to different powers. Therefore, the main lobe carrying the highest power determines the length of the curved filament. In particular, with higher ellipticity the number of filaments decreases while more satellite lobes are involved just for the sake of smaller size leading to lower power. The power of the main lobe from Case (a) to Case (c) is1.25Pcr, 1.50Pcrand1.75Pcr, respectively. This phenomenon can also be explained successfully by the energy replenishment theory of a single filament. As addressed above, it implies that the curved filament witha>bas demonstrated in Ref [27]. in the linear regime cannot be generated due to the extremely small sizes of lobes which are merely several micrometers, namely insufficient background energy for each single lobe to accomplish filamentation.

 figure: Fig. 2

Fig. 2 Left column, 2D representations of the filament intensity in transverse plane (x=0,y) as a function of propagation distancez. Top to bottom, cases of MABs with (a) case 1, (b) case 2, (c) case 3 in the y direction as sketched in Fig. 1.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Displacements of the main lobes for three cases (left column) and peak intensities for three cases (right column) as a function of propagation distance.

Download Full Size | PPT Slide | PDF

According the pioneer works presented by Bérge and Brandon G. Bale et al. [40, 41], a dipolar structure with opposite phase will never fuse. However, it is necessary to point out in this work that it involves a more complex process during filamentation process. As illustrated before, different lobes generate filaments with different lengths. The interaction among nonlinearities would change the phase distribution of the beam when compared with the case propagating in the linear regime. Consequently, at the post stage of filamentation, the phase difference between adjacent lobes is not exactlyπ. When the interacting light beamlets propagate in Kerr-type media, two filaments separated within a certain distance would amalgamate in the case of no exactπphase difference. Therefore, at the end of filamentation, the energy diffracted by linear effects can overlap resulting in a blurry distinction between different lobes.

To gain further details of this interesting behavior, we monitor in Fig. 3 the displacements of the main lobes and peak intensities for three cases as a function of propagation distance. The left column of Fig. 3 shows a comparison of the elliptical trajectories with three different ellipticities during the nonlinear propagation. At the propagation distancez=20cm, the displacements of them are1.5mm,0.8mm,and0.55mm, respectively. It is worth mentioning that the filament of case 1 terminates atz=20cmand it is shorter than other two cases. Therefore, the limited length of filament with high ellipticity is the key factor to confine the higher level of displacement. As we can see in Fig. 3(b), the intensities of three cases are all clamped at about70TW/cm2with a slight difference [42]. For case 1 with the smallest main lobe, the intensity increases gradually along propagation direction and it forms a single intensity plateau atz=14cm, indicating that the filament is almost dominated by the Kerr nonlinearity until it is clamped atz=14cm. After this distance, the filament is so thin that Kerr effect is not capable of focusing the energy defocused by plasma and diffraction and thus the intensity would decrease gradually. For case 3 with the largest main lobe, it is obvious two intense peaks are formed atz=10cmandz=22cm, respectively. This phenomenon exhibits distinct difference compared with the intensity distribution along the propagation direction in the linear regime. Before the distancez=10cm, Kerr effect dominates the evolution of energy flux so that intensity grows up. Nevertheless, when plasma density is high enough to overcome the Kerr nonlinearity, the intensity would decrease between the distancesz=10cmandz=14cm. These results give the evidence that the nonlinearities dominate the propagation dynamics of the single main lobe before the filaments terminate while the trajectories are governed by the linear accelerating nature of MABs.

Even though the MABs exhibit a different kind of trajectory when compared with the parabolic Airy beams [43–46], they share plenty of similarities in weakly nonlinear regime. When the initial size of main lobe is small, the main lobe of the beams accelerates transversely faster, shown in Fig. 3(a). The intensity profile does show plateaus because the self-defocusing prevents intensity to exceed a certain value predicted by estimations [47]. At the beginning of propagation, the individual lobe shrinking is also observed due to the Kerr nonlinearity. The filaments at a certain propagation distance would split up and the split-off ones do not exist far and die out in disappearance of the accelerating beam support. As the same family of accelerating beam, these phenomena suggest that the nonlinear dynamics of MABs are governed by the same principles applying to Airy beams.

Next, we carry out the analysis by using the energy flow and Poynting vector to illustrate the field configurations of case 2 at different propagation distances. In Fig. 4, we can see clearly the direction and the strength of energy flow that are demonstrated intuitively during the process of MABs propagation in nonlinear regime. At the beginning propagation stagez=10cm, as shown in Fig. 4(a), the direction of all lobes’ energy flow is partially towards the center and partially towards the positive direction of y-axes. There is no doubt that the direction of energy toward positive y direction is caused by the accelerating nature of MABs and the direction toward the center is due to the Kerr nonlinearity. Upon further propagation, the Kerr self-focusing effect will first disappear in the satellite lobes and this part of energy evolves toward outside, as shown in Fig. 4(b). Note that the direction of the main lobe’s energy flux almost keeps the same trend as that of the former stage but is slightly weakened in the direction toward center. This is because the filaments of satellite lobes are ended up, leading the diffraction to dominate the evolution. In regarding to the main lobe, the size in the y direction becomes more compressed but the acceleration is higher than that atz=10cm, as shown in Fig. 2(b). At the same time, the secondary lobe is closer to the main one, which causes higher field interference between each other. Thus, it is inevitable that the acceleration of the main lobe is higher, namely, the energy flux in the y direction is strengthened [arrows in Fig. 4(b)]. When the filament of the main lobe begins to terminate, the movement of energy flux is illustrated in Fig. 4(c). By contrast, the gaps between adjacent lobes become vague in this case and hence the lobes are not distinguishable. However, it is readily seen that accelerating speed in the y direction is not weakened even though filaments disappear since the intensity in this case is relatively low to avoid being dramatically affected by nonlinearities.

 figure: Fig. 4

Fig. 4 The calculated transverse energy flow at different distances of (a) z=10cm (b) z=20cm and (c) z=25cm for the case 2. The arrows indicate the direction of the energy flux while its strength is proportional to arrow lengths and widths. Thex=0position is marked the black dashed line.

Download Full Size | PPT Slide | PDF

The discussions above provide us with a crucial fact that MABs can propagate in a controllable fashion in the intense femtosecond laser pulse area. This unique property can be used as a prerequisite to produce numerous interesting phenomena in the nonlinear regime that are useful for their potential applications. One hot concern is that using accelerating beam in a special nonlinear media to generate spatial solitons. These media are somehow uncommon in our nature, which may prevent their potential applications. Here, we will present a novel example while using intense femtosecond laser pulse to generate this kind of solitons in air.

Considering interactions between two separated in-phase and out-of-phase MABs that are sketched in Fig. 5, we may achieve breathing-like solitons in air. The main distinction between in-phase and out-of-phase cases is whether the symmetrical counterpart is imposed aπphase shift, while they have the same initial intensity distribution. We perform the simulation by using the initial profile in the x direction as illustrated before and change the initial peak intensity toI0=10TW/cm2. Strictly speaking, a soliton must be long-lived during propagation. In the in-phase and out-of-phase cases, the structure of the high intensity distributions may not propagate a distance long enough to be define as soliton due to the relative low input power. For simplicity, we just name it as quasi-soliton and the lengths of them can be prolonged with higher input power.

 figure: Fig. 5

Fig. 5 Amplitude of the in-phase and out-of-phase MABs in the y direction. (a) in-phase amplitude modulation, (b) out-of-phase amplitude modulation.

Download Full Size | PPT Slide | PDF

Figure 6(a) shows the 2D representation of the intensity evolution for the in-phase case at transverse plane(x=0,y)as a function of propagation distancez. Apparently, benefit from the accelerating property of MABs all the lobes will self-focus into the center gradually. Two main lobes meet with each other atz=0.55mforming an intense sharp peak at the onset of the focus. This filament generated by main lobes would propagate straightly in the central area until the secondary lobes blend into the center atz=0.75mand then the second intense sharp peak is formed. Then, with sufficient energy replenished by satellite lobes merging at the central area, a quasi-soliton is constructed propagating straightly. When the degree of nonlinearities is increased to a proper level, the self-focusing, defocusing and diffraction effects are balanced, which leads to the formation of uniform quasi-solitons in a certain propagation distance. However, the quasi-soliton will become weaker with further propagation as the intensity decreases which can weaken the attractive force caused by Kerr nonlinearity. In previous works, the topic of fusing multiple filaments has received extensive interest [48–50]. The fusing process occurs when the initial beam is focused by a modulation or within the Kerr-interaction distance. However, the merging phenomenon taking place for the in-phase MAB is due to the accelerating nature. Besides, after merging the main lobes, then the secondary lobes would merge, one by one, and some part of energy acts as an energy reservoir. Figure 6(c) shows the 2D representation of the intensity evolution for the out-of-phase case. Similar to the former case, each lobe and its counterpart also would self-focus into the center. The most notable distinction is that they never merge as one filament. On contrary, when the lobes are accelerated to the center to meet their counterparts, they are bounced back toward outside. However, the Kerr nonlinearity can really attract them together. Consequently, the breathing fashion of propagation in air is formed between the distances atz=0.5mand atz=1.1m. To be more specific, the breathing quasi-soliton pairs propagate in the separated trajectories. The narrowest parts of the trajectories look like the bottlenecks, where the two separated parts get close to each other, but they will never overlap. In this part, the out-of-phase MAB does not contain a vortex since the profile in the x direction is adopted as a Gaussian function.

 figure: Fig. 6

Fig. 6 Propagations of quasi-solitons formed by filaments in air for two cases. The first row, the in-phase case. The second row, the out-of-phase case. Left column, cross-sectional intensity profiles I(0,y,z)of the beams. Right column, cross-sectional phase distributions of the beams. Thex=0plane is marked by the red dashed line.

Download Full Size | PPT Slide | PDF

The difference between these two unusual behaviors can be well explained by the phase distributions and optical fields’ interference. The phase distributions in Figs. 6(b) and 6(d) show a great distinction in the two sides of red dashed line. As shown in Fig. 6(b), the fields in two side areas near the line possess the same phase. Nevertheless, for the out-of-phase case, the fields in two side areas near the line always exhibit aπphase shift [Fig. 6(d)]. The phase difference leads to destructive interference when the counterpart lobes both converge towards the propagation axis. As a result, an intensity minimum on the propagation axis is observed. The quasi-soliton split by the phase wall containing two parts can also be called dipole-mode vector quasi-soliton. Since satellite lobes have a strong contribution to the replenishment of energy toward the center leading to a high level of intensity, during propagation two parts would couple with each other and be trapped jointly by the nonlinearities of filaments.

These intriguing phenomena were also been reported in former works with the help of special nonlinear media, but not in air. During recent years, the propagation properties of the self-accelerating beams in nonlinear media are the subjects of intense research. It is found that spatial solitons can be formed with the Airy beams in nonlinear media [51, 52], which come from the balance between the nonlinear self-focusing and linear diffraction. Similar to this work, many works have shown that the bound states of spatial solitons can be generated from the interactions between Airy beams [53–56] and stationary bound states of breathing Airy soliton pairs can also been formed in nonlocal nonlinear media with proper control of the initial parameters [57]. In general, nonlocal nonlinearity means the light-induced refractive index change of a material at a particular location is determined by the light intensity in a certain neighborhood of this location [53] in optical domain. However, it has been reported that the nonlocality that can have great influences on the interaction dynamics of self-accelerating beams existing mainly in nematic liquid crystals [58] and thermal media [59]. Therefore, forming these two kinds of solitons in air without the assistance of hard-making media may extend their potential applications.

Since the plasma plays the key role in forming a self-guided structure for filament, it is important to monitor plasma channels excited by ionization of air molecules, as shown in Fig. 7 for the electron density level of1019m3. According to the slice-by-slice self-focusing mechanism of filamentation, the front part becomes narrower and narrower with further propagation because it undergoes multiphoton absorption and thus generates plasma behind. The back part would interact with the plasma leaved behind by the front part, and then it becomes “flat” which is referred to background energy reservoir. Before the end of the filament, this part of energy propagates together with the core without diffracting out. Therefore, the plasma ionized form oxygen molecules can greatly influence the propagation patterns. In Fig. 7(a), it is visible that a widely plasma-distributed area exists while the first and second intense sharp intensity peaks are formed between the distances atz=0.6mandz=0.9m. The high level of plasma density caused by the highest intensity [Fig. 4(a)] in this area can adequately defocus part of energy out the core, resulting in the loss of energy of the filament propagating straightly. The discontinuous plasma channel acts as a counterpart to overcome the Kerr nonlinearity and therefore a self-guided structure is formed. For the out-of-phase case in Fig. 7(b), the breathing fashion of plasma channels is also constructed. The area at roughlyz=0.9mcontains the highest level of plasma. So, the energy toward outside at this distance is mainly caused by both the phase wall and plasma defocusing effect. In other words, since the plasma is mostly accumulated near the propagation axis, which is harmful for the Kerr nonlinearity to attract the energy toward the beam center, the breathing fashion of dipole-mode vector soliton may be destroyed by plasma to some extent.

 figure: Fig. 7

Fig. 7 3D surface plots of plasma strings in cases of (a) in-phase case and (b) out-of-phase case.

Download Full Size | PPT Slide | PDF

To get a deeper insight into the role of filamentation in forming spatial quasi-solitons, we compare the transverse energy flux distributions for these two special cases. At the beginning of propagation, two axial symmetrical tails of lobes accelerate toward the propagation axis, showing no significant difference [Figs. 8(a) and 8(e)]. During this stage, the linear diffraction would govern the accelerating actions of the beams since the intensity is not high enough to induce strong nonlinearities even though each single lobe may shrink gradually like the Airy beams. Upon further propagation, when the spacing between two main lobes close to each other within the Kerr interaction distance at aboutz=0.5m, the in-phase lobes converge together as an trajectory faster than the predicted elliptical trajectory but the out-of-phase ones shows a slower acceleration speed, shown in Figs. 6 and 7. It is evident that which kind of interference, instructive or destructive, on the propagation axis would influence the energy evolution of the quasi-solitons. When instructive interference occurs in the beam center, the on-axis intensity would increase sharply causing the Kerr nonlinearity strongly attract the lobes energy. Otherwise, the beam center has a minimal intensity and thus the Kerr nonlinearity attracts the periphery energy toward each lobe’ center respectively, which gives rise to a repellent force. Consequently, in-phase main lobes blend into one as a single filament [Figs. 8(b) and 8(c)] whereas out-of-phase main lobes are constantly split by a tiny gap [Figs. 8(f) and 8(g)]. Finally, the in-phase quasi-soliton will propagate as the form of single filament while for the out-of-phase quasi-soliton the two parts will couple with each other through Kerr nonlinearity and propagate almost separately. The results of the out-of-phase case is more intriguing, because under the impact of strong Kerr effect when two main lobes extremely close to each other, as shown in Fig. 8(h), it seems no energy exchanges between them. It gives the evidence that the phase wall withπphase shift is capable of cutting off energy flux and hence the coupling between two parts is merely due to special gradient of refractive index caused by Kerr nonlinearity. The principle of why the energy flux is cut by the phase jump is similar to why femtosecond laser filament array can be generated by the step phase plate in air [39].

 figure: Fig. 8

Fig. 8 Beam patterns at different locations along the propagation direction for the in-phase quasi-soliton [(a)-(d)] and out-of-phase quasi-soliton [(e)-(h)].

Download Full Size | PPT Slide | PDF

Light bullet formation is another area that has been studied widely and extensively, and it is one of phenomenon accompanying filamentation for the Gaussian pulse case [60, 61]. The intention of this part is that we transform the autofocusing beam into accelerating ring-MABs able to act as light-bullet wavepackets propagating extended distances. As represented in Figs. 9(a) and (b), a handful of discrete sharp intensity peaks in the linear regime may be transformed into numerous periodic intensity peaks existing for a long distance in the nonlinear regime. Here, we construct the ring structure by rotating case 2 in Fig. 1(b) and adopt the initial peak intensity as0.8TW/cm2. In the linear regime, we perform our simulation by removing the Kerr nonlinearity and multiphoton ionization (MPI), whose result is demonstrated in Fig. 9(c). In this case, the only one peak up to90TW/cm2takes place atz=0.75mwhen the two main lobes converge with each other. It can be understood easily that the main lobe converges together atz=0.75mand instructively interfere with. In disappearance of the nonlinearities, the intensity can be overlapped up to90TW/cm2by converging the energy of the main lobe together at the position of sharp peak. When this beam comes to the nonlinear regime, it is very impressive that a chain of intensity peaks is generated successfully and elegantly along the propagation axis. It is worth noting that during the gap between adjacent intensity peaks, a well-established energy reservoir with relative low intensity surrounds the core. This is of key importance to sustain the filament because the Kerr nonlinearity would attract it back to the core and then another clamping intensity peak is formed. Moreover, we can see clearly that the background energy mainly supported by the satellite lobes constantly moves toward the core during propagation. One may also find that the period of intensity peaks become longer when the intensity is lower. This is because the nonlinear dynamics start to weaken and linear effects, such as diffraction and dispersion, tend to dominate the evolution process. The collapse of ring-Mathieu beam can be divided into three stages: (i) a quasi-linear stage beforez=0.5mduring which the lobes follow an elliptic trajectory toward the propagation axis; (ii) a second stage is fromz=0.5mtoz=1.0m, during which the intensity increases abruptly but in a way significantly different from the linear case. In the nonlinear regime, the first intensity peak takes place atz=0.6mwith0.1mmore previous than that of the linear case due to the Kerr nonlinearity attracting part of the energy of the main lobe. Upon further propagation at roughlyz=0.7m, the secondary lobes converge together with the previous energy resulting in a wide intensity plateau; (iii) a third stage is that the energy of the wave packet is merged into a single filament propagating along the propagation axis that is encompassed by the energy reservoir.

 figure: Fig. 9

Fig. 9 Simulation results of forming light bullet via ring MAB. (a) Schematic diagram of energy evolution process in the linear regime. (b) Schematic diagram of energy evolution process in the nonlinear regime. (c) Peak intensity distribution of ring MAB in the linear regime. (d) Peak intensity distribution of ring MAB in the nonlinear regime.

Download Full Size | PPT Slide | PDF

A complex phenomenon worth mentioning is that the adjacent lobes exist aπphase jump. As we can see clearly in Figs. 9(c) and 9(d), the satellite lobes would change their predesigned trajectory, decrease their acceleration and turn into a fashion of propagating straightly when closing to the beam center. The reason behind it is as same as the case of breathing quasi-soliton mentioned above. This unique property is greatly different with the filamentation of Gaussian beam whose energy all collapse toward the core and then is only defocused by the plasma. However, for the ring-Mathieu beam, the phase jump is able to prevent the satellite lobes from collapsing into the core, leading them merely acting a role of energy reservoir. Readily, this kind of energy reservoir can remain surrounding the filament core with an extended propagation distance due to the diffraction-free nature of ring-Mathieu beams.

To understand how the transverse energy influx of a ring MAB influences the reshaping process better, the spatiotemporal intensity distributions are monitored in Fig. 10. The spatiotemporal dynamics of ring MAB show great difference when compared with that of Gaussian beams which have been extensively studied in previous works [31, 62]. For typical spatiotemporal reshaping process, the pulse front generates plasma that leads to severe defocusing of the back part. Then, multiphoton absorption of the front edge gradually decreases the intensity and the back part will self-focus due to Kerr nonlinearity. As a result, pulse splitting occurs and ultimately the pulse front will be exhausted. However, the dynamics of ring MAB hold a different mechanism because no pulse splitting is observed in temporal domain during dozens of centimeters after the first focus. As shown in the top row in Fig. 10, right after the filament is formed, there is no doubt that the front is weakened by mutipoton absorption and a portion of energy in the back is defocused out. In this case, the core is continuously fueled by the energy flux from the satellite lobes of ring MAB. In the next stage of filamentation, the dynamics are featured by the mechanism similar to the typical reshaping process of Gaussian beam, as shown in the bottom row in Fig. 10. This lies in the fact that satellite lobes’ energy is no longer attainable sufficiently because their energy mostly focuses into the position around z=0.75m[Fig. 9(c)]. In the post filamentation stage, the wave packet or the quasi-soliton spread owing to linear diffraction.

 figure: Fig. 10

Fig. 10 Spatiotemporal evolution of intensity distribution of the filament at six propagation distances. (a)- (f) correspond to the distances atz=0.8,1.0,1.2,1.4,1.6,and1.8m, respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we propose a scheme of laser filamentation in air via Mathieu modulation that forms curved filaments, in-phase and out-of-phase quasi-solitons and nonlinear light bullets. To be more specific, accompanied by nonlinearities, an intense MAB could generate a filament propagating along a predesigned elliptical trajectory. The size of the main lobe becomes smaller for higher ellipticity, leading to less background energy of the filament generated by main lobe, which is harmful for the elongation of curved filaments. Then, we consider interactions between two separated in-phase and out-of-phase MABs that form different kinds of quasi-solitons in air. For the in-phase case, the main lobes and secondary lobes meet their counterpart, respectively, in the center, resulting in two sharp intensity peak. Upon further propagation, sufficient energy replenished by satellite lobes instrumentally benefits the construction of a quasi-soliton propagating straightly. For the out-of-phase case, the phase wall split the filaments acting as a dipole-mode vector quasi-soliton. During propagation, they would couple with each other and be trapped jointly by the nonlinearities of filamentation in a breathing fashion. Last, we attempt to form a light bullet in air using intense ring MAB. It is very impressive that a chain of intensity peaks is generated successfully and elegantly. This is mainly because the satellite lobes that constantly move toward the core during propagation can support the background energy. According the analysis of spatiotemporal dynamics, we can divided the evolution of filament into two stages. During dozens of centimeters after the first focus, the core is continuously fueled by the energy flux from the satellite lobes of ring MAB, causing the disappearance of pule splitting. In the next stage, the dynamics can be explained by the mechanism of the typical reshaping process for Gaussian beam.

References and links

1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995). [CrossRef]   [PubMed]  

2. Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381–6390 (2016). [CrossRef]   [PubMed]  

3. W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012). [CrossRef]  

4. P. Wei, X. Yuan, C. Liu, Z. Zeng, Y. Zheng, J. Jiang, X. Ge, and R. Li, “Enhanced high-order harmonic generation from spatially prepared filamentation in argon,” Opt. Express 23(13), 17229–17236 (2015). [CrossRef]   [PubMed]  

5. C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012). [CrossRef]  

6. M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002). [CrossRef]   [PubMed]  

7. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004). [CrossRef]  

8. J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012). [CrossRef]  

9. M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014). [CrossRef]  

10. V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016). [CrossRef]   [PubMed]  

11. H. Liang, P. Krogen, R. Grynko, O. Novak, C. L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K. H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015). [CrossRef]   [PubMed]  

12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008). [CrossRef]   [PubMed]  

13. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010). [CrossRef]   [PubMed]  

14. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008). [CrossRef]   [PubMed]  

15. X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012). [CrossRef]  

16. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009). [CrossRef]   [PubMed]  

17. M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015). [CrossRef]   [PubMed]  

18. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010). [CrossRef]   [PubMed]  

19. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012). [CrossRef]  

20. S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015). [CrossRef]  

21. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010). [CrossRef]   [PubMed]  

22. R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).

23. B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015). [CrossRef]   [PubMed]  

24. Y. Qian and S. Zhang, “Quasi-Airy beams along tunable propagation trajectories and directions,” Opt. Express 24(9), 9489–9500 (2016). [CrossRef]   [PubMed]  

25. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012). [CrossRef]   [PubMed]  

26. P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012). [CrossRef]   [PubMed]  

27. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012). [CrossRef]   [PubMed]  

28. Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016). [CrossRef]  

29. A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005). [CrossRef]   [PubMed]  

30. M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016). [CrossRef]   [PubMed]  

31. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011). [CrossRef]  

32. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004). [CrossRef]   [PubMed]  

33. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002). [CrossRef]   [PubMed]  

34. N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002). [CrossRef]   [PubMed]  

35. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef]   [PubMed]  

36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).

37. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012). [CrossRef]   [PubMed]  

38. W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005). [CrossRef]   [PubMed]  

39. H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013). [CrossRef]   [PubMed]  

40. L. Bergé, M. R. Schmidt, J. J. Rasmussen, P. L. Christiansen, and K. Ø. Rasmussen, “Amalgamation of interacting light beamlets in Kerr-type media,” J. Opt. Soc. Am. B 14(10), 2550–2562 (1997). [CrossRef]  

41. B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009). [CrossRef]   [PubMed]  

42. S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005). [CrossRef]   [PubMed]  

43. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011). [CrossRef]  

44. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012). [CrossRef]  

45. C. Ruiz-Jiménez, K. Z. Nóbrega, and M. A. Porras, “On the dynamics of Airy beams in nonlinear media with nonlinear losses,” Opt. Express 23(7), 8918–8928 (2015). [CrossRef]   [PubMed]  

46. A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013). [CrossRef]  

47. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008). [CrossRef]  

48. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009). [CrossRef]  

49. D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016). [CrossRef]  

50. Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016). [CrossRef]  

51. R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39(19), 5523–5526 (2014). [CrossRef]   [PubMed]  

52. I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014). [CrossRef]  

53. M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015). [CrossRef]   [PubMed]  

54. A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011). [CrossRef]   [PubMed]  

55. N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39(20), 5997–6000 (2014). [CrossRef]   [PubMed]  

56. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013). [CrossRef]   [PubMed]  

57. M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016). [CrossRef]   [PubMed]  

58. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004). [CrossRef]   [PubMed]  

59. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006). [CrossRef]  

60. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015). [CrossRef]  

61. N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015). [CrossRef]  

62. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [Crossref] [PubMed]
  2. Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381–6390 (2016).
    [Crossref] [PubMed]
  3. W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
    [Crossref]
  4. P. Wei, X. Yuan, C. Liu, Z. Zeng, Y. Zheng, J. Jiang, X. Ge, and R. Li, “Enhanced high-order harmonic generation from spatially prepared filamentation in argon,” Opt. Express 23(13), 17229–17236 (2015).
    [Crossref] [PubMed]
  5. C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
    [Crossref]
  6. M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
    [Crossref] [PubMed]
  7. R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
    [Crossref]
  8. J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
    [Crossref]
  9. M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
    [Crossref]
  10. V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
    [Crossref] [PubMed]
  11. H. Liang, P. Krogen, R. Grynko, O. Novak, C. L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K. H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
    [Crossref] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
    [Crossref] [PubMed]
  13. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
    [Crossref] [PubMed]
  14. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [Crossref] [PubMed]
  15. X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
    [Crossref]
  16. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
    [Crossref] [PubMed]
  17. M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
    [Crossref] [PubMed]
  18. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
    [Crossref] [PubMed]
  19. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
    [Crossref]
  20. S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
    [Crossref]
  21. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
    [Crossref] [PubMed]
  22. R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).
  23. B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015).
    [Crossref] [PubMed]
  24. Y. Qian and S. Zhang, “Quasi-Airy beams along tunable propagation trajectories and directions,” Opt. Express 24(9), 9489–9500 (2016).
    [Crossref] [PubMed]
  25. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
    [Crossref] [PubMed]
  26. P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
    [Crossref] [PubMed]
  27. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
    [Crossref] [PubMed]
  28. Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
    [Crossref]
  29. A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
    [Crossref] [PubMed]
  30. M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
    [Crossref] [PubMed]
  31. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
    [Crossref]
  32. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
    [Crossref] [PubMed]
  33. M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
    [Crossref] [PubMed]
  34. N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
    [Crossref] [PubMed]
  35. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
    [Crossref] [PubMed]
  36. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  37. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
    [Crossref] [PubMed]
  38. W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005).
    [Crossref] [PubMed]
  39. H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
    [Crossref] [PubMed]
  40. L. Bergé, M. R. Schmidt, J. J. Rasmussen, P. L. Christiansen, and K. Ø. Rasmussen, “Amalgamation of interacting light beamlets in Kerr-type media,” J. Opt. Soc. Am. B 14(10), 2550–2562 (1997).
    [Crossref]
  41. B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009).
    [Crossref] [PubMed]
  42. S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005).
    [Crossref] [PubMed]
  43. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
    [Crossref]
  44. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
    [Crossref]
  45. C. Ruiz-Jiménez, K. Z. Nóbrega, and M. A. Porras, “On the dynamics of Airy beams in nonlinear media with nonlinear losses,” Opt. Express 23(7), 8918–8928 (2015).
    [Crossref] [PubMed]
  46. A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
    [Crossref]
  47. A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008).
    [Crossref]
  48. O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
    [Crossref]
  49. D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
    [Crossref]
  50. Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
    [Crossref]
  51. R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39(19), 5523–5526 (2014).
    [Crossref] [PubMed]
  52. I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014).
    [Crossref]
  53. M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015).
    [Crossref] [PubMed]
  54. A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011).
    [Crossref] [PubMed]
  55. N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39(20), 5997–6000 (2014).
    [Crossref] [PubMed]
  56. Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
    [Crossref] [PubMed]
  57. M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
    [Crossref] [PubMed]
  58. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
    [Crossref] [PubMed]
  59. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
    [Crossref]
  60. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
    [Crossref]
  61. N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
    [Crossref]
  62. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]

2016 (8)

Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381–6390 (2016).
[Crossref] [PubMed]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Y. Qian and S. Zhang, “Quasi-Airy beams along tunable propagation trajectories and directions,” Opt. Express 24(9), 9489–9500 (2016).
[Crossref] [PubMed]

M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
[Crossref] [PubMed]

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
[Crossref] [PubMed]

2015 (9)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015).
[Crossref] [PubMed]

B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015).
[Crossref] [PubMed]

C. Ruiz-Jiménez, K. Z. Nóbrega, and M. A. Porras, “On the dynamics of Airy beams in nonlinear media with nonlinear losses,” Opt. Express 23(7), 8918–8928 (2015).
[Crossref] [PubMed]

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

H. Liang, P. Krogen, R. Grynko, O. Novak, C. L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K. H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
[Crossref] [PubMed]

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Wei, X. Yuan, C. Liu, Z. Zeng, Y. Zheng, J. Jiang, X. Ge, and R. Li, “Enhanced high-order harmonic generation from spatially prepared filamentation in argon,” Opt. Express 23(13), 17229–17236 (2015).
[Crossref] [PubMed]

2014 (4)

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39(19), 5523–5526 (2014).
[Crossref] [PubMed]

I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014).
[Crossref]

N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39(20), 5997–6000 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (10)

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

2011 (4)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).

A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011).
[Crossref] [PubMed]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

2010 (3)

2009 (3)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009).
[Crossref] [PubMed]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

2008 (3)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2006 (1)

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

2005 (3)

S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005).
[Crossref] [PubMed]

W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005).
[Crossref] [PubMed]

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref] [PubMed]

2004 (3)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

2002 (3)

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

2000 (1)

1997 (1)

1995 (1)

Abdollahpour, D.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Ackermann, R.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Aközbek, N.

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Aleahmad, P.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

Alfassi, B.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

Allayarov, I. M.

I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014).
[Crossref]

Ament, C.

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

Anania, M. P.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

André, Y.-B.

Andreeva, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

Arévalo, E.

Assanto, G.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Bale, B. G.

B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009).
[Crossref] [PubMed]

Becker, A.

W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005).
[Crossref] [PubMed]

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Bekenstein, R.

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Belic, M.

Bergé, L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref] [PubMed]

S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005).
[Crossref] [PubMed]

L. Bergé, M. R. Schmidt, J. J. Rasmussen, P. L. Christiansen, and K. Ø. Rasmussen, “Amalgamation of interacting light beamlets in Kerr-type media,” J. Opt. Soc. Am. B 14(10), 2550–2562 (1997).
[Crossref]

Bergmann, V.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Bernhardt, J.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Berti, N.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Bian, J.

Bowden, C. M.

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Brambilla, E.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Braun, A.

Broky, J.

Cannan, D.

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Chagas, J.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Chakraborty, H. S.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008).
[Crossref]

Champeaux, S.

S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005).
[Crossref] [PubMed]

Chang, C. L.

Chávez-Cerda, S.

Chen, B.

Chen, C.

Chen, R.

X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
[Crossref]

R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).

Chen, X.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Chen, Z.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

Cheng, Y.

Chin, S. L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005).
[Crossref] [PubMed]

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Cho, S.-H.

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

Christiansen, P. L.

Christodoulides, D. N.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[Crossref] [PubMed]

Chu, W.

Chu, X.

X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
[Crossref]

Clerici, M.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Cohen, O.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Corti, T.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Couairon, A.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Courvoisier, F.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

Dan, D.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

de J. Ramírez-Góngora, O.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Deng, D.

Di Pirro, G.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Dogariu, A.

Dou, X.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

Driben, R.

Du, D.

Dudley, J. M.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

Esaulkov, M. N.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Faccio, D.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

Feng, Z.

Ferrario, M.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Fu, L.

Fujii, T.

Gaarde, M. B.

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008).
[Crossref]

Gao, H.

Gao, J.

M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015).
[Crossref] [PubMed]

Gatti, G.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Ge, L.

M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015).
[Crossref] [PubMed]

Ge, X.

Ghigo, A.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

González de Alaiza Martínez, P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Gravel, J. F.

Grynko, R.

Gutiérrez-Vega, J. C.

Henin, S.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Hong, K. H.

Hu, Y.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

Huang, S.

Ionin, A. A.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Iturbe-Castillo, M. D.

Iwasaki, A.

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Ji, Z.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Jiang, J.

Jiang, Y.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Ju, J.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Kalkner, W.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Kaminer, I.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Kandidov, V. P.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Kärtner, F. X.

Kasparian, J.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Klingbeil, L.

Kolesik, M.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Konotop, V. V.

Korn, G.

Kosareva, O. G.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Krogen, P.

Kumm, T.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Kutz, J. N.

B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009).
[Crossref] [PubMed]

Lassonde, P.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Lee, R. K.

Légaré, F.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Lei, M.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Leng, Y.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Li, M.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Li, R.

P. Wei, X. Yuan, C. Liu, Z. Zeng, Y. Zheng, J. Jiang, X. Ge, and R. Li, “Enhanced high-order harmonic generation from spatially prepared filamentation in argon,” Opt. Express 23(13), 17229–17236 (2015).
[Crossref] [PubMed]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Li, T.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

Li, W.

Li, Y.

Liang, H.

Liang, X.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Lin, X.

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

Liu, C.

Liu, J.

Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381–6390 (2016).
[Crossref] [PubMed]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Liu, W.

Liu, W. J.

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

Liu, X.

Liu, Y.

Lotti, A.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

Lou, C.

Lu, K.

Lu, X.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Majus, D.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Makarov, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Marom, D. M.

Marsal, N.

Matthews, M.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Méchain, G.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Meier, T.

Méjean, G.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Milián, C.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Mills, M. S.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

Min, J.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Miri, M.-A.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

Mlejnek, M.

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Mokrousova, D. V.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Moloney, J. V.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

Morandotti, R.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

Mourou, G.

Mysyrowicz, A.

Nemirovsky, J.

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

Nie, J.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

Nóbrega, K. Z.

Novak, O.

Panagiotopoulos, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

Pang, L. H.

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

Panov, N. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Papazoglou, D. G.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Park, J.-K.

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

Peccianti, M.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Peng, T.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Peng, X.

Peng, Y.

Petrarca, M.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

Polynkin, P.

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Porras, M. A.

Qian, Y.

Rasmussen, J. J.

Rasmussen, K. Ø.

Razzari, L.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Rethmeier, K.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Rodriguez, M.

Rohwetter, P.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Rotschild, C.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

Rudnick, A.

Ruiz-Jiménez, C.

Salandrino, A.

Salmon, E.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Sauerbrey, R.

Savel’ev, A. B.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

Scalora, M.

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

Schaper, S.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Schmidt, M. R.

Sciamanna, M.

Segev, M.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

Seleznev, L. V.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Sharifi, M.

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Shen, M.

Shim, B.

Shipilo, D. E.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

Shkurinov, A. P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Siviloglou, G. A.

Solyankin, P. M.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Song, X. W.

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

Squier, J.

Stein, G. J.

Stelmaszczyk, K.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Sun, K.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

Sunchugasheva, E. S.

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Théberge, F.

Tsoy, E. N.

I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014).
[Crossref]

Tzortzakis, S.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Uryupina, D. S.

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

Vidal, F.

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Vinçotte, A.

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref] [PubMed]

Wang, L.

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

Y. Hu, J. Nie, K. Sun, J. Bian, X. Dou, and L. Wang, “Generation of periodic filament arrays in air through two-dimensional acousto-optic modulation,” J. Opt. Soc. Am. B 33(10), 2144–2148 (2016).
[Crossref]

Wang, Z.

H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
[Crossref] [PubMed]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Weerawarne, D.

Wei, P.

Weise, B.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Whalen, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Whang, K.-H.

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

Wiersma, N.

Wille, H.

Wolf, J. P.

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Wolf, J.-P.

Wolfersberger, D.

Wöste, L.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Wu, Z.

Xu, J.

Xu, Z.

H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
[Crossref] [PubMed]

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Yan, S.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Yang, Y.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Yao, B.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Yin, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Ying, C.

R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).

Yoon, J.-W.

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

Yu, C.

Yu, G.

Yu, J.

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

Yu, X.

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Yuan, X.

Zeng, B.

Zeng, Z.

Zhang, P.

Zhang, S.

Zhang, X.

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

Zheng, H.

Zheng, Y.

Zhou, G.

X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
[Crossref]

Zhou, M.

Appl. Phys. B (2)

M. Petrarca, S. Henin, N. Berti, M. Matthews, J. Chagas, J. Kasparian, J. P. Wolf, G. Gatti, G. Di Pirro, M. P. Anania, M. Ferrario, and A. Ghigo, “White-light femtosecond Lidar at 100 TW power level,” Appl. Phys. B 114(3), 319–325 (2014).
[Crossref]

N. A. Panov, D. E. Shipilo, V. A. Andreeva, D. S. Uryupina, A. B. Savel’ev, O. G. Kosareva, and S. L. Chin, “Robust near-infrared light bullet in 800-nm femtosecond light filaments in air,” Appl. Phys. B 120(3), 383–387 (2015).
[Crossref]

Appl. Phys. Lett. (1)

R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Méjean, E. Salmon, J. Yu, J. Kasparian, G. Méchain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Wöste, and J. P. Wolf, “Triggering and guiding of megavolt discharges by laser-induced filaments under rain conditions,” Appl. Phys. Lett. 85(23), 5781–5783 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J.-K. Park, J.-W. Yoon, K.-H. Whang, and S.-H. Cho, “Removal of nanoparticles on silicon wafer using a self-channeled plasma filament,” Appl. Phys., A Mater. Sci. Process. 108(2), 269–274 (2012).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

J. Mod. Opt. (1)

Y. Hu, J. Nie, K. Sun, X. Dou, X. Chen, and L. Wang, “Filamentation of femtosecond laser pulses with amplitude modulation of a diffraction-free beam,” J. Mod. Opt. 64, 1–6 (2016).
[Crossref]

J. Opt. (1)

R. Chen and C. Ying, “Beam propagation factor of an Airy beam,” J. Opt. 13(13), 459–462 (2011).

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

O. G. Kosareva, W. Liu, N. A. Panov, J. Bernhardt, Z. Ji, M. Sharifi, R. Li, Z. Xu, J. Liu, Z. Wang, J. Ju, X. Lu, Y. Jiang, Y. Leng, X. Liang, V. P. Kandidov, and S. L. Chin, “Can we reach very high intensity in air with femtosecond PW laser pulses?” Laser Phys. 19(8), 1776–1792 (2009).
[Crossref]

Laser Phys. Lett. (1)

D. E. Shipilo, N. A. Panov, E. S. Sunchugasheva, D. V. Mokrousova, V. A. Andreeva, O. G. Kosareva, L. V. Seleznev, A. B. Savel’ev, A. A. Ionin, and S. L. Chin, “Fusion of regularized femtosecond filaments in air: far field on-axis emission,” Laser Phys. Lett. 13(11), 116005 (2016).
[Crossref]

Nat. Photonics (1)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Nat. Phys. (1)

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long-range interactions between optical solitons,” Nat. Phys. 2(11), 769–774 (2006).
[Crossref]

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004).
[Crossref] [PubMed]

Opt. Eng. (1)

W. J. Liu, X. Lin, L. H. Pang, and X. W. Song, “Multiple refocusing in BK9 glass generated by a loosely focused high-intensity femtosecond pulse,” Opt. Eng. 51(9), 099001 (2012).
[Crossref]

Opt. Express (10)

P. Wei, X. Yuan, C. Liu, Z. Zeng, Y. Zheng, J. Jiang, X. Ge, and R. Li, “Enhanced high-order harmonic generation from spatially prepared filamentation in argon,” Opt. Express 23(13), 17229–17236 (2015).
[Crossref] [PubMed]

Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381–6390 (2016).
[Crossref] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[Crossref] [PubMed]

B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015).
[Crossref] [PubMed]

Y. Qian and S. Zhang, “Quasi-Airy beams along tunable propagation trajectories and directions,” Opt. Express 24(9), 9489–9500 (2016).
[Crossref] [PubMed]

A. Rudnick and D. M. Marom, “Airy-soliton interactions in Kerr media,” Opt. Express 19(25), 25570–25582 (2011).
[Crossref] [PubMed]

M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
[Crossref] [PubMed]

C. Ruiz-Jiménez, K. Z. Nóbrega, and M. A. Porras, “On the dynamics of Airy beams in nonlinear media with nonlinear losses,” Opt. Express 23(7), 8918–8928 (2015).
[Crossref] [PubMed]

M. Shen, W. Li, and R. K. Lee, “Control on the anomalous interactions of Airy beams in nematic liquid crystals,” Opt. Express 24(8), 8501–8511 (2016).
[Crossref] [PubMed]

H. Gao, W. Chu, G. Yu, B. Zeng, J. Zhao, Z. Wang, W. Liu, Y. Cheng, and Z. Xu, “Femtosecond laser filament array generated with step phase plate in air,” Opt. Express 21(4), 4612–4622 (2013).
[Crossref] [PubMed]

Opt. Lett. (12)

W. Liu, F. Théberge, E. Arévalo, J. F. Gravel, A. Becker, and S. L. Chin, “Experiment and simulations on the energy reservoir effect in femtosecond light filaments,” Opt. Lett. 30(19), 2602–2604 (2005).
[Crossref] [PubMed]

R. Driben, V. V. Konotop, and T. Meier, “Coupled Airy breathers,” Opt. Lett. 39(19), 5523–5526 (2014).
[Crossref] [PubMed]

N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, “All-optical interconnects using Airy beams,” Opt. Lett. 39(20), 5997–6000 (2014).
[Crossref] [PubMed]

Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, “Soliton pair generation in the interactions of airy and nonlinear accelerating beams,” Opt. Lett. 38(22), 4585–4588 (2013).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37(14), 2820–2822 (2012).
[Crossref] [PubMed]

J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
[Crossref] [PubMed]

H. Liang, P. Krogen, R. Grynko, O. Novak, C. L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K. H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[Crossref] [PubMed]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35(13), 2260–2262 (2010).
[Crossref] [PubMed]

M. Rodriguez, R. Sauerbrey, H. Wille, L. Wöste, T. Fujii, Y.-B. André, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu, and J.-P. Wolf, “Triggering and guiding megavolt discharges by use of laser-induced ionized filaments,” Opt. Lett. 27(9), 772–774 (2002).
[Crossref] [PubMed]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
[Crossref] [PubMed]

Phys. Lett. A (1)

S. Yan, M. Li, B. Yao, X. Yu, M. Lei, D. Dan, Y. Yang, J. Min, and T. Peng, “Accelerating nondiffracting beams,” Phys. Lett. A 379(12-13), 983–987 (2015).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. A (7)

A. Couairon, H. S. Chakraborty, and M. B. Gaarde, “From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases,” Phys. Rev. A 77(5), 053814 (2008).
[Crossref]

I. M. Allayarov and E. N. Tsoy, “Dynamics of Airy beams in nonlinear media,” Phys. Rev. A 90(2), 023852 (2014).
[Crossref]

A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A 84, 021807 (2011).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

C. Ament, M. Kolesik, J. V. Moloney, and P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86(4), 043842 (2012).
[Crossref]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, and S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86(1), 013842 (2012).
[Crossref]

X. Chu, G. Zhou, and R. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A 85(1), 013815 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036604 (2004).
[Crossref] [PubMed]

B. G. Bale and J. N. Kutz, “Analytic theory of parabolic pulses in dissipative systems with rapidly varying mean-zero dispersion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 046602 (2009).
[Crossref] [PubMed]

S. Champeaux and L. Bergé, “Postionization regimes of femtosecond laser pulses self-channeling in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 046604 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully Vectorial Accelerating Diffraction-Free Helmholtz Beams,” Phys. Rev. Lett. 109(20), 203902 (2012).
[Crossref] [PubMed]

M. Kolesik, J. V. Moloney, and M. Mlejnek, “Unidirectional Optical Pulse Propagation Equation,” Phys. Rev. Lett. 89(28), 283902 (2002).
[Crossref] [PubMed]

N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002).
[Crossref] [PubMed]

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref] [PubMed]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber Accelerating Beams,” Phys. Rev. Lett. 109(19), 193901 (2012).
[Crossref] [PubMed]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref] [PubMed]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes,” Phys. Rev. Lett. 105(25), 253901 (2010).
[Crossref] [PubMed]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González de Alaiza Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116(6), 063902 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley, “Ultrashort laser pulse filamentation with Airy and Bessel beams,” Proc. SPIE 8770, 87701E (2013).
[Crossref]

Sci. Adv. (1)

M. Clerici, Y. Hu, P. Lassonde, C. Milián, A. Couairon, D. N. Christodoulides, Z. Chen, L. Razzari, F. Vidal, F. Légaré, D. Faccio, and R. Morandotti, “Laser-assisted guiding of electric discharges around objects,” Sci. Adv. 1(5), e1400111 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Shen, J. Gao, and L. Ge, “Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media,” Sci. Rep. 5(1), 9814 (2015).
[Crossref] [PubMed]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Other (1)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Illustration of elliptical trajectory associated with MABs; (b) Amplitudes of the MABs in the y direction at z=0(normalized), case 1 to case 3 corresponding to three different semiaxes a=4,2,1mm, respectively.
Fig. 2
Fig. 2 Left column, 2D representations of the filament intensity in transverse plane (x=0,y) as a function of propagation distancez. Top to bottom, cases of MABs with (a) case 1, (b) case 2, (c) case 3 in the y direction as sketched in Fig. 1.
Fig. 3
Fig. 3 Displacements of the main lobes for three cases (left column) and peak intensities for three cases (right column) as a function of propagation distance.
Fig. 4
Fig. 4 The calculated transverse energy flow at different distances of (a) z=10 cm (b) z=20 cm and (c) z=25 cm for the case 2. The arrows indicate the direction of the energy flux while its strength is proportional to arrow lengths and widths. The x=0position is marked the black dashed line.
Fig. 5
Fig. 5 Amplitude of the in-phase and out-of-phase MABs in the y direction. (a) in-phase amplitude modulation, (b) out-of-phase amplitude modulation.
Fig. 6
Fig. 6 Propagations of quasi-solitons formed by filaments in air for two cases. The first row, the in-phase case. The second row, the out-of-phase case. Left column, cross-sectional intensity profiles I( 0,y,z )of the beams. Right column, cross-sectional phase distributions of the beams. The x=0plane is marked by the red dashed line.
Fig. 7
Fig. 7 3D surface plots of plasma strings in cases of (a) in-phase case and (b) out-of-phase case.
Fig. 8
Fig. 8 Beam patterns at different locations along the propagation direction for the in-phase quasi-soliton [(a)-(d)] and out-of-phase quasi-soliton [(e)-(h)].
Fig. 9
Fig. 9 Simulation results of forming light bullet via ring MAB. (a) Schematic diagram of energy evolution process in the linear regime. (b) Schematic diagram of energy evolution process in the nonlinear regime. (c) Peak intensity distribution of ring MAB in the linear regime. (d) Peak intensity distribution of ring MAB in the nonlinear regime.
Fig. 10
Fig. 10 Spatiotemporal evolution of intensity distribution of the filament at six propagation distances. (a)- (f) correspond to the distances at z=0.8,1.0,1.2,1.4,1.6,and1.8m, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ^ ω, k z =i K ω 0 ( ω, k ) E ^ ω, k +i Q ω 0 ( ω )( P ω, k ε 0 + i ω J ω, k ε 0 ).
K ω0 ( ω,k , x k y )= k 2 ( ω ) k x 2 k y 2 .
P( τ,x,y,z )=2 n 0 n 2 ε 0 | E | 2 E.
J( τ,x,y,z )=cσ ε 0 ( 1+i ω 0 τ c )ρE+c n 0 ε 0 β K ( 1 ρ ρ nt ) | E | 2K2 E.
ρ t = β ( K ) K w 0 | E | 2K ( 1 ρ ρ nt )+ σ U i ρ | E | 2 .
d 2 R( ξ ) d ξ 2 =( β2qcosh2ξ )R( ξ ),
d 2 Θ( η ) d η 2 =( β2qcos2η )Θ( η ).
M( ξ,η,z=0 )={ m=0 A mq C e m ( ξ,q )c e m ( η,q )(even) m=0 B mq S e m ( ξ,q )s e m ( η,q )(odd)
M(y,z=0)=exp( αy )H( -y- m 2 2q /k ) ×C e m ( Re( arccosh( i ( y+ m 2 2q /k )/h ) );q ).
E( x,y,z=0,t )= I 0 M(y,z=0)exp( x 2 / r 0 2 )exp( t 2 / t p 2 ).

Metrics