Abstract

We present a simple all-solid-state laser source emitting 2.4 W of single-frequency light at 671 nm for laser cooling of lithium atoms. It is based on a diode-pumped solid-state laser, which is frequency doubled in a ppZnO:LN ridge waveguide with an internal doubling efficiency of 54%. We develop a simple theory for the thermal effects we observed at elevated fundamental powers, and compare the setup to a more efficient but more complex one with an external resonant frequency doubling cavity providing 5.2 W at 671 nm.

© 2017 Optical Society of America

1. Introduction

In the realm of quantum technology with ultracold atoms, simple, yet high-power, single-frequency laser sources are an indispensable research tool. When it comes to laser cooling of the popular lithium atom, with the necessity of addressing the D-line atomic transitions near 671 nm, one is left with a limited choice of suitable laser sources. One reason is the relatively weak performance of semiconductor lasers at shorter wavelengths in the red part of the visible spectrum. Such semiconductor tapered amplifiers deliver a few hundred millwatts of near-resonant light at 671 nm. Recent developments of similar chips emitting in the infrared range have made Watt-class frequency-doubled sources around 671 nm commercially available [1]. On the other hand, Ti:sapphire lasers optimized for the red part of the spectrum [2] and dye lasers are price-intensive and more cumbersome in handling.

An alternative approach is frequency doubling of infrared solid-state lasers, which offer high output power, excellent spatial mode quality, and intrinsic stability. However, this introduces the need for efficient second harmonic generation in external cavities, which need to be frequency-locked to the fundamental laser, considerably raising the complexity of such setups. Using neodymium-doped orthovanadate (Nd:YVO4) as an active medium, Watt-class output power was demonstrated in our group with a laser system consisting of two cavities: The laser itself, and the resonant external frequency doubler [3]. More recently, the Kaiserslautern group demonstrated an alternative setup using an injection-locked high-power resonator yielding 5.7 W output power [4]. Even though the frequency doubling is established in a single-pass bulk nonlinear crystal, two resonators and the corresponding frequency locking are still necessary for the master laser and the power amplifier. In an effort of simplification, we demonstrated 2.1 W of emission at 671 nm from an intracavity frequency doubling of a similar laser [5], requiring one cavity only. However, this introduced the drawback of nondeterministic frequency tuning. Therefore, it is of great practical interest to simplify the frequency doubling process, without compromising the lasers’s key characteristics of stability, tunability and output power.

In contrast to free-propagation schemes, guiding of optical fields has the intrinsic advantage of small mode field diameters along the guiding structure. This allows one to increase the effects of interactions between external fields, and fields provided by the medium by a large amount. Therefore, a large number of waveguide-based devices have been developed and commercialized, reaching from passive optical fibers to fiber lasers, from waveguide EOMs to waveguide-based nonlinear-optics modules, most popular in the form of waveguide frequency doublers and mixers. Excellent performance has been demonstrated with the latter, ranging from very high nonlinear conversion efficiencies at low or intermediate power levels to frequency and phase stability down to state-of-the-art metrology levels [6].

In this article, we present a simple one-cavity, waveguide-frequency-doubled laser system. It operates in the vicinity of the lithium D-line resonances. Starting from a single-frequency output power of 6.6 W at 1342 nm, we obtain 2.4 W of 671 nm output using a custom-made ridge-waveguide frequency doubling module, corresponding to an internal doubling efficiency of 54%. While offering largely sufficient output powers for running an ultracold atom experiment, the light source does not require frequency locking for free-running operation, and standard frequency locking procedures can readily be implemented on the infrared source [3]. At elevated power levels, we observe thermal effects in the doubling waveguide, which we can fully explain by a simple theory that we present. It allows us to extract one- and two-photon absorption coefficients from our experimental data. Our system compares favourably to a two-cavity setup similar to the one presented in [3], for which the available 671 nm output power has now been increased to 5.2 W.

This article is organized as follows: In section 2, we describe the fundamental laser source. In section 3 we present the waveguide setup and characterization, and in section 4 we present a simple theory model for simulating the thermal effects we observe at elevated power levels. In section 5 we compare the waveguide doubling scheme to a conventional resonant frequency doubler, and we conclude in section 6.

2. Fundamental laser setup and characteristics

The fundamental light source we use throughout this article is a modified version of the laser presented in [3]. The following improvements have been implemented in order to minimize and compensate for thermal effects inside the laser gain medium:

  • Firstly, as in [5], we use pump light at 888 nm instead of 808 nm. This lowers the quantum defect per lasing cycle of the active ions by 15%, thus reducing the heat load deposited in the laser crystal at a given pump power [7]. In addition the lower absorption coefficient at 888 nm allows to spread the thermal load over a longer crystal and a larger pump volume, therefore reducing the heat density and minimizing stress and thermal lensing in the gain medium. Moreover, this pump wavelength has the advantage that the absorption in Nd:YVO4 is nearly independent on the pump light polarization at this wavelength, and hence efficient pumping is possible even by employing the partly polarized pump light derived from fiber-coupled diodes.
  • Secondly, the flat pump coupling mirror was replaced by a convex meniscus mirror in order to compensate for the thermal lens of the Nd:YVO4 crystal. Its radius of curvature of rc = 500 mm was chosen in accordance with the measured focal length of f = 170 mm of the thermal lens under lasing conditions [8,9].

Figure 1 shows the experimental setup of the optimized oscillator operating at 1342 nm. The 888 nm output of the temperature-stabilized fiber-coupled QPC BrightLase Ultra-50 diode stack (NA = 0.22, 400 μm fiber core diameter, output spectrum FWHM: 2.2 nm), emitting up to 42.6 W at 888 nm, is focused by two lenses (f1 = 75 mm, f2 = 175 mm) to a top-hat profile of radius wpump = 970 μm inside the laser crystal. The dimensions of the actively cooled Nd:YVO4 crystal (a-cut, anti-reflection coated for 1342 nm and 888 nm) were chosen to be 4 × 4 × 25 mm3 and the ion doping was accordingly adjusted to 0.5 at. %. The cavity consists of three curved mirrors (M1, M3 and M4) and one flat mirror (M2), forming a bow-tie cavity with a free spectral range of νFSR = 320 MHz. The pump coupling mirror M1 is, as mentioned above, a convex meniscus mirror with a radius of curvature of rc = 500 mm and a thickness of 6 mm. Its concave backside has the same radius of curvature of 500 mm so that the pump beam passing through this mirror is not altered by any lensing effect (zero lens mirror). M3 and M4 are concave mirrors with a radius of curvature of 100 mm and 150 mm, respectively. M1, M3 and M4 are highly reflective coated for 1342 nm, and M1 is furthermore transmitting at 888 nm. The optimal transmittance of the output coupler M2 regarding the maximum output power was found to be 7.5%. Unidirectional operation of the ring laser is enforced by a Faraday rotator consisting of a cylindrical terbium-gallium-garnet crystal (TGG) of 6 mm length placed in a strong permanent magnet [10] in combination with a true-zero-order half-wave plate. Two uncoated infrared fused silica etalons of 500 μm (E1) and 4 mm (E2) thickness, the latter being temperature-stabilized, are used in order to ensure single frequency behavior and wavelength tunability. Further fine tuning of the laser frequency, for the purpose of frequency-locking its second harmonic to the lithium D-line via Doppler-free saturated absorption spectroscopy [3], is established by mounting mirrors M3 and M4 on piezoelectric transducers (PZTs): a slow PZT (M3) displaying large displacement of around 8 μm at maximum voltage of 150 V and a fast PZT (M4) with a displacement of around ±50 nm limited by the ±15 V driver. Using a frequency-locking setup, as described in [3], these PZTs should allow to stabilize the output wavelength, providing a laser linewidth with an upper limit of 1 MHz [5].

 

Fig. 1 Setup of the 1342 nm laser source. Two lenses, L1 and L2, image the output of the pump source, a fiber-coupled diode laser bar (FP), into the Nd:YVO4 gain medium. The ring resonator consist of four mirrors M1−4 in bow-tie configuration, which are all highly reflective at 1342 nm except M2 serving as partly transmitting output coupling mirror. M1 is a convex meniscus in order to compensate for thermal lensing in the pumped crystal. A Faraday rotator (TGG) in combination with a half-wave plate (λ/2) and the biaxial nature of the Nd:YVO4 enforces unidirectional operation. Insertion of two etalons E1−2 allows for single-longitudinal-mode behavior and wavelength tunability.

Download Full Size | PPT Slide | PDF

Figure 2 shows the output power of the laser as a function of the absorbed pump power for an increasing pump power. The lasing threshold is found at an absorbed pump power Pabs = 13.9 W and the power rises linearly above Pabs = 20 W with a slope efficiency of ηsl = dPout/dPabs = 28.1%. A maximum output power of Pout = 6.6 W is reached for an absorbed pump power of Pabs,max = 31.3 W, which is the maximum the pump can deliver. This results in an optical-to-optical conversion efficiency of 16.3%. As can be seen in Fig. 2, the fundamental output power is not limited by thermal roll-off. Therefore, with more available pump power, we expect to see a further significant increase in single-mode fundamental power. Concerning the long-term stability of the laser output power, we have not found any signs of output power degradation during the course of the measurements presented in this article. The beam quality parameter of the IR output beam is determined through a caustic measurement and results in a value of M2 ≤ 1.2. By changing the tilt of etalon E1 and the temperature of etalon E2 the emission wavelength of the laser can be tuned. Even though the full emission spectrum of the infrared laser has not been taken systematically, a comparison with the tuning behavior of similar IR sources, as presented in [5,11], yields a perfect qualitative agreement with these former findings. In particular, the emission spectrum is centered around 1342.2 nm and has a total width of around 1.2 nm. Moreover, it is smooth except for three narrow dips at 1341.8 nm, 1342.1 nm and 1342.7 nm, which can be accounted for by absorption of water molecules in the laser cavity. The wavelength range corresponding to the lithium D-line resonances (1341.9 − 1342.0 nm) is well in between the two first dips, and the emitted power is close to the absolute maximum.

 

Fig. 2 Single-frequency laser output power of the laser (dots) as a function of the absorbed pump power. The setup is optimized for the maximal absorbed pump power Pabs,max = 31.3 W resulting in a maximum output power of Pout = 6.6 W. The oscillation threshold is found at Pabs = 13.9 W. A linear fit (red line) for Pabs > 20 W yields a slope efficiency of ηsl = 28.1% in the high-power regime.

Download Full Size | PPT Slide | PDF

3. Waveguide second-harmonic generation

The nonlinear device applied for second harmonic generation (SHG) in this experiment is a wavelength conversion module from NTT Electronics (WH-0671-000-A-B-C) that is described in detail in [12, 13]. It contains a ridge waveguide whose core consists of periodically poled 7.5 % ZnO-doped LiNbO3 (ppZnO:LN) and has a nearly quadratic cross section of 14.8 × 14.2 μm2 and a length of L = 10 mm. The core material is attached to a LiTaO3 (LT) cladding layer with a thickness of 32 μm by using a direct bonding technique during the manufacturing process. LT was chosen as substrate material due to its lower refractive index compared to ppZnO:LN, thus improving the optical confinement of the guided modes. Furthermore both materials feature similar lattice constants and thermal expansion coefficients and therefore allow direct bonding [14]. The chosen poling period of 13.2 μm for the core material provides quasi-phase-matching (QPM) for SHG at a fundamental wavelength of 1342 nm and at a waveguide temperature of approximately 49°C. It is temperature-stabilized using a built-in NTC thermistor and thermoelectric cooling element together with a commercial regulator circuit. The entire module is mounted on a passive heat sink and enclosed in a metal housing. The temperature of the waveguide crystal can therefore be stabilized to better than ±0.1°C. The use of a ridge waveguide has some advantages compared to other waveguide designs whose fabrication is based on proton exchanged or indiffusion techniques [15]. In particular it allows higher optical confinement while avoiding substitution of lithium ions in the crystalline structure which is at the origin of additional optical losses.

The experimental setup for frequency doubling is schematically presented in Fig. 3. The waveguide module is fiber-pigtailed on the input side and includes collimating and focussing lenses ensuring efficient coupling between the fiber and the waveguide. Mode matching between the laser output and the polarization-maintaining single-mode input fiber of the waveguide is accomplished using a set of lenses. Two spherical lenses collimate the laser output beam and reduce its diameter to 1.2 mm, whereas an aspheric collimation lens (fcoll = 6.24 mm) couples the IR light into the input fiber. A half-wave plate in front of the collimation lens is used to adjust the polarization of the IR light parallel to the axis of the PM fiber corresponding to a vertical polarization of the light injected into the waveguide. The output light after the waveguide is collimated by a lens and passes through an AR-coated window (Edmund Optics P/N 47837) before exiting the waveguide module. We separate the residual fundamental radiation from the second-harmonic with a dichroic beamsplitter set featuring a total transmission of 98.0% and 93.1% for the SH and IR light, respectively.

 

Fig. 3 Schematic view of the frequency doubling setup. Shown are the IR laser cavity and the wavelength conversion module. The pump diode output is focused in the Nd:YVO4 laser crystal inside the laser cavity, which also contains a Faraday rotator and a λ/2-waveplate for unidirectional oscillation and two etalons for frequency selection. The wavelength conversion module includes a ppZnO:LN nonlinear waveguide for second-harmonic generation.

Download Full Size | PPT Slide | PDF

Due to the compact design of the waveguide module and the fact that the fiber output as well as Lens1 and Lens2 are fixed in position, it is not possible to directly measure the individual coupling efficiencies of the fundamental light to the fiber and the waveguide. Nevertheless, the overall coupling efficiency to the fiber and through the ppZnO:LN crystal waveguide can be measured by comparing the IR light power before and after the module without SHG. For this purpose, the crystal mount temperature is set to 20°C which is sufficiently far detuned from the QPM temperature for the SHG process. Alternatively, the transmission at the extraordinary polarization can be directly determined by measuring the transmission at the ordinary polarization since both can safely be considered equal for our particular waveguide design. Taking into account the optical losses for the fundamental wavelength at the optical elements on the output of the waveguide module, the coupling efficiency is determined to be 78%. This value remains constant over the full available input power range.

Subsequently, the phase-matching curve of the waveguide was investigated by tuning the crystal mount temperature and monitoring the variation in SH power. Two tuning curves for different fundamental powers are presented in Fig. 4. The fundamental power injected into the input fiber is tuned by means of a λ/2-waveplate and a polarizer at the output of the IR laser source. For a relatively low fundamental power of 1.07 W, the curve matches very well the theoretical sinc2 distribution, which was first derived in [16], and the maximum SH power of 0.2 W is reached at a crystal mount temperature of 48.9°C. The measured curve is symmetric and has an acceptance width (FWHM) of ΔT = 5.4°C. At elevated fundamental power levels, light absorption effects heat the waveguide and modify the phase-matching curve. This results in a shift of the conversion peak by 2.5°C down to 46.4°C for the maximum fundamental power of 4.4 W and the corresponding SH power of 2.4 W. To the best of our knowledge, this is the highest single-frequency output power reached with a waveguide device. The “internal” doubling efficiency, i.e. the doubling efficiency for fundamental light coupled into the single-mode input fiber, amounts to 54%. The shape of the main peak becomes slightly asymmetric and its height is lowered with respect to the sidelobes. The acceptance width is in this case only marginally reduced to ΔT = 4.8°C. The observed reduction in the temperature acceptance width for higher fundamental powers can be explained by inhomogeneous heating along the waveguide core due to several light absorption mechanisms of different order. In general, these local temperature inhomogeneities tend to reduce the global temperature range for which efficient QPM can be achieved over the full length of the waveguide. Since the shape at low conversion efficiency, i.e. far from the central peak, and especially the zero-efficiency positions do not change, we attribute the observed thermal effects mainly to absorption of either the second-harmonic light, or to second-harmonic induced fundamental absorption. We note that even at the highest power levels present in the course of this article, thermal effects did not cause power instabilities or other types of output power limitations in our setup.

 

Fig. 4 SH power as a function of the waveguide mount temperature Tmount at the fundamental power Pω = 1.07 W and Pω = 4.44 W coupled to the waveguide. Shown are the measured data points and the simulation results of our fitted model (dashed lines).

Download Full Size | PPT Slide | PDF

Figure 5 presents the adjusted crystal mount temperature maximizing the SH output power for a series of different fundamental power values. As we have already stated, the maximum SH power in the limit of low Pω is reached for 48.9°C. While increasing fundamental power, the crystal mount temperature has to be gradually reduced and reaches its minimum value of 46.4°C at the maximum available power of 4.4 W.

 

Fig. 5 Optimal crystal mount temperature Tmount,opt during SHG process in dependence of the fundamental power Pω coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω in order to maximize the corresponding SH power.

Download Full Size | PPT Slide | PDF

The SH output power characteristics of the waveguide were measured as a function of the coupled fundamental power, as shown in Fig. 6. At high powers, the crystal mount temperature had to be adjusted at each value of Pω in order to maximize the conversion, as discussed above. For small fundamental powers up to 0.4 W, the experimental results are well fit by a parabola with a conversion efficiency of 18.4 %/W. For elevated fundamental power, significant depletion of the fundamental wave sets in, and the data points can be very well fit by the coupled waves theory presented in [17]. Fitting the well known lossless solution ηwg = tanh2 [(η0PωL2)1/2] to our experimental data, with L = 10 mm being the length of the waveguide, yields the normalized efficiency η0 = 19.9 %/Wcm2. We thus observe SH output power characteristics that correspond to the expected theoretical models for both low and high fundamental powers, as well as a similar conversion efficiency in both regimes. This underscores the very uncritical behavior of the SHG process even at the high powers we apply, requiring only a small readjustment of the phase matching temperature.

 

Fig. 6 SH power output (a) and conversion efficiency (b) versus fundamental power coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω as presented in Fig. 5.

Download Full Size | PPT Slide | PDF

Furthermore, no indications of long-term degradation in terms of output mode and power have been observed during the course of these measurements. This is in accordance with the optical damage threshold of 100 MW/cm2 due to gray tracking which was reported for doubling of 1064 nm light in Zn:LiNbO3 [18], since the intensities inside our waveguide remain well below 10 MW/cm2 even for the highest applied fundamental powers.

In principle, the waveguide size permits the guiding of higher-order modes at both the fundamental and SH wavelength. However, during production the coupling of the fundamental light to the fundamental mode is optimized. Figure 7 presents a caustic measurement of the SH beam quality parameter which yields a value of M2 ≤ 1.1 at the output of the ridge waveguide, showing negligible coupling to higher-order modes. Moreover, the beam profile does not show any signs of ellipticity or astigmatism. The improved beam quality of the outgoing SH light compared to the incoming fundamental light can be attributed to the mode-cleaning effect of the single-mode input fiber of the waveguide, which is mainly injecting the fundamental waveguide mode for efficient SHG, as well as the waveguide design which is appropriately optimized for providing a fundamental mode with Gaussian profile for both wavelengths.

 

Fig. 7 Caustic measurement of the SH output beam for the maximum fundamental power Pω = 4.44 W coupled to the waveguide and optimal QPM temperature T = 46.4°C. The fits yield values compatible with M2 ≤ 1.1. The beam profile does not show any signs of ellipticity or astigmatism.

Download Full Size | PPT Slide | PDF

4. Theoretical model

We applied a simplified version of the theoretical model presented in [19] in order to simulate the SHG process and to describe quantitatively the influence of optical absorption on the phase-matching curve. In the following, the subscript index j denotes either the IR light for j = 1 or the SH light for j = 2. The chosen coordinate system agrees with the crystallographic axes of the nonlinear crystal, see Fig. 8. The x axis corresponds to the light propagation direction along the horizontal ridge waveguide axis, whereas the y axis denotes the other horizontal direction which is perpendicular to both the light propagation direction and the crystal optical axis c. The z axis is therefore chosen to be the vertical direction parallel to the crystal optical axis c.

 

Fig. 8 Schematic view of the periodically poled ridge waveguide illustrating the chosen coordinate system for the theoretical model. The x axis denotes the light propagation direction along the horizontal ridge waveguide axis. The y axis is chosen to be the other horizontal direction perpendicular to the light propagation direction and the crystal optical axis c. The z axis corresponds to the vertical direction parallel to the crystal optical axis c.

Download Full Size | PPT Slide | PDF

We define the scalar value of the electric field amplitude according to [20] as Aj = (2Pj/Seffnj0c0)1/2, where nj is the refractive index, c0 is the vacuum speed of light and 0 is the permittivity of free space. Seff denotes the effective overlap area of the electric field distributions Ej (y, z) of the fundamental TM modes of the waveguide [21]:

Seff=(dydz|E1(y,z)|2)2(dydz|E2(y,z)|2)|dydzE1(y,z)2E2*(y,z)|2,
which is calculated with an open source mode solver software [22]. The fundamental mode of the waveguide features a quasi-Gaussian profile and a mode field diameter of 11.82 ×11.12 μm2 at 1342 nm and 10.20 × 9.92 μm2 at 671 nm. The mode overlap is therefore η = 98.3% and the effective overlap area between these two modes is calculated to be Seff = 51.06 μm2. The scalar value of the electric field amplitude Aj is calculated by solving a system of coupled wave-equations that was derived in [16] and applied for waveguide simulation in [19]:
dA0dx=ΔkQPM(2σ1A2σ2A12A2)cos(A0)
dA1dx=σ1A1A2sin(A0)12(α1+δSHIFAA24)A1
dA2dx=σ2A12sin(A0)12(α2+δ2Ph.A22)A2
with A0 = 2ϕ1ϕ2 + ΔkQPM, σ1 = ω1deff/c0n1, σ2 = ω1deff/c0n2, where deff = 2/π · d33 is the effective nonlinear coefficient, ωj is the wave frequency with ω2 = 2ω1, ϕj is the electric field phase, αj is the linear absorption coefficient, δSHIFA = αSHIFA(n20c0/2)2 and αSHIFA is the second-harmonic-induced infrared absorption (SHIFA) coefficient [23, 24], δ2Ph. = β2Ph.n20c0/2 and β2Ph. is the two-photon absorption coefficient for the second-harmonic light [25]. We assume the linear losses in the ridge waveguide to equal the linear optical absorption, since the propagation loss, deriving for example from scattering due to surface or bulk imperfections, could not be measured independently from linear absorption losses with our experimental setup. We therefore neglect the propagation loss contributions in our model.

The phase mismatch parameter is defined as

ΔkQPM(T)=2β1(T)β2(T)+2πΛ(T)
with Λ(T) the poling period, βj (T) = Nj (T)ωj/c0 the waveguide fundamental mode propagation constant and Nj (T) the effective refractive index calculated with the effective index approximation [26]. This calculation uses the temperature dependent Sellmeier equations from [27] for the extraordinary refractive index nj of 5% MgO-doped congruent ppLN, since they provide the best characterization of our nonlinear material. In particular, the equations reported in the referenced publication result in the closest match to our experimental data for the low-power phase-matching curve in Fig. 4, when compared to other publications that study the temperature and wavelength dependence of the refractive indices for different forms and doping of lithium niobate. All of these parameters depend on the temperature T which may vary along the propagation axis x due to heat generation resulting from optical absorption. Note that we do not account for any inhomogeneity of the ridge waveguide height zR, which is justified by the observation of a temperature dependent phase matching curve that matches the theoretical sinc2 distribution very well at low intensities, see Fig. 4.

The effect of the optical absorption on the temperature distribution along the waveguide axis x is estimated by assuming a one-dimensional, steady-state heat diffusion model [28], represented by a corresponding differential equation for the crystal temperature of the form

k2z2T(z)=q˙(z)
with boundary conditions corresponding to our waveguide design
T(z=0)=Tmount
zT(z=zH)=0
where k = 5 W/K.m is the thermal conductivity of the LiTaO3 cladding layer [29] which is assumed to dominate the thermal conductivity of the entire waveguide structure, z is the vertical coordinate parallel to the crystal optical axis and zH = 46.2 μm is the height of the entire waveguide structure including the core and the cladding layer.

We define the heat source as a boxcar function restricted to the ridge of the waveguide with height zR = 14.2μm

q˙(z)={q˙RforzHzR<z<zH0otherwise.
Applying the Green’s function ansatz [30], the differential Eq. (6) can be solved for every position x along the propagation axis, and the temperature in the center of the ridge waveguide
T(x,zHzR2)=q˙R(x)k[zHzR58zR2]+Tmount
is assumed to be approximately the temperature T(x) of the entire ridge waveguide. This result is applied in the system of coupled Eqs. (2)(5). The heat source density depends on the IR and SH intensities and is defined by [25]
q˙R(x)=(α1+αSHIFAI22)I1+(α2+β2Ph.I2)I2,
where Ij=(njc00/2)Aj2 is the light intensity.

Since the presented system of differential equations has, to our knowledge, no analytical solution, it is solved by numerical simulation. In order to reproduce our experimental data concerning the shift of the optimal waveguide mount temperature with increasing fundamental power, as well as the conversion efficiency of the waveguide, we have to adapt the material dependent optical coefficients of our model by applying least-squares fitting procedures to its numerical solution. In particular, the values of the nonlinear optical coefficient d33 and the poling period Λ need to be set to 12.7 pm/V and 13.48 μm, respectively. The derived value for the nonlinear optical coefficient d33 is therefore lower than the literature value of 19.5 pm/V for SHG of 1313 nm light in congruent undoped LiNbO3 [31]. Also the linear optical absorption coefficients α1 and α2 are found to have relatively low values of 8.7 × 10−4 cm−1 and 6.0 × 10−4 cm−1, respectively, compared to the literature values of 2 × 10−3 cm−1 for 1064 nm in LN [32] and 5 × 10−3 cm−1 for 671 nm in MgO:LN [33]. These discrepancies might be explained by several reasons. Firstly, our one-dimensional heat diffusion model does not comprise the heat propagation along the waveguide axis x, leading to an overestimation of the local rise in temperature inside the waveguide core due to optical absorption. This results in a systematic underestimation of the linear optical absorption coefficients, meaning that our model rather provides lower bounds for the actual values of these coefficients. Secondly, this underestimation of the linear optical absorption together with the neglect of other linear propagation losses has as a consequence the overestimation of the SHG efficiency in our model, which leads to a systematic underestimation of the nonlinear optical coefficient d33 when fitting the model to the experimental data. Thirdly, it was shown by [33] that the linear optical absorption coefficient of LiNbO3 significantly depends on the doping of the material. However, to our best knowledge, no experimental data has yet been published concerning the absorption properties of ZnO-doped LiNbO3, meaning that the actual absorption coefficients might possibly be lower for ZnO:ppLN than the values found in literature.

Additionally the two-photon absorption coefficient β2Ph. of 4.6 × 10−9 cm/W has to be applied, corresponding well to the literature value of 5 × 10−9 cm/W for 532 nm [25, 32]. In our case the intensity dependent SHIFA coefficient αSHIFA [23] does not need to be taken into account in order to reproduce the experimental results. We attribute this to the fact that the intensities inside our waveguide remain well below 10 MW/cm2 even for the highest applied fundamental powers. The results of our simulation, assuming these parameter settings, are presented in Figs. 4 and 5 together with the experimental data points. Excellent agreement between our model and the measurements is observed.

5. Comparison to SHG in an enhancement cavity

An alternative method for efficient frequency doubling of infrared lasers is to use periodically-poled nonlinear crystals in an external enhancement cavity. Even though this approach is technically more complex than waveguide doubling, due to the requirement of a second cavity with frequency locking, we expect higher efficiencies than with the waveguide conversion module.

The doubling cavity setup has a similar design as the ones presented in [3, 34] and is illustrated in Fig. 9. As for the laser, a four-mirror folded ring-cavity is employed. The fundamental light is coupled through the plane mirror M′1 with reflectivity Rc = 90% optimizing the cavity impedance matching. All other mirrors are highly reflective at 1342 nm and M′4 has a transmission near 95% at 671 nm. M′2 (M′3) is attached to a fast (slow) piezoelectric transducers, allowing to act on the cavity length in the 50 nm (8μm) range for the purpose of frequency-locking the cavity to the incoming fundamental light, as described in [3]. M′3 and M′4 are concave with a radius of curvature rc = 150 mm and rc = 100 mm, respectively. Their distance M′3–M′4 is 156 mm. As nonlinear medium, a periodically-poled KTP bulk crystal (ppKTP) was chosen because of its high nonlinear coefficient d33 = 16.9 pm/V [35] and its elevated damage threshold which is higher than for LN. The crystal is placed between M′3–M′4 in the corresponding focus with waist w0 ≃ 79 μm. The relatively large waist inside the crystal was chosen in order to reduce intensity-related detrimental effects such as two-photon and second-harmonic-induced absorption [36] and gray-tracking [37]. Mode matching between the laser output and the cavity is accomplished using a set of spherical lenses, yielding a mode coupling efficiency of 95%. The frequency doubled light is transmitted through M′4 and collimated to a 1/e2 beam radius of 1.2 mm.

 

Fig. 9 Scheme of the doubling cavity setup comprising the four mirrors M′1−4 and the ppKTP nonlinear crystal. The light is coupled to the Gaussian cavity eigenmode using lenses L′1,2, whereas L′3 collimates the SH output. The crystal mount is depicted sectioned to improve visibility and the IR (SH) beam is illustrated in blue (red). The distance M′3–M′4 is 156 mm.

Download Full Size | PPT Slide | PDF

After frequency-locking the cavity to the IR laser, the SH power P2ω was measured as a function of the intra-cavity IR power Pω, see Fig. 10(a). As expected, the conversion shows quadratic behavior and fitting yields a single-pass conversion efficiency of ηsp = 0.22 %/W. The SH output power follows a variation of the intra-cavity fundamental power without observable hysteresis. Moreover, no long-term degradation was observed, indicating the absence of gray-tracking, even for the highest reachable fundamental powers in our setup. The maximal SH output power P2ω = 5.2 W is reached for a IR power of Pin = 5.9 W, corresponding to a doubling efficiency of ηconv = 87%, as can be seen in Fig. 10(b). The SH light at 671 nm derived from this source has already been successfully applied for implementing a new sub-Doppler laser cooling scheme for lithium atoms requiring Watt-class laser power, as described in [38].

 

Fig. 10 Measurement of the cavity doubling efficiency, where points are measured data and lines are fits. (a) The second harmonic output power as a function of the fundamental intra-cavity power. As expected a quadratic function can be fitted to the conversion. (b) The cavity conversion efficiency as a function of the fundamental input power.

Download Full Size | PPT Slide | PDF

In the following, theoretical arguments are provided which justify this higher doubling efficiency of the enhancement cavity approach compared to the single-pass waveguide setup described in section 3 and 4. In the context of second harmonic interaction of an electromagnetic wave passing through an optically nonlinear medium, the resulting conversion is in general a second harmonic output power P2ω which, under the assumption of weak depletion of the fundamental light, obeys a quadratic dependence on the fundamental power Pω,

P2ω=ηSHGPω2,
where ηSHG is the conversion efficiency. For the particular case of second harmonic interaction of a focused Gaussian beam, the following expression for ηSHG can be derived [39],
ηSHG=2ω3deff3Lπε0c04nωn2ωh(α,β),
with deff being the effective nonlinear coefficient of the material for a specific polarization, nω and n2ω the corresponding refractive indices of the material, L the length of the nonlinear material, ε0 the vacuum permittivity and c0 the vacuum speed of light. The function h(α, β) can be expressed as
h(α,β)=14α|ααeiβτ1+iτdτ|2,
where the focusing parameter α = L/2zR depends on the Gaussian beam Rayleigh length zR which can be shown to be equal for both waves. The phase-matching parameter for a periodically poled sample with poling period Λ
β=β(T)=4πzRλ(nω(T)n2ω(T))2πzR/Λ(T),
with λ being the fundamental vacuum wavelength, depends on the temperature. Entering values for the usual parameters of nonlinear media into these formulas yields doubling efficiencies ηSHG on the order of %/W, meaning that for the available continuous laser power of several Watts, single pass doubling by focusing a beam into a crystal cannot be considered as an efficient option. Therefore other approaches need to be employed. A first solution is the significant increase of the interaction length inside a waveguiding structure, see section 3 and 4. The second technique, presented in this section, consists in the resonant enhancement of the fundamental power inside a cavity. Taking into account the nonlinear conversion process, the fundamental-mode intra-cavity power Pω at cavity resonance of the TEM00 mode is a solution of
Pω=(1Rcα1)η00Pin(1Rc(1αtot)(1ηSHGPω))2,
where Pin is the fundamental pump power incident on the coupling mirror M′1, η00 is the coupling efficiency to the the TEM00 mode, α1 is the transmission loss of M′1 and αtot is the total passive round-trip loss of the cavity excluding the coupler transmission Rc and nonlinear conversion. The single-pass doubling efficiency ηSHG is calculated according to Eq. (13) with deff = 2/π · 16.9 pm/V for ppKTP according to [35] and h(α) as given by the cavity design. The solution is calculated analytically using a computer algebra system, resulting in an expression which is not indicated here due to its length of several pages. The second-harmonic output power is then simply calculated according to Eq. (12), and we can define the actual cavity doubling efficiency as
ηcav=P2ωPin=ηSHGPω2Pin.
The computational results are plotted in Fig. 11. Assuming αtot = αcr = 1% and α1 = 0, the solution of Eq. (16) yields an optimal SH power output of 5.3 W at the maximum available pump power of Pin = 5.9 W. This optimal conversion is achieved for a coupling mirror reflectivity of Rc = 83%, yielding a total conversion efficiency of ηcav = 90%. For the chosen Rc = 90% coupler we would expect satisfying results over a large power range up to the maximum available pump power, where a conversion efficiency of ηcav = 84% should be achieved, this theoretical prediction being close to the measured maximum conversion efficiency of ηconv = 87%.

 

Fig. 11 Calculations for the cavity conversion efficiency. (a) The SH output power as a function of the fundamental input power for different values of the coupler reflectivity. Shown are the three experimentally available couplers, the curve for optimal Rc,opt(Pin) and, as a reference, the power of the fundamental light coupled to the TEM00 mode (1 − α1)η00Pin. (b) Cavity doubling efficiencies for the same coupler reflectivity values as before.

Download Full Size | PPT Slide | PDF

This result underlines the advantage of using resonant enhancement cavities for nonlinear bulk media with low single-pass conversion efficiency, since this technique allows to increase the overall conversion efficiency tremendously. Nevertheless, its implementation is technically more demanding than a single-pass approach, as appropriate locking schemes are required which furthermore introduce additional sources of noise and instability. This technical complication justifies the interest in single-pass waveguide schemes for wavelength conversion with high efficiency, since this approach implies a major simplification of SHG setups.

6. Conclusions

In conclusion, we have presented a simplified laser source, emitting record-level 2.4 W of output power from a waveguide SHG unit at 671 nm, with an internal doubling efficiency of 54%. It is based on a fundamental solid state laser emitting 6.6 W at 1342 nm. In spite of the elevated power levels, thermal effects are well described by the simple theory presented here, and well under control in the experiment. We do not observe evidence of second-harmonic induced fundamental light absorption. In our current setup, the output power is only limited by the available fundamental power. Furthermore, from a resonant SHG scheme, we obtain 5.2 W of output power at 671 nm with, however, an increased complexity of the setup.

Funding

This work has been supported by the Région Ile de France (DIM IFRAF/NanoK) and the European Union (ERC Grants FERLODIM and ThermoDynaMix).

Acknowledgment

The authors acknowledge Dr. Yoshiki Nishida from NTT Electronics for fruitful technical and scientific discussions.

References and links

1. U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

2. M Squared Lasers (personal communication, 2016).

3. U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012). [CrossRef]  

4. P. Koch, F. Ruebel, J. Bartschke, and J.A. L’huillier, “5.7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17.2 W injection-locked 1342 nm Nd: YVO 4 ring laser using periodically poled MgO: LiNbO3,” Appl. Opt. 54(33), 9954–9959 (2015). [CrossRef]  

5. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013). [CrossRef]   [PubMed]  

6. F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

7. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006). [CrossRef]   [PubMed]  

8. D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988). [CrossRef]  

9. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009). [CrossRef]  

10. G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011). [CrossRef]   [PubMed]  

11. U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).

12. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003). [CrossRef]  

13. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef]   [PubMed]  

14. Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).

15. O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016). [CrossRef]  

16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]  

17. K. Parameswaran, J. Kurz, R. Roussev, and M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002). [CrossRef]  

18. T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

19. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012). [CrossRef]  

20. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8(4), 797–804 (1991). [CrossRef]  

21. F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988). [CrossRef]  

22. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]  

23. R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

24. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001). [CrossRef]  

25. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005). [CrossRef]  

26. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

27. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008). [CrossRef]  

28. J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984). [CrossRef]  

29. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

30. K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

31. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]  

32. V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997). [CrossRef]  

33. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010). [CrossRef]  

34. E. Mimoun, L. De Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nmlight with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008). [CrossRef]  

35. M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001). [CrossRef]  

36. V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997). [CrossRef]  

37. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999). [CrossRef]  

38. F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015). [CrossRef]  

39. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.
  2. M Squared Lasers (personal communication, 2016).
  3. U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
    [Crossref]
  4. P. Koch, F. Ruebel, J. Bartschke, and J.A. L’huillier, “5.7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17.2 W injection-locked 1342 nm Nd: YVO 4 ring laser using periodically poled MgO: LiNbO3,” Appl. Opt. 54(33), 9954–9959 (2015).
    [Crossref]
  5. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
    [Crossref] [PubMed]
  6. F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.
  7. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
    [Crossref] [PubMed]
  8. D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
    [Crossref]
  9. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
    [Crossref]
  10. G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
    [Crossref] [PubMed]
  11. U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).
  12. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
    [Crossref]
  13. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  14. Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).
  15. O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
    [Crossref]
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [Crossref]
  17. K. Parameswaran, J. Kurz, R. Roussev, and M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [Crossref]
  18. T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).
  19. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
    [Crossref]
  20. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8(4), 797–804 (1991).
    [Crossref]
  21. F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
    [Crossref]
  22. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  23. R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.
  24. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  25. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [Crossref]
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  27. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  28. J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
    [Crossref]
  29. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  30. K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).
  31. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [Crossref]
  32. V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
    [Crossref]
  33. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
    [Crossref]
  34. E. Mimoun, L. De Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nmlight with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
    [Crossref]
  35. M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
    [Crossref]
  36. V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
    [Crossref]
  37. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
    [Crossref]
  38. F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
    [Crossref]
  39. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
    [Crossref]

2016 (1)

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

2015 (2)

P. Koch, F. Ruebel, J. Bartschke, and J.A. L’huillier, “5.7 W cw single-frequency laser at 671 nm by single-pass second harmonic generation of a 17.2 W injection-locked 1342 nm Nd: YVO 4 ring laser using periodically poled MgO: LiNbO3,” Appl. Opt. 54(33), 9954–9959 (2015).
[Crossref]

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

2013 (1)

2012 (2)

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

2011 (1)

2010 (1)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

2009 (2)

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

2008 (3)

2006 (1)

2005 (1)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

2003 (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

2002 (1)

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

1999 (1)

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

1997 (2)

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[Crossref]

1991 (2)

S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B 8(4), 797–804 (1991).
[Crossref]

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

1988 (2)

F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
[Crossref]

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

1966 (1)

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Alibart, O.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Arvidsson, G.

Ashkin, A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Asobe, M.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Bader, U.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Bartschke, J.

Batchko, R. G.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Beck, J. V.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Bergschneider, A.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Borsutzky, A.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Boyd, G. D.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Buse, K.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Byer, R. L.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Canalias, C.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Cannon, J. R.

J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
[Crossref]

Chevy, F.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Cole, K. D.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Cugat, O.

D ’Auria, V.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Dalibard, J.

De Micheli, M.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

De Sarlo, L.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Doutre, F.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Eismann, U.

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).

Enderlein, M.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Erbert, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Falk, M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Fallahkhair, A. B.

Fejer, M.

Fejer, M. M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Fernandes, D. R.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Feve, J. P.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gerbier, F.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

E. Mimoun, L. De Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nmlight with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
[Crossref]

Gurzadjan, G. G.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Güther, R.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Haji-Sheikh, A.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Hänsch, T. W.

Hellstrom, J.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Helmfrid, S.

Hong, F.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Ito, R.

Jedrzejczyk, D.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Jundt, D. H.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Kaenders, W.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Kaiser, F.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Kajiyama, M. C. C.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Karlsson, H.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Keller, F.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Khaykovich, L.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Kitamoto, A.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Kleinman, D. A.

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Knappe, R.

Koch, P.

Kondo, T.

Kretzschmar, N.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

Kurimura, S.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Kurz, J.

L’huillier, J.A.

Labonté, L.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Laurell, F.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

F. Laurell and G. Arvidsson, “Frequency doubling in Ti:MgO:LiNbO3 channel waveguides,” J. Opt. Soc. Am. B 5(2), 292–299 (1988).
[Crossref]

Lenhardt, F.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Li, K. S.

Litkouhi, B.

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Lunghi, T.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mangir, M.S.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Maslov, V.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

McDonagh, L.

Menaert, B.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Mikhailov, V.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Miller, G. D.

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

Mimoun, E.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Murphy, T. E.

Nebel, A.

Nikogosjan, D. N.

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

Nikogosyan, D.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nishida, Y.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
[Crossref] [PubMed]

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Nishikawa, T.

Nittmann, M.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Onae, A.

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Opalevs, D.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Ozawa, A.

Parameswaran, K.

Parker, C. V.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Paschke, K.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Pasiskevicius, V.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Peltz, M.

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

Picholle, E.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Rabinovic, M.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Rockwell, D.A.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Rohde, F.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

Roussev, R.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Rubinina, N. M.

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Ruebel, F.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Salomon, C.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Scholz, M.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Schwesyg, J. R.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Shaunin, O.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Shcherbakov, I.

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Shirane, M.

Shoji, I.

Sievers, F.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9102 (2013).
[Crossref] [PubMed]

Simeonidis, K.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Squared Lasers, M

M Squared Lasers (personal communication, 2016).

Stuhler, J.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

Suchet, D.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Sumida, D.S.

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

Tanzilli, S.

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Tränkle, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

Trénec, G.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
[Crossref] [PubMed]

Vigué, J.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

G. Trénec, W. Volondat, O. Cugat, and J. Vigué, “Permanent magnets for faraday rotators inspired by the design of the magic sphere,” Appl. Opt. 50, 4788–4797 (2011).
[Crossref] [PubMed]

Volk, T. R.

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Volondat, W.

Wallenstein, R.

L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
[Crossref] [PubMed]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Wu, S.

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Yasuda, M.

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

Yoshiki Nishida, Dr.

Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Zondy, J.

Zukauskas, A.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (6)

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold-atom experiments with lithium,” Appl. Phys. B 106, 25–36 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J.A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803 (2009).
[Crossref]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

M. Peltz, U. Bader, A. Borsutzky, R. Wallenstein, J. Hellstrom, H. Karlsson, V. Pasiskevicius, and F. Laurell, “Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA,” Appl. Phys. B 73, 663 (2001).
[Crossref]

Appl. Phys. Lett. (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[Crossref]

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39(7), 609–610 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

D.S. Sumida, D.A. Rockwell, and M.S. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985 (1988).
[Crossref]

B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35(3), 281–286 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

O. Alibart, V. D ’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[Crossref]

D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev. 145(1), 338–379 (1966).
[Crossref]

Phys. Rev. A (1)

F. Sievers, N. Kretzschmar, D. R. Fernandes, D. Suchet, M. Rabinovic, S. Wu, C. V. Parker, L. Khaykovich, C. Salomon, and F. Chevy, “Simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K on the D1 line: Theory and experiment,” Phys. Rev. A 91(2), 023426 (2015).
[Crossref]

Quant. Electron. (1)

V. Mikhailov, O. Shaunin, I. Shcherbakov, and V. Maslov, “Nonlinear absorption in KTP crystals,” Quant. Electron. 27(4), 356–359 (1997).
[Crossref]

Sov. Phys. Solid State (1)

T. R. Volk and N. M. Rubinina, “Nonphotorefractive impurities in lithium niobate: magnesium and zinc,” Sov. Phys. Solid State 33, 674–680 (1991).

Other (11)

Dr. Yoshiki Nishida from NTT Electronics (personal communication, 2014–2017).

U. Eismann, “A novel all-solid-state laser source for lithium atoms and three-body recombination in the unitary Bose gas”, Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, http://tel.archives-ouvertes.fr/tel-00702865/ (2012).

F. Hong, M. Yasuda, and A. Onae, “A Light Source for the 1S0-3P0 Optical Clock Transition in Ytterbium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMF4.

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTu5A.65.

M Squared Lasers (personal communication, 2016).

V. G. Dmitriev, G. G. Gurzadjan, and D. N. Nikogosjan, Handbook of Nonlinear Crystals, 2nd ed. (Springer, 1997).
[Crossref]

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” in Conference on Lasers and Electro-Optics, D. Scifres and A. Weiner, eds., (Optical Society of America, 1998), paper CTuD6.

J. R. Cannon, The One-Dimensional Heat Equation (Cambridge University, 1984).
[Crossref]

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Setup of the 1342 nm laser source. Two lenses, L1 and L2, image the output of the pump source, a fiber-coupled diode laser bar (FP), into the Nd:YVO4 gain medium. The ring resonator consist of four mirrors M1−4 in bow-tie configuration, which are all highly reflective at 1342 nm except M2 serving as partly transmitting output coupling mirror. M1 is a convex meniscus in order to compensate for thermal lensing in the pumped crystal. A Faraday rotator (TGG) in combination with a half-wave plate (λ/2) and the biaxial nature of the Nd:YVO4 enforces unidirectional operation. Insertion of two etalons E1−2 allows for single-longitudinal-mode behavior and wavelength tunability.
Fig. 2
Fig. 2 Single-frequency laser output power of the laser (dots) as a function of the absorbed pump power. The setup is optimized for the maximal absorbed pump power Pabs,max = 31.3 W resulting in a maximum output power of Pout = 6.6 W. The oscillation threshold is found at Pabs = 13.9 W. A linear fit (red line) for Pabs > 20 W yields a slope efficiency of ηsl = 28.1% in the high-power regime.
Fig. 3
Fig. 3 Schematic view of the frequency doubling setup. Shown are the IR laser cavity and the wavelength conversion module. The pump diode output is focused in the Nd:YVO4 laser crystal inside the laser cavity, which also contains a Faraday rotator and a λ/2-waveplate for unidirectional oscillation and two etalons for frequency selection. The wavelength conversion module includes a ppZnO:LN nonlinear waveguide for second-harmonic generation.
Fig. 4
Fig. 4 SH power as a function of the waveguide mount temperature Tmount at the fundamental power Pω = 1.07 W and Pω = 4.44 W coupled to the waveguide. Shown are the measured data points and the simulation results of our fitted model (dashed lines).
Fig. 5
Fig. 5 Optimal crystal mount temperature Tmount,opt during SHG process in dependence of the fundamental power Pω coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω in order to maximize the corresponding SH power.
Fig. 6
Fig. 6 SH power output (a) and conversion efficiency (b) versus fundamental power coupled to the waveguide. The crystal mount temperature is adjusted for every value of Pω as presented in Fig. 5.
Fig. 7
Fig. 7 Caustic measurement of the SH output beam for the maximum fundamental power Pω = 4.44 W coupled to the waveguide and optimal QPM temperature T = 46.4°C. The fits yield values compatible with M2 ≤ 1.1. The beam profile does not show any signs of ellipticity or astigmatism.
Fig. 8
Fig. 8 Schematic view of the periodically poled ridge waveguide illustrating the chosen coordinate system for the theoretical model. The x axis denotes the light propagation direction along the horizontal ridge waveguide axis. The y axis is chosen to be the other horizontal direction perpendicular to the light propagation direction and the crystal optical axis c. The z axis corresponds to the vertical direction parallel to the crystal optical axis c.
Fig. 9
Fig. 9 Scheme of the doubling cavity setup comprising the four mirrors M′1−4 and the ppKTP nonlinear crystal. The light is coupled to the Gaussian cavity eigenmode using lenses L′1,2, whereas L′3 collimates the SH output. The crystal mount is depicted sectioned to improve visibility and the IR (SH) beam is illustrated in blue (red). The distance M′3–M′4 is 156 mm.
Fig. 10
Fig. 10 Measurement of the cavity doubling efficiency, where points are measured data and lines are fits. (a) The second harmonic output power as a function of the fundamental intra-cavity power. As expected a quadratic function can be fitted to the conversion. (b) The cavity conversion efficiency as a function of the fundamental input power.
Fig. 11
Fig. 11 Calculations for the cavity conversion efficiency. (a) The SH output power as a function of the fundamental input power for different values of the coupler reflectivity. Shown are the three experimentally available couplers, the curve for optimal Rc,opt(Pin) and, as a reference, the power of the fundamental light coupled to the TEM00 mode (1 − α1)η00Pin. (b) Cavity doubling efficiencies for the same coupler reflectivity values as before.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S eff = ( dydz | E 1 ( y , z ) | 2 ) 2 ( dydz | E 2 ( y , z ) | 2 ) | dydz E 1 ( y , z ) 2 E 2 * ( y , z ) | 2 ,
dA 0 dx = Δ k QPM ( 2 σ 1 A 2 σ 2 A 1 2 A 2 ) cos ( A 0 )
dA 1 dx = σ 1 A 1 A 2 sin ( A 0 ) 1 2 ( α 1 + δ SHIFA A 2 4 ) A 1
dA 2 dx = σ 2 A 1 2 sin ( A 0 ) 1 2 ( α 2 + δ 2 Ph . A 2 2 ) A 2
Δ k QPM ( T ) = 2 β 1 ( T ) β 2 ( T ) + 2 π Λ ( T )
k 2 z 2 T ( z ) = q ˙ ( z )
T ( z = 0 ) = T mount
z T ( z = z H ) = 0
q ˙ ( z ) = { q ˙ R for z H z R < z < z H 0 otherwise .
T ( x , z H z R 2 ) = q ˙ R ( x ) k [ z H z R 5 8 z R 2 ] + T mount
q ˙ R ( x ) = ( α 1 + α SHIFA I 2 2 ) I 1 + ( α 2 + β 2 Ph . I 2 ) I 2 ,
P 2 ω = η SHG P ω 2 ,
η SHG = 2 ω 3 d eff 3 L π ε 0 c 0 4 n ω n 2 ω h ( α , β ) ,
h ( α , β ) = 1 4 α | α α e i β τ 1 + i τ d τ | 2 ,
β = β ( T ) = 4 π z R λ ( n ω ( T ) n 2 ω ( T ) ) 2 π z R / Λ ( T ) ,
P ω = ( 1 R c α 1 ) η 00 P in ( 1 R c ( 1 α tot ) ( 1 η SHG P ω ) ) 2 ,
η cav = P 2 ω P in = η SHG P ω 2 P in .

Metrics