Abstract

Broad-band and high-efficiency polarization converter is an imperative component in communication systems, but its functionality often clashes with the constraint of materials. Herein we theoretically and numerically demonstrate that a broad-band and high-efficiency 90° polarization rotator around 1550 nm can be realized using an ultrathin and geometry-optimized composite structure. Based on simulation results, the reflection efficiency and operation bandwidth is up to ≈80% and ≈300 nm, respectively, for the 90° polarization rotator. With similar concept, we also demonstrate a quarter-wave plate with an efficiency of 94% and bandwidth of 110 nm. The electric filed distribution indicates that the conversion behaviors are caused by the strong magnetic coupling in the designed composite structure. Furthermore, the polarization ellipticity properties are investigated to further understand the broad-band effect of the proposed polarization convertors.

© 2017 Optical Society of America

1. Introduction

The functionality to control the polarization state of electromagnetic (EM) wave is highly required in modern optics since it provides high degree of freedom for manipulating EM wave and expanding optical communications devices. Conventional wave retarders are usually produced by birefringent materials, such as calcite, which can induce a phase difference between two orthogonal axes in consideration of their different refractive indexes for optical transmission. This approach generally requires optical distance long enough to accumulate phase difference, which means the conventional wave retarders are normally bulky in size and inapplicable for advanced applications which require miniaturized optical elements. In addition, the operating wavelength of the conventional wave retarders is inherently narrow bandwidth due to the constraint of material, which also restrains the development of modern optical devices. For these reasons, metamaterial, a kind of ultrathin artificial subwavelength material, has been extensively investigated and successfully employed to tailor the basic characteristics of EM wave [1–7] including phase [8], intensity [9], and polarization [3]. In this development process, numbers of new physical phenomena, such as plasmon-induced-transparency [10], cloaking [11], and negative refractive index [12,13] have been explored in compact, integrated, and multiband designs.

To achieve new-type polarization convertors, a tremendous amount of plasmonic metamaterials [14–17] have been proposed and demonstrated to manipulate the polarization of light. For example, an ultrathin 90° polarization rotator has been realized by bilayered metallic wire pairs, expressing relative high-efficiency and giant optical activity [18]. Yang et al. proposed a planiform plasmonic quarter-wave plate using a periodic array of symmetrical L-shaped antennas [19]. Various possible polarizations (linear, elliptic, and circular) conversions [20,21] have also been realized recently in compact metamaterials, using metallic-graphene resonators [22], L-shaped periodic array supercell [23], and anisotropic metamaterial plate [24]. In some very recent studies [25,26], vector vortex beam has been obtained by periodic array units which can induce discontinuous phase distribution. However, the modulation efficiencies of these convertors are intrinsically unpersuasive since the physical principle of them is the arising of cross-polarization component. In addition, the operating bandwidth is still narrow due to the limitation of material dispersion.

In this paper, we theoretically and numerically demonstrate that broad-band and high-efficiency 90° polarization rotator and quarter-wave plate around optical communication wavelength of 1550 nm can be realized using ultrathin and geometry optimized composite metamaterials. The polarization characteristics of the reflected wave can be manipulated by adjusting the geometrical parameters, enabling artful tailoring of the amplitudes and phases along two orthogonal axes. A high-efficiency (≈80%) and broad-band (≈300 nm) 90° polarization rotator is realized in the wavelength range from 1400 to 1700 nm by rotating the direction of incident electric vector 90 degrees. The resonance modes of 90° polarization rotator are illustrated by investigating the surface electric distributions. Moreover, by focusing on phase modulation, a high-efficiency (≈94%) and broad-band (≈110 nm) quarter-wave plate is also generated in the wavelength range from 1535 to 1645 nm. Furthermore, the ellipticity property and polarization rotation are investigated to further understand the broad-band effect of the proposed polarization convertors. The results of the proposed polarization converters appear to hold the promise for polarization conversion devices and communication systems.

2. Structure and methods

Figure 1(a) depicts the schematic diagram of the design which consists of a proposed metal metasurface, a dielectric layer (n2, Z2), and an ideally conducting silver plane (n3, Z3). Here ni and Zi (i = 1, 2, 3) are the effective refractive index and wave impedance, respectively. Experimental data measured by Johnson and Christy [27] are employed as the frequency-dependent effective permittivity of metal (silver), and the effective refractive index of dielectric (n2) is considered as 1.9 for guaranteeing the target wavelength (1550 nm). Figure 1(b) shows a unit cell of the proposed design with periods Px = Py = 900 nm, and the unit cell of metal metasurface consists of an inner nanocube, an outer ring resonator, and a nanostrip with the symmetrical axis's orientation angle of 45°. The width of both the outer ring and nanostrip is w = 100 nm, and the thickness of all compositions of the metasurface is t1 = 300 nm. The other parameters are l2 = 700 nm, t2 = 410 nm, t3 = 300 nm.

 figure: Fig. 1

Fig. 1 (a) The schematic diagram of the proposed design. (b) A unit cell of this design.

Download Full Size | PPT Slide | PDF

Let us model the proposed metamaterial as regular arrays of small particles which can be described by dipole effective polarizability tensor αeff, defined as αeff=(α1C)1=(αxxeffαxyeffαyxeffαyyeff). Here α is the electric polarizability tensor and C is interaction dyadic. According to the local-field approach and dipole approximation [28], the dipole moment of a unit cell is excited by the incident light and the radiation field of the other dipoles in the design. Following the transmission-line model [29,30], the boundary conditions for the metasurfaces can be written as

z^×(E1E2)=0,z^×(H1H2)=Ks,
with
Ks=iωαeffPxPy(z^×E1).
Herein z^and Ksis the unit vector in z direction and induced surface current, respectively. Eiand Hi are the electric field, magnetic field, respectively, in the upon (air, i = 1) and bottom (dielectric, i = 2) side of proposed metasurface. A normal plane wave is carried as active light source propagating along z direction [Fig. 1(b)], the reflection coefficients can be expressed as
rij=[1i(Z1+Z2)PxPyωZ1Z2αijeff](Z2Z3)Z2Z3e2ik0n2t21i(Z1Z2)PxPyωZ1Z2αijeff[1i(Z1Z2)PxPyωZ1Z2αijeff](Z2Z3)Z2Z3e2ik0n2t21i(Z1+Z2)PxPyωZ1Z2αijeff(i,j=x,y).
We conclude that the radiation (including intensity |rij| and phase φij) reflected through the design can be manipulated with l1 [Fig. 1(b)] by considering other parameters are fixed for guaranteeing the target wavelength (around 1550 nm). The 90° polarization rotator [see the y-pol. in Fig. 1(a)] can be obtained when the light intensity is absolutely rotated to the cross direction (|rij|=1 and |rii|=0), in which we can ignore their phase relation. If |rij|=|rii| and their phase difference Δφ=φjφi=nπ/2, the quarter-wave plate can be realized [see the cir-pol. in Fig. 1(a)]. In order to prove the above statement, finite-difference time-domain (FDTD) method is employed to explore the EM performance of the design. The boundary conditions in both x and y directions were set as periodic boundary conditions, and the perfectly matched players were considered in z direction. An override 5 nm mesh around the structures was used and 10−6 was set as the auto-shutoff minimum. The far-field reflectivity and phase shift were explored to research the polarization states of reflected light, and the near electric field distributions were calculated to demonstrate the resonance modes of the proposed convertors.

3. Results and discussions

3.1 Broad-band and high-efficiency 90° polarization rotator

In our work, an x polarized plane wave [see the x-pol. in Fig. 1(a)] is considered to normally irradiate the proposed design. Firstly, the l1 is assumed as 300 nm. In this situation, the linear reflectivities Ryx and Rxx (Rij=|rij|2) are calculated and depicted in Fig. 2(a). It can be found that the cross-polarization reflectivity Ryx is larger than the co-polarization reflectivity Rxx from 1370 to 1720 nm. There are three resonance peaks for cross-polarization reflectivity at λ1 = 1415 nm, λ2 = 1550 nm, and λ3 = 1679 nm, and the values of which are almost equal to 90%. In addition, from 1400 to 1700 nm, the cross-polarization reflectivity Ryx is more than 75%, while the co-polarization reflectivity Rxx is lower than 20%. It illustrates that the co-polarization power is suppressed in the reflected light, while the cross-polarization power is connived at above wavelength range. In other words, the power of x polarized plane wave is converted to y polarized light after being reflected by the proposed design. For more preciseness, the calculated phase difference Δφ=φyxφxx is also shown in Fig. 2(a). It can be obviously seen that the Δφ is nearly equal to 0° at 1550 nm, which means a strict 90° polarization rotator. Alongside 1550 nm, the Δφ is ±90° from 1400 to 1700 nm, which is an essential condition for realizing a quarter-wave plate. Then we can only define it as the pseudo 90° polarization rotator at this wavelength range. To better understand this 90° polarization rotator, the polarization conversion ratio (PCR), defined as PCR=Ryx/(Ryx+Rxx), is illustrated in Fig. 2(a). It is obvious that the PCR can reach close to unity at 1378, 1415, 1550, and 1679 nm. But, it should be noted that the cross-polarization reflectivity Ryx=42% at 1378 nm, which is undesirable for application. Fascinatingly, the PCR is always above 0.8 in the range from 1400 to 1700 nm, which clearly means the 90° polarization rotation effect and further illustrates the functionality of broad-band and high-efficiency.

 figure: Fig. 2

Fig. 2 (a) The co-polarization Rxx, cross-polarization Ryx reflectivity, the phase differenceΔφ between φyx and φxx, and the (PCR) for the proposed 90° polarization rotator. (b) The calculated ellipticity angle ζ and PRA χ.

Download Full Size | PPT Slide | PDF

To further understand the broad-band characteristic of this rotator, the ellipticity angle ζ and polarization rotation angle (PRA) χ are calculated by the results of Eq. (3) and defined as [31,32]:

ζ=0.5arcsin(2|rxx||ryx|sin(Δφ)|rxx|2+|ryx|2),χ=0.5arctan(2|rxx||ryx|cos(Δφ)|rxx|2|ryx|2).
From Fig. 2(b), we can know that the value of ellipticity angle ζ, described the polarization state of reflected light, is always near 0° at the wavelength range from 1400 to 1700 nm [1,31], which indicates the reflected light is always the linearly polarized light. The χ denotes the angle between the major axis of polarization plane and x-axis. It can be found that χ is nearly 90° when 1400 < λ < 1550, while α+90° when 1550 ≤ λ < 1700. In this broad-band range, thus, the major axis of polarization plane has been rotated to ±y direction respect to the incident direction. In summary, the x linearly polarized light has been converted to y linearly polarized light after being reflected by the proposed design around above wavelength range.

To gain insight into the EM resonance modes of this proposed 90° polarization rotator, we demonstrate the electric field |E|, real Ez of the upper surface of metasurface, and real Ez of the bottom surface of metasurface distributions corresponding to the three cross-polarization reflectivity maxima (λ1, λ2, and λ3) and λ4 = 1750 nm in Fig. (3). For 1415 nm, the electric field distribution is principally focused on the bottom-left corner of inner nanocube and the bottom-left and upper-right corners of outer ring resonator [see Fig. 3(a1)]. Thus, the charge should accumulate at the corresponding corners (along the direction of the electric field). As shown in Fig. 3(b1), it is obvious that the positive charge mainly locates at the bottom-left corners of nanocube and ring resonator, and the negative charge mainly locates at the upper-right corner of ring resonator in considering the electroconductibility of nanostrip. These electric dipole resonance patterns can forcefully couple with its own electric resonance images [Fig. 3(c1)], and the antiparallel current flow on the metasurface can be produced. As a result, a strong magnetic resonance can be generated from the combined action of the antiparallel current flow, in which the x component of the magnetic field can induce an electric field radiation along y direction [17,33]. Thus, the power of incident light can be partially converted to y direction by reflecting. Similar results exist when the incident wavelengths are 1550 and 1679 nm [see Fig. 3(a2)-3(c2) and Fig. 3(a3)-3(c3)]. Actually, the broad-band effect of this proposed rotator originates from the superposition of these three resonance eigenwavelengths. The electric field distributions for 1750 nm are also calculated and depicted in Fig. 3(a4)-3(c4), respectively, for comparison. It is clear that electric field distribution is principally focused on the both sides of the outer ring resonator, and the opposite charges mainly locate at both sides of the ring resonator. Thus, the electric field radiation has no y component for reflected light [17], which means the polarization plane has not rotated and it is in good agreement with the results of Fig. 2(a).

 figure: Fig. 3

Fig. 3 Distributions of the electric field |E|(a1a4), real Ez(b1b4) for the upper surface of metasurface, and real Ez(c1c4) for the bottom surface of metasurface at wavelength of 1415 nm (a1, b1, and c1), 1550 nm (a2, b2, and c2), 1679 nm (a3, b3, and c3), and 1750 nm (a4, b4, and c4), respectively.

Download Full Size | PPT Slide | PDF

3.2 Broad-band and high-efficiency quarter-wave plate

The Δφ=nπ/2 is an essential condition for realizing a quarter-wave, and the another essential condition is Rxx=Ryx. For purposes of these conditions, we optimize the geometrical parameter as l1 = 250 nm. The linear reflectivities Ryx, Rxx, and the phase difference Δφ are calculated and depicted in Fig. 4(a). It can be found that the Δφ is always nearly equal to 270° at the wavelength range from 1450 to 1660 nm. In addition, the cross-polarization reflectivity Ryx is equal to its co-polarization reflectivity Rxx at 1550 and 1636 nm. These results indicate that the reflected light for this optimized design has the equivalent orthogonal amplitudes and a 270° phase difference at these two wavelengths, meaning that the quarter-wave plate has been obtained with high reflected intensity I=Ryx+Rxx=0.94. What is more, when the value of Ryx/Rxx for reflected wave is within the range 0.65-1.37 [see the shadowed region in Fig. 4(a)], the functionality as a quarter-wave plate is still acceptable. Furthermore, the ellipticity η and ellipticity angle ζ are calculated and depicted in Fig. 4(b). It can be seen obviously that the ζ is near 45° at the wavelength range from 1535 to 1645 nm, indicating the reflected wave is a circularly polarized light. And the calculated η, standing for the ratio between the minor axis and major axis, is more than 0.8 around above wavelength range. These results further validate that the linearly polarized light has been converted to circularly polarized light after being reflected by the proposed design. It is worth noting that the performance of the rotation effect will be significantly influenced by the geometrical parameters of the unit cell structure according with Eq. (3).

 figure: Fig. 4

Fig. 4 (a) The co-polarization Rxx, cross-polarization Ryx reflectivity, the phase difference Δφ between φyx and φxx for the proposed quarter-wave plate. (b) The calculated ellipticity η and ellipticity angle ζ.

Download Full Size | PPT Slide | PDF

4. Conclusion

In conclusion, a 3D ultrathin design consisting of a proposed metasurface, a dielectric substrate, and an ideally conducting silver plane has been theoretically and numerically demonstrated for polarizer applications. The polarization characteristics of radiation wave after being reflected by the design can be manipulated by adjusting the geometrical parameters which can artfully tailor the polarizability of design. A 90° polarization rotator with an efficiency of 80% and bandwidth of 300 nm has been obtained in the wavelength range from 1400 to 1700 nm. And the resonance modes of 90° polarization rotator were illustrated by investigating the surface electric distributions. In addition, a quarter-wave plate with an efficiency of 94% and bandwidth of 110 nm has also been generated in the wavelength range from 1535 to 1645 nm. The ellipticity property and polarization rotation have been investigated to further understand the broad-band behavior of the proposed polarization convertors. The results of the proposed polarization converter appear to hold promise for polarization conversion devices and communication systems.

Funding

National Natural Science Foundation of China (NSFC) (Grant Nos, 61505052, 61176116, 11074069)

References and links

1. K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013). [CrossRef]   [PubMed]  

2. Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013). [CrossRef]  

3. L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014). [CrossRef]   [PubMed]  

4. S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014). [CrossRef]  

5. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]   [PubMed]  

6. J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017). [CrossRef]  

7. H.Y. Meng, L.L. Wang, X. Zhai, G.D. Liu, and S.X. Xia, “A Simple design of a dulti-dand terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap,” Plasmonics, online.

8. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). [CrossRef]   [PubMed]  

9. B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016). [CrossRef]  

10. X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016). [CrossRef]  

11. B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014). [CrossRef]  

12. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011). [CrossRef]  

13. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011). [CrossRef]  

14. J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016). [CrossRef]  

15. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013). [CrossRef]  

16. R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013). [CrossRef]  

17. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014). [CrossRef]  

18. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010). [CrossRef]  

19. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013). [CrossRef]   [PubMed]  

20. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013). [CrossRef]   [PubMed]  

21. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015). [CrossRef]  

22. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016). [CrossRef]  

23. W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015). [CrossRef]  

24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007). [CrossRef]   [PubMed]  

25. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016). [CrossRef]  

26. M. Chen, J. Cai, W. Sun, L. Chang, and X. Xiao, “High-efficiency all-dielectric metasurfaces for broadband polarization conversion,” Plasmonics, online.

27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

28. P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002). [CrossRef]  

29. Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011). [CrossRef]  

30. A. Pors, S. I. Bozhevolnyi, and S. Careas, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013). [CrossRef]   [PubMed]  

31. J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016). [CrossRef]  

32. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015). [CrossRef]  

33. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010). [CrossRef]  

References

  • View by:

  1. K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
    [Crossref] [PubMed]
  2. Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  3. L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
    [Crossref] [PubMed]
  4. S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
    [Crossref]
  5. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  6. J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
    [Crossref]
  7. H.Y. Meng, L.L. Wang, X. Zhai, G.D. Liu, and S.X. Xia, “A Simple design of a dulti-dand terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap,” Plasmonics, online.
  8. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  9. B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
    [Crossref]
  10. X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
    [Crossref]
  11. B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
    [Crossref]
  12. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
    [Crossref]
  13. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
    [Crossref]
  14. J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
    [Crossref]
  15. H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
    [Crossref]
  16. R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
    [Crossref]
  17. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  18. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  19. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
    [Crossref] [PubMed]
  20. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  21. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
    [Crossref]
  22. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
    [Crossref]
  23. W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
    [Crossref]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  25. F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
    [Crossref]
  26. M. Chen, J. Cai, W. Sun, L. Chang, and X. Xiao, “High-efficiency all-dielectric metasurfaces for broadband polarization conversion,” Plasmonics, online.
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
    [Crossref]
  29. Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
    [Crossref]
  30. A. Pors, S. I. Bozhevolnyi, and S. Careas, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [Crossref] [PubMed]
  31. J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
    [Crossref]
  32. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
    [Crossref]
  33. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [Crossref]

2017 (1)

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

2016 (6)

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

2015 (3)

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

2014 (4)

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
[Crossref] [PubMed]

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

2013 (8)

B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38(5), 679–681 (2013).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

A. Pors, S. I. Bozhevolnyi, and S. Careas, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
[Crossref] [PubMed]

2012 (1)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

2011 (3)

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

2010 (2)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2002 (1)

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Alici, K.-B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Belov, P. A.

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

Bozhevolnyi, S. I.

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Careas, S.

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, S.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Chen, X.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Cheng, H.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Cheng, Y.

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Chiang, Y. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Engheta, N.

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Fu, Q.

Gan, Q.

Gao, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Gerardot, B. D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Guo, Z.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Hu, H.

Hu, Y. H.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Hu, Y.-S.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Huang, W.

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Jiang, S.

Jiang, S. C.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Li, L.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, R.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Li, T.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, X.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Li, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Li, Z.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Liu, G.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Liu, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Ma, G.-B.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Ozbay, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Pang, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Peng, J.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Peng, R.-W.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Pors, A.

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Qin, S.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Rajkumar, R.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Shang, X.

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Shang, X. J.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Song, H.

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Soukoulis, C.-M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Subramanian, V.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Sun, C.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Tang, X. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Tretyakov, S. A.

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

Wang, B.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Wang, G.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Wang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Wang, L.

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

L. Wang, S. Jiang, H. Hu, H. Song, W. Zeng, and Q. Gan, “Artificial birefringent metallic planar structures for terahertz wave polarization manipulation,” Opt. Lett. 39(2), 311–314 (2014).
[Crossref] [PubMed]

Wang, L. L.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Wang, M.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Wang, Q. J.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, S. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, W.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Wang, X.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Wen, D.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Xie, B.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Xin, J.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Xiong, X.

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Xu, Z.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Yang, B.

Yang, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Ye, W. M.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yen, T. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yogesh, N.

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

Yu, P.

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Yu, X.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

Yuan, X.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Yuan, X. D.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yue, F.

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Yue, J.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

Zeng, C.

Zeng, W.

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhai, X.

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

Zhang, A.

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhang, J.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, J.

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Zhao, R.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Zhao, X.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21(6), 7439–7446 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Zheng, L.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

Zhou, J.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S. N.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Zhu, W.

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Z.

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Zhu, Z. H.

ACS Photonics (1)

F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, and X. Chen, “Vector vortex beam generation with a single plasmonic metasurface,” ACS Photonics 3(9), 1558–1563 (2016).
[Crossref]

Appl. Phys. B (1)

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 255 (2016).
[Crossref]

Appl. Phys. Express (2)

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “A simple design of a broadband, polarization-insensitive, and low-conductivity alloy metamaterial absorber,” Appl. Phys. Express 7(8), 082601 (2014).
[Crossref]

J. Peng, Z. Zhu, J. Zhang, X. Yuan, and S. Qin, “Tunable terahertz half wave plate based on hybridization effect in coupled graphene nanodisks,” Appl. Phys. Express 9(5), 055102 (2016).
[Crossref]

Appl. Phys. Lett. (5)

H. Cheng, S. Chen, P. Yu, J. Li, B. Xie, Z. Li, and J. Tian, “Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial,” Appl. Phys. Lett. 103(22), 223102 (2013).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K.-B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C.-M. Soukoulis, “Chiral metamaterials with negative refractive index based on four U split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
[Crossref]

J. Appl. Phys. (2)

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” J. Appl. Phys. 117(4), 044501 (2015).
[Crossref]

R. Rajkumar, N. Yogesh, and V. Subramanian, “Cross polarization converter formed by rotated-arm-square chiral metamaterial,” J. Appl. Phys. 114(22), 224506 (2013).
[Crossref]

J. Electromagn. Waves Appl. (1)

P. A. Belov and S. A. Tretyakov, “Resonant reflection from dipole arrays located very near to conducting planes,” J. Electromagn. Waves Appl. 16(1), 129–143 (2002).
[Crossref]

J. Opt. (1)

W. Wang, Z. Guo, R. Li, J. Zhang, A. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “L-shaped metasurface for both the linear and circular polarization conversions,” J. Opt. 17(6), 065103 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Metamaterials (Amst.) (1)

Y. Zhao, N. Engheta, and A. Alù, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials (Amst.) 5(2-3), 90–96 (2011).
[Crossref]

Nano Lett. (2)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated s-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. C. Jiang, X. Xiong, Y.-S. Hu, Y. H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X 4(2), 021026 (2014).
[Crossref]

Plasmonics (3)

J. Yue, X. J. Shang, X. Zhai, and L. L. Wang, “Numerical investigation of a tunable Fano-like resonance in the hybrid construction between graphene nanoringsand graphene grating,” Plasmonics 12(2), 523–528 (2017).
[Crossref]

B. Wang, G. Wang, and L. Wang, “Design of a novel dual-band terahertz metamaterial absorber,” Plasmonics 11(2), 523–530 (2016).
[Crossref]

X. Shang, X. Zhai, X. Li, L. Wang, B. Wang, and G. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Other (2)

H.Y. Meng, L.L. Wang, X. Zhai, G.D. Liu, and S.X. Xia, “A Simple design of a dulti-dand terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap,” Plasmonics, online.

M. Chen, J. Cai, W. Sun, L. Chang, and X. Xiao, “High-efficiency all-dielectric metasurfaces for broadband polarization conversion,” Plasmonics, online.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic diagram of the proposed design. (b) A unit cell of this design.
Fig. 2
Fig. 2 (a) The co-polarization R xx , cross-polarization R yx reflectivity, the phase difference Δφ between φ yx and φ xx , and the (PCR) for the proposed 90° polarization rotator. (b) The calculated ellipticity angle ζ and PRA χ.
Fig. 3
Fig. 3 Distributions of the electric field | E| ( a 1 a 4 ) , real E z ( b 1 b 4 ) for the upper surface of metasurface, and real E z ( c 1 c 4 ) for the bottom surface of metasurface at wavelength of 1415 nm (a1, b1, and c1), 1550 nm (a2, b2, and c2), 1679 nm (a3, b3, and c3), and 1750 nm (a4, b4, and c4), respectively.
Fig. 4
Fig. 4 (a) The co-polarization R xx , cross-polarization R yx reflectivity, the phase difference Δφ between φ yx and φ xx for the proposed quarter-wave plate. (b) The calculated ellipticity η and ellipticity angle ζ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z ^ ×( E 1 E 2 )=0, z ^ ×( H 1 H 2 )= K s ,
K s = iω α eff P x P y ( z ^ × E 1 ).
r ij = [1i ( Z 1 + Z 2 ) P x P y ω Z 1 Z 2 α ij eff ] ( Z 2 Z 3 ) Z 2 Z 3 e 2i k 0 n 2 t 2 1i ( Z 1 Z 2 ) P x P y ω Z 1 Z 2 α ij eff [1i ( Z 1 Z 2 ) P x P y ω Z 1 Z 2 α ij eff ] ( Z 2 Z 3 ) Z 2 Z 3 e 2i k 0 n 2 t 2 1i ( Z 1 + Z 2 ) P x P y ω Z 1 Z 2 α ij eff (i,j=x,y).
ζ=0.5arcsin( 2| r xx || r yx | sin(Δφ) | r xx | 2 + | r yx | 2 ),χ=0.5arctan( 2| r xx || r yx | cos(Δφ) | r xx | 2 | r yx | 2 ).

Metrics