Abstract

We investigated the frequency noise in the distributed Bragg reflector single-frequency fiber laser (DBR-SFFL) theoretically and experimentally. A complete theoretical analysis is demonstrated by considering the energy-transfer upconversion (ETU) process and establishing linkages between the frequency noise and the relative intensity noise (RIN) of the DBR-SFFL. The experimental results of the diverse DBR-SFFLs in different working conditions are in good agreement with the theoretical analyses. These investigations are beneficial to optimizing frequency noise property to promote the wide application of the DBR-SFFLs. The proposed results can be generally applicable to the short-linear-cavity SFFL with centimeters order of the cavity length.

© 2017 Optical Society of America

1. Introduction

Single-frequency fiber lasers (SFFLs) have become attractive in the past few years, because of compact all-fiber configuration, narrow spectral linewidth, and high beam quality, which make them versatile in the fields of high-precision spectroscopy, coherent beam combining, and as seed lasers for microwave signal [1–5]. However, in some sophisticated applications, such as digital coherent optical communication, high-precision frequency stabilization, and gravitational wave detection, an SFFL with low frequency noise is essential [6–8]. So it is important to investigate the frequency noise mechanism of the SFFL, which can provide guidelines for suppressing the frequency noise to optimize the laser performance.

In recent years, the realization of SFFLs mainly concentrated on the short-linear-cavity structure with centimeters order of the cavity length, which includes two kinds of types: the distributed feedback (DFB) [9] and the distributed Bragg reflector (DBR) [10,11]. The frequency noise researches in DFB fiber laser are developed based on two theories. One is the fundamental thermal fluctuations theory with 1/f spectrum and it is unrelated to the pump mechanism, and the other is self-heating noise theory which is attributed to bulk temperature fluctuations induced by variations in absorbed pump energy and it is the main source of frequency noise in the SFFL with high-doped active fiber or high pump intensity, where the analytical expressions regarding to the frequency noise are presented [12–14]; in contrast, the integrated frequency noise mechanism in the DBR-SFFL is not investigated. However, the application of the fundamental thermal fluctuations theory is limited in the low-doped fiber laser with low pump power [12] and the self-heating noise theory only consider the noise component from the fluctuation of the pump power in the DFB fiber laser, while two other parts of the noise contribution originating from the gain medium mechanism and the cavity loss dispersion mechanism are disregarded [15], which means that there are some deficiencies of the previous theoretical models. Furthermore, the influence of the energy-transfer upconversion (ETU) effect is nonnegligible for the frequency noise of the short-linear-cavity SFFL, especially for that of the DBR-SFFL [16,17].

In this paper, we present a complete theoretical analysis of the frequency noise in the DBR-SFFL focused on the influence of the ETU effect and the relationship of the frequency noise along with the relative intensity noise (RIN) of the DBR-SFFL. In addition, the rationality and accuracy of the theoretical model are verified by the experimental results of the different DBR-SFFLs in various working conditions.

2. Theoretical analyses

2.1 Theoretical model of frequency noise

With respect to the DBR-SFFL, the general heat source function based on a Gaussian function is [18, 19]

Q(z,r,t)=αapηP(t)h(z)|e(r)|2.
where αap is the absorption coefficient of the active fiber at pump wavelength, η is the fractional thermal loading of the absorbed pump light, P(t) is the pump power per unit time, h(z) is the longitudinal distribution of the pump power, |e(r)|2 is the transverse distribution of the pump power, normalized such that
02π0ωpr|e(r)|2drdθ=1.
resulting in
|e(r)|2=2πωp2exp(2r2ωp2).
where ωp is the Gaussian radius of pump light. Assuming that the entire pump light is coupled into the fiber core, ωp is approximate to the radius of the fiber core. By means of the method analogous to the one presented by Foster [12], we get the relationship between temperature fields and pump power as
T(f,z)=Θ(f)P(f)N(z)=P(f)N(z)4π2kt0exp(ωp2k2/4)kk2+2ik12dk.
where N(z) = αapηh(z) is the converted heat longitudinal distribution from the absorbed pump light, kt is the thermal conductivity coefficient of the active fiber, cv is the specific heat capacity per unit volume of the active fiber, f is the Fourier frequency, so that the transfer function Θ(f) is
Θ(f)=exp(iωp2cvf/4kt)8π2ktE1[iωp2cvf/4kt].
where E1[.] is the standard exponential integral function.

The laser frequency fluctuation based on the temperature changes of the laser cavity is given by [12,16]

Δν(f)=νq0lΔT(f,z)dz=νq0lΔ[Θ(f)P(f)N(z)]dz.
where v is the instantaneous frequency of the fiber laser, q is the thermo-optic coefficient of the active fiber, l is the physical length of the active fiber.

And the frequency noise of the fiber laser is expressed as follow:

Sv(f)=v2q2[Θ(f)]2Sp(f)[0lN(z)dz]2=v2q2[Θ(f)]2Pp2RINp(f)[0lN(z)dz]2.
where Sp(f) is the pump intensity noise, Pp is the incident pump power, RINp(f) is the RIN of the pump laser. The total heat transformation of pump energy within the active fiber Ω is represented as

Ω=Pp0lN(z)dz=Pp0lαapηh(z)dz.

The propagation of the pump power along the active fiber is described by the following differential equation

h(z)dz=γh(z).
where γ = ΓpσapNR + αp is the total loss coefficient of pump light including absorption loss and transmission loss, Γp is the power filling factor of the pump power, σap is the absorption cross-section at pump wavelength, NR is the rare earth ions concentration in the active fiber, αp is the transmission losses for pump light. For the longitudinal distribution of pump power in the laser cavity is analytically integrable to yield
h(z)=h(0)exp(γz).
The fractional thermal loading η which is related to the quantum defect between pump and laser photons and the fast non-radiative decay from the excited energy level can be expressed as [18,20,21]:
η=FETU+[1FETU](1λp/λs).
where FETU is the fractional reduction of the population inversion due to the ETU effect, with the form of
FETU=121+[1+4Wτ2Rrp+4Wτ2cσnNa0Φϕ0(1+cστnfcΦϕ0)2]1/2.
where rp≈2αapexp(apl)/(πωp2ηa) is the integral pump distribution, Φ0≈2/(πωp2lc*) is the photon density, R = Ppηa/(hvp) is the pump rate, Φ = 2lc*Pout/(chvT) is the total number of laser photons in the cavity, λp and λs are the wavelengths of the pump light and the signal light, W is a single upconversion parameter, τ is the lifetime of the upper state, σ is the stimulated emission cross section, n is the refractive index of the active fiber, Na0 = faNR is the lower laser population, fc = fa + fb is the total population density, fa is the fraction of the total population density in the lower laser level, fb is the fraction of the total population density in the upper laser level, ηa = 1-exp(-αapl) is the fraction of the pump power absorbed, lc* = nl is the optical path length of the laser cavity, h is the Planck constant, vp and v are the frequencies of the pump and signal light, Pout is the laser output power, T is the transmission of the output coupler.

As a consequence, the total heat transformation Ω can be described as

Ω=αapηPp1γ(1exp(γl)).

Insert Eqs. (8) and (13) into Eq. (7), we obtain the frequency noise expression as

Sv(f)=v2q2[Θ(f)]2[αapηPp1γ(1exp(γl))]2RINp(f).

The presence of RINp(f) in Eq. (14), demonstrating the contribution to frequency noise resulting only from the heat effect, is actually not explicit enough by ignoring some other mechanisms. The latent ingredients causing coupling or correlation between the intensity and frequency fluctuations in DBR-SFFL, acted as non-ignorable components towards frequency noise, include the gain medium mechanism and the cavity loss dispersion mechanism [15]. However, the RIN spectrum of the DBR-SFFL RINFL(f) as a comprehensive characteristic, it includes not only the contribution of RINp(f) but also the other ingredients from the fluctuations in the cavity losses and the spontaneous emission in the active fiber [22,23]. Consequently, we phenomenologically exploit the RIN spectrum of the DBR-SFFL to account for the composite effect aforementioned.

So the modified frequency noise expression of the DBR-SFFL is given by

Sv(f)=v2q2[Θ(f)]2[αapηPp1γ(1exp(γl))]2RINFL(f).
Although the focus of the discussion is on the DBR-SFFL, the theoretical results with appropriate modifications (the calculation of the magnitude orders of the total loss coefficient of pump light γ and the approximate processing of (1-exp(-γl))/γ approaching the length of the active fiber l when l is shorter than 5 cm) are expected to be applicable to the short-linear-cavity SFFL. For convenience, the related parameters utilized in this article are presented in Table 1 [17,18,20,24,25].

Tables Icon

Table 1. The related parameters used in this article

2.2 Simulation results

In order to intuitively illustrate the effect caused by the individual factor, e.g., pump power Pp, active fiber length l and RINFL, only one variant is exploited according to a simulated procedure. By imposing to different pump powers and retaining the identical RINFL = −130 dB/Hz (assumed to be independent with the frequency here), the simulated frequency noise spectral densities of the DBR-SFFL constituted by a 1.7 cm long active fiber are displayed in Fig. 1. In Fig. 1(a), ETU is considered; while with respect to Fig. 1(b), results without the estimation of ETU are also given. Consequently, the simulated frequency noise is found to increase linearly with the enhancement of pump power Pp, which is verified through the good linearity of the total heat transformation function Ω(Pp) as shown in the inset of Fig. 1(a). Remarkably, levels of the frequency noises rise in the whole simulated frequency range (10 Hz~100 kHz), revealing the necessity of the consideration of ETU.

 

Fig. 1 The simulated frequency noise spectra of the DBR-SFFL with a 1.7 cm long active fiber versus different pump powers Pp with ETU (a) and without ETU (b). The inset in (a) is the total heat transformation Ω versus the pump power Pp.

Download Full Size | PPT Slide | PDF

Thanks to the development of high-doped phosphate fiber, the DBR-SFFLs have brought high power output with centimeter-order cavity length [10,11]. Therefore, the lengths of the active fiber are set only several centimeters in the latter simulation and experiment to acquire an effective output power and a stable single-longitudinal-mode operation. Similarly, the simulated frequency noise spectral densities of the DBR-SFFL differing in the lengths of the active fiber l are shown in Fig. 2 for Pp = 200 mW and RINFL = −130 dB/Hz. And the lengths of the active fiber l are set as 1.1, 1.4, 1.7, 2.0, 2.3 cm respectively. As shown, the introduction of ETU varies the tendency of frequency noise towards active fiber length, which is distinct from the prior case. That is, frequency noise without considering ETU increases monotonously, albeit slowly, with the length l; in contrast, frequency noise including ETU decreases firstly and increases subsequently with the length l increasing. It appears that the shift of the trend results from the bowl-shaped depression of the heat conversion coefficient η as exhibited in the inset of Fig. 2(a). It indicates that an optimized length of the active fiber would lead to a better frequency noise performance.

 

Fig. 2 The simulated frequency noise spectra of the DBR-SFFLs pumping by 200 mW versus different lengths of the active fiber l with ETU (a) and without ETU (b). The inset in (a) is the fractional thermal loading η at different lengths of the active fiber l.

Download Full Size | PPT Slide | PDF

According to Eq. (15), it is obvious that RINFL is also influential to the frequency noise spectral density in the DBR-SFFL. Figure 3 reveals the simulated frequency noise spectral density of the DBR-SFFL in the condition of Pp = 200 mW and l = 1.7 cm with different RINFL from −130 to −140 dB/Hz. As it shown, the frequency noise has increased faster and faster along with the raising of RINFL (In the logarithmic scales, it’s seen like a uniform change, while the value has increased more and more quickly). This result is different from that with the increasing of the pump power, which the increasing speed of the FN is constant. As a consequence, the RINFL plays an important role in the frequency noise spectral density in the DBR-SFFL.

 

Fig. 3 The simulated frequency noise spectra of the DBR-SFFL pumping by 200 mW with a 1.7 cm long active fiber with different RINFL with ETU.

Download Full Size | PPT Slide | PDF

3. Experimental verification of the theoretical model

In order to verify the theoretical model, the DBR-SFFL cavities with different lengths of the active fiber l are designed and relevant results of the frequency noise are measured. Figure 4 shows the experimental scheme of the DBR-SFFL and the measurement equipment of the frequency noise. The DBR-SFFL cavity is constructed by two commercially available fiber Bragg grating (FBG) of a polarization-maintaining narrowband FBG (PM-NB-FBG) and a broadband FBG (BB-FBG) on each end of a section highly Er3+/Yb3+-codoped phosphate fiber, respectively. The NB-FBG has a peak reflectivity of 60% and a 3 dB bandwidth of 0.06 nm; while that of the BB-FBG is > 99.95% with a 3 dB bandwidth of 0.35 nm. The physical lengths of the FBGs are both 1.5 cm, and the core diameter and the cladding diameter of the fiber fabricating the laser cavity are 5.4 μm and 125 μm respectively [10]. The composition of the phosphate fiber is 70P2O5-8Al2O3-15BaO-4La2O3-3Nd2O3, and the rare earth ions are doped uniformly in the core region with concentrations of 3.0mol% for Er3+, and 5.0mol% for Yb3+, respectively. The absorption of the phosphate fiber is 7.9 dB/cm @ 980 nm. The cavity is assembled into a copper tube and temperature-controlled through a cooling system with a resolution of 0.05°C to maintain a robust single-longitudinal-mode operation. The laser is backward-pumped by a 980 nm single-mode laser diode via a PM wavelength division multiplexer (PM-WDM). The laser signal is coupled out from the PM-WDM and a subsequent PM isolator. The using of the PM components can acquire a PM single-frequency laser output, and the single-longitudinal-mode operation is verified with a scanning Fabry-Perot interferometer in the experiment all along.

 

Fig. 4 Experimental scheme of the DBR-SFFL and the measurement equipment of the frequency noise.

Download Full Size | PPT Slide | PDF

The frequency noise of the DBR-SFFL is measured by a fiber Michelson interferometer with 100 m optical path difference shielded by an environment shielding box and an optical phase demodulator (OPD-4000) based on phase generated carrier (PGC) technology [26]. A piezoelectric transducer (PZT) is used to keeping the interferometer on quadrature, and the power injected into the interferometer is always adjusted to 0.5 mW by a variable optical attenuator (VOA) behind the laser output port to ensure consistency in the entire measurements. And two Faraday rotating mirrors (FM) are used to eliminate polarization fading effects. The frequency noise data is displayed by an electronic spectrum analyzer (ESA). The measured bandwidth of 25 kHz with the frequency noise is limited by the present measuring method [26]. Meanwhile considering the contribution of RINFL to the frequency noise, we employ an experimental method which is similar to that presented in our previous works [27] to measure the RINFL.

In a SFFL with a typical length l = 1.7 cm, the measured frequency noises against three different pump powers are exhibited in Fig. 5. And the experimental RINFL are measured and given in the inset of Fig. 5(d). It is seen from the inset of Fig. 5 (d) that RINFL is reduced by about 1.5 dB in the frequency range of 1 kHz~25 kHz with the pump boost, indicating that the RINFL is potentially connected with pump power from the practical point of view. Through utilizing the measured RINFL data into the calculating expression of the frequency noise (i.e. Equation (15)), the calculated frequency noise and the measured frequency noise with 169 mW, 225 mW, 279 mW pump power Pp are presented in Fig. 5(a)-5(c) respectively. These results manifest the consistency between the actual measured frequency noise and the calculated results based on the present modified theory. The comprehensively measured frequency noises of this fiber laser with different pump powers Pp are shown in Fig. 5(d). Through comparison, it can be found that the frequency noises rise by only 5 Hz/Hz1/2 in the frequency range from 1 to 5 kHz, which is primarily attributed to the decline of the RINFL in this process. And in the frequency range from 5 to 25 kHz, the difference of the frequency noise has reduced from 5 to 1 Hz/Hz1/2, which is because that the nonlinear transfer effect of the noise fluctuation in the laser cavity [15,23].

 

Fig. 5 The calculated and tested frequency noise spectra of the DBR-SFFL with 1.7 cm long active fiber with the pump power Pp of 169 mW (a), 225 mW (b), 279 mW (c) and the comprehensively tested frequency noise spectrum (d). The inset is the measured RINFL spectrum versus the pump power Pp.

Download Full Size | PPT Slide | PDF

For verifying the effect of the length of the active fiber, the frequency noises of the fiber lasers with different lengths of the active fiber l are measured and calculated at Pp = 225 mW as seen in Fig. 6. Length of the active fiber l is kept shorter than 2.6 cm to ensure a stably single-longitudinal-mode operation and longer than 1.4 cm to acquire an effective output power. Similarly, the RINFL of these fiber lasers is also measured and given in the inset of Fig. 6(f). It can be revealed that the RINFL have experienced first decreased then increased along with the increase of the length of the active fiber l from 1.4 to 2.6 cm. In the condition of l = 2 cm, the RINFL has a minimum value of −135 dB/Hz in the frequency range of 100 Hz~2 kHz and it has continuously reduced to −143 dB/Hz. The RINFL has undergone a total fluctuation range of about 8 dB throughout the experiments. It will dramatically affect the results of the frequency noise from the previous analysis. The calculated and measured frequency noise spectral densities of the fiber laser pumping by 225 mW with different lengths of the active fiber l of 1.4, 1.7, 2.0, 2.3 and 2.6 cm are displayed in Fig. 6(a)-6(e) respectively. These experiments reveal that the calculated noise curves basically agree with the actually measured results by contrasting the five groups of data. And the total measured frequency noises with different length of the active fiber l are demonstrated in more detail in Fig. 6(f). Following the length increasing of the active fiber, the frequency noises are also firstly increased and then decreased. Meanwhile, by reason of the major fluctuation range of RINFL, the variation range of frequency noise is more than 14 Hz/Hz1/2 in the frequency range from 0.25 to 5 kHz and the variation range has generally reduced to 2 Hz/Hz1/2 at 25 kHz. It is worth mentioning that the frequency noise of the fiber laser with l = 2.0 cm is less than 20 Hz/Hz1/2 for the frequencies > 0.25 kHz and less than 10 Hz/Hz1/2 for the frequencies > 5 kHz. It indicates that optimizing the length of active fiber can effectively reduce the frequency noise of this fiber laser to promoting laser property. At the same time, the accuracy of the theoretical model is testified through the two series of experiments with different pump power Pp and different length of the active fiber l.

 

Fig. 6 The calculated and tested frequency noise spectra of the DBR-SFFL pumping by 225 mW with different lengths of the active fiber of 1.4 cm (a), 1.7 cm (b), 2.0 cm (c), 2.3 cm (d), 2.6 cm (e) and the comprehensively tested frequency noise spectrum (f). The inset is the measured RINFL spectrum.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, the frequency noise mechanism of the DBR-SFFL is systematically analyzed by taking into account the influence of the ETU process on the frequency noise. The ETU effect has consumed the absorbed pump photons, decreased the population inversion, and increased the fractional thermal load in the laser medium because of the multi-phonons relaxation process. The whole level of the frequency noise is increased by the existence of the ETU effect through the transformation of the thermal fluctuation. And the ETU effect has changed the tendency of frequency noise towards the length of active fiber l from monotonously increasing to firstly decreasing and subsequently increasing, which indicates that an optimized length of the active fiber leads to a better frequency noise performance. Furthermore, the establishment of the relationship between the frequency noise and the RIN of the DBR-SFFL is a more important cornerstone of the dynamics of the frequency noise. The important significance of the introduction of the DBR-SFFL RINFL(f) is effectively supplement the ingredients of the spontaneous emission, fluctuations in the cavity losses and gain medium contribution. And the experimental measurements have done with two series of different pump powers Pp and different length of the active fiber l, which have verified the rationality and accuracy of the theoretical model. The results have shown that optimizing the length of active fiber l, adjusting the pump power Pp, and reducing the RINFL in laser cavity can effectively reduce the frequency noise of this fiber laser to promoting laser property. And the proposed results can be generally applicable to the short-linear-cavity SFFL.

Funding

National Key Research and Development Program of China (2016YFB0402204), China State 863 Hi-tech Program (2014AA041902), NSFC (11674103, 61535014, 61635004, 51132004, and 51302086), the Fundamental Research Funds for Central Universities (2015ZM091), China National Funds for Distinguished Young Scientists (61325024), Guangdong Natural Science Foundation (2016A030310410), and the Science and Technology Project of Guangdong (2013B090500028, 2014B050505007, 2015B090926010 and 2016B090925004).

References and links

1. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013). [CrossRef]   [PubMed]  

2. R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014). [CrossRef]   [PubMed]  

3. R. Su, P. Zhou, X. Wang, Y. Ma, and X. Xu, “Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers,” Opt. Lett. 37(4), 497–499 (2012). [CrossRef]   [PubMed]  

4. S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013). [CrossRef]  

5. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014). [CrossRef]   [PubMed]  

6. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]  

7. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011). [CrossRef]  

8. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006). [CrossRef]  

9. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004). [CrossRef]   [PubMed]  

10. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010). [CrossRef]   [PubMed]  

11. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011). [CrossRef]   [PubMed]  

12. S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010). [CrossRef]  

13. P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006). [CrossRef]  

14. S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009). [CrossRef]  

15. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001). [CrossRef]  

16. C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, “Frequency noise of high-gain phosphate fiber single-frequency laser,” Laser Phys. 23(4), 045107 (2013). [CrossRef]  

17. T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009). [CrossRef]   [PubMed]  

18. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004). [CrossRef]   [PubMed]  

19. I. Kelson and A. Hardy, “Optimization of strongly pumped fiber lasers,” J. Lightwave Technol. 17(5), 891–897 (1999). [CrossRef]  

20. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+-and Yb3+-Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833–839 (2000). [CrossRef]  

21. C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005). [CrossRef]  

22. S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998). [CrossRef]  

23. W. Yue, Y. Wang, C.-D. Xiong, Z.-Y. Wang, and Q. Qiu, “Intensity noise of erbium-doped fiber laser based on full quantum theory,” J. Opt. Soc. Am. B 30(2), 275–281 (2013). [CrossRef]  

24. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000). [CrossRef]  

25. S. Foster, “Low-frequency thermal noise in optical fiber cavities,” Phys. Rev. A 86(4), 043801 (2012). [CrossRef]  

26. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015). [CrossRef]   [PubMed]  

27. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
    [Crossref] [PubMed]
  2. R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014).
    [Crossref] [PubMed]
  3. R. Su, P. Zhou, X. Wang, Y. Ma, and X. Xu, “Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers,” Opt. Lett. 37(4), 497–499 (2012).
    [Crossref] [PubMed]
  4. S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
    [Crossref]
  5. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [Crossref] [PubMed]
  6. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [Crossref]
  7. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
    [Crossref]
  8. K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
    [Crossref]
  9. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
    [Crossref] [PubMed]
  10. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  11. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  12. S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010).
    [Crossref]
  13. P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
    [Crossref]
  14. S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
    [Crossref]
  15. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
    [Crossref]
  16. C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, “Frequency noise of high-gain phosphate fiber single-frequency laser,” Laser Phys. 23(4), 045107 (2013).
    [Crossref]
  17. T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009).
    [Crossref] [PubMed]
  18. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
    [Crossref] [PubMed]
  19. I. Kelson and A. Hardy, “Optimization of strongly pumped fiber lasers,” J. Lightwave Technol. 17(5), 891–897 (1999).
    [Crossref]
  20. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+-and Yb3+-Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833–839 (2000).
    [Crossref]
  21. C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
    [Crossref]
  22. S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
    [Crossref]
  23. W. Yue, Y. Wang, C.-D. Xiong, Z.-Y. Wang, and Q. Qiu, “Intensity noise of erbium-doped fiber laser based on full quantum theory,” J. Opt. Soc. Am. B 30(2), 275–281 (2013).
    [Crossref]
  24. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
    [Crossref]
  25. S. Foster, “Low-frequency thermal noise in optical fiber cavities,” Phys. Rev. A 86(4), 043801 (2012).
    [Crossref]
  26. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
    [Crossref] [PubMed]
  27. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (2)

R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

2013 (4)

T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, “Frequency noise of high-gain phosphate fiber single-frequency laser,” Laser Phys. 23(4), 045107 (2013).
[Crossref]

W. Yue, Y. Wang, C.-D. Xiong, Z.-Y. Wang, and Q. Qiu, “Intensity noise of erbium-doped fiber laser based on full quantum theory,” J. Opt. Soc. Am. B 30(2), 275–281 (2013).
[Crossref]

2012 (2)

2011 (3)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

2010 (2)

S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010).
[Crossref]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

2009 (2)

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009).
[Crossref] [PubMed]

2006 (2)

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

2005 (1)

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

2004 (2)

2001 (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

2000 (2)

B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+-and Yb3+-Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833–839 (2000).
[Crossref]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

1999 (1)

1998 (1)

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

Agger, S.

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Bjurshagen, S.

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Catunda, T.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Chen, D.

Chen, Y.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

Cranch, G. A.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

De Geronimo, G.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

Deng, H.

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Fan, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Feng, Z.

Feng, Z. M.

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Foster, S.

S. Foster, “Low-frequency thermal noise in optical fiber cavities,” Phys. Rev. A 86(4), 043801 (2012).
[Crossref]

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

Foster, S. B.

S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010).
[Crossref]

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Gan, J.

Gong, W.

Guo, H.

Hardy, A.

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Horak, P.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Huang, X.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Hwang, B.-C.

Ibsen, M.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

Jacinto, C.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Jaque, D.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Jiang, S.

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Jiang, Z. H.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Kawamura, S.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

Kelson, I.

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koch, R.

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Laporta, P.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Li, C.

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Lin, W.

Lin, Z.

Liu, T.

Liu, W.-C.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Loh, W. H.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Luo, B.

Luo, T.

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Ma, L.-S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ma, Y.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Mio, N.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

Mo, S.

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Notermans, R. P. M. J. W.

R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014).
[Crossref] [PubMed]

Oates, C. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Peng, M.

Peng, X.

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Peyghambarian, N.

Povlsen, J. H.

Qian, Q.

Qiu, J.

Qiu, Q.

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Sanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Shen, S.

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Solé, J. G.

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Somiya, K.

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

Sorbello, G.

Su, R.

Svelto, O.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

Taccheo, S.

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

Tikhomirov, A.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

Tikhomirov, A. E.

S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010).
[Crossref]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Varming, P.

Vassen, W.

R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014).
[Crossref] [PubMed]

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Voo, N. Y.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

Wang, X.

Wang, Y.

Wang, Z.-Y.

Watson, J.

Wei, X.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Wu, T.

Xiao, Y.

Xiong, C.-D.

Xu, S.

Xu, S. H.

Xu, X.

Yang, C.

Yang, T.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, Z.

Yang, Z. M.

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

Yue, W.

Zhan, Y.

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhao, Q.

Zhou, K.

Zhou, P.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

S. B. Foster and A. E. Tikhomirov, “Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 46(5), 734–741 (2010).
[Crossref]

IEEE Photonics J. (1)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photonics Technol. Lett. 18(9), 998–1000 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W.-C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369–381 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, “Frequency noise of high-gain phosphate fiber single-frequency laser,” Laser Phys. 23(4), 045107 (2013).
[Crossref]

Nat. Photonics (2)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line- rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).
[Crossref]

Opt. Lett. (7)

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[Crossref] [PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

R. Su, P. Zhou, X. Wang, Y. Ma, and X. Xu, “Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers,” Opt. Lett. 37(4), 497–499 (2012).
[Crossref] [PubMed]

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
[Crossref] [PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref] [PubMed]

T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38(6), 986–988 (2013).
[Crossref] [PubMed]

Phys. Rev. A (2)

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A 79(5), 053802 (2009).
[Crossref]

S. Foster, “Low-frequency thermal noise in optical fiber cavities,” Phys. Rev. A 86(4), 043801 (2012).
[Crossref]

Phys. Rev. B (1)

C. Jacinto, T. Catunda, D. Jaque, and J. G. Solé, “Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3 (BO3)4,” Phys. Rev. B 72(23), 235111 (2005).
[Crossref]

Phys. Rev. D Part. Fields Gravit. Cosmol. (1)

K. Somiya, Y. Chen, S. Kawamura, and N. Mio, “Frequency noise and intensity noise of next-generation gravitational-wave detectors with RF/DC readout schemes,” Phys. Rev. D Part. Fields Gravit. Cosmol. 73(12), 122005 (2006).
[Crossref]

Phys. Rev. Lett. (1)

R. P. M. J. W. Notermans and W. Vassen, “High-Precision Spectroscopy of the Forbidden 2 3s1→2 1p1 Transition in Quantum Degenerate Metastable Helium,” Phys. Rev. Lett. 112(25), 253002 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The simulated frequency noise spectra of the DBR-SFFL with a 1.7 cm long active fiber versus different pump powers Pp with ETU (a) and without ETU (b). The inset in (a) is the total heat transformation Ω versus the pump power Pp.
Fig. 2
Fig. 2 The simulated frequency noise spectra of the DBR-SFFLs pumping by 200 mW versus different lengths of the active fiber l with ETU (a) and without ETU (b). The inset in (a) is the fractional thermal loading η at different lengths of the active fiber l.
Fig. 3
Fig. 3 The simulated frequency noise spectra of the DBR-SFFL pumping by 200 mW with a 1.7 cm long active fiber with different RINFL with ETU.
Fig. 4
Fig. 4 Experimental scheme of the DBR-SFFL and the measurement equipment of the frequency noise.
Fig. 5
Fig. 5 The calculated and tested frequency noise spectra of the DBR-SFFL with 1.7 cm long active fiber with the pump power Pp of 169 mW (a), 225 mW (b), 279 mW (c) and the comprehensively tested frequency noise spectrum (d). The inset is the measured RINFL spectrum versus the pump power Pp.
Fig. 6
Fig. 6 The calculated and tested frequency noise spectra of the DBR-SFFL pumping by 225 mW with different lengths of the active fiber of 1.4 cm (a), 1.7 cm (b), 2.0 cm (c), 2.3 cm (d), 2.6 cm (e) and the comprehensively tested frequency noise spectrum (f). The inset is the measured RINFL spectrum.

Tables (1)

Tables Icon

Table 1 The related parameters used in this article

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Q ( z , r , t ) = α a p η P ( t ) h ( z ) | e ( r ) | 2 .
0 2 π 0 ω p r | e ( r ) | 2 d r d θ = 1.
| e ( r ) | 2 = 2 π ω p 2 exp ( 2 r 2 ω p 2 ) .
T ( f , z ) = Θ ( f ) P ( f ) N ( z ) = P ( f ) N ( z ) 4 π 2 k t 0 exp ( ω p 2 k 2 / 4 ) k k 2 + 2 i k 1 2 d k .
Θ ( f ) = exp ( i ω p 2 c v f / 4 k t ) 8 π 2 k t E 1 [ i ω p 2 c v f / 4 k t ] .
Δ ν ( f ) = ν q 0 l Δ T ( f , z ) d z = ν q 0 l Δ [ Θ ( f ) P ( f ) N ( z ) ] d z .
S v ( f ) = v 2 q 2 [ Θ ( f ) ] 2 S p ( f ) [ 0 l N ( z ) d z ] 2 = v 2 q 2 [ Θ ( f ) ] 2 P p 2 R I N p ( f ) [ 0 l N ( z ) d z ] 2 .
Ω = P p 0 l N ( z ) d z = P p 0 l α a p η h ( z ) d z .
h ( z ) d z = γ h ( z ) .
h ( z ) = h ( 0 ) exp ( γ z ) .
η = F E T U + [ 1 F E T U ] ( 1 λ p / λ s ) .
F E T U = 1 2 1 + [ 1 + 4 W τ 2 R r p + 4 W τ 2 c σ n N a 0 Φ ϕ 0 ( 1 + c σ τ n f c Φ ϕ 0 ) 2 ] 1 / 2 .
Ω = α a p η P p 1 γ ( 1 exp ( γ l ) ) .
S v ( f ) = v 2 q 2 [ Θ ( f ) ] 2 [ α a p η P p 1 γ ( 1 exp ( γ l ) ) ] 2 R I N p ( f ) .
S v ( f ) = v 2 q 2 [ Θ ( f ) ] 2 [ α a p η P p 1 γ ( 1 exp ( γ l ) ) ] 2 R I N F L ( f ) .

Metrics