Abstract

A novel apparatus for the single-shot measurement of the temporal pulse contrast of modern ultra-short pulse lasers is presented, based on a simple yet conceptual refinement of the self-referenced spectral interferometry (SRSI) approach. The introduction of the spatial equivalent of a temporal delay by tilted beams analyzed with a high quality imaging spectrometer, enables unprecedented performance in dynamic, temporal range and resolution simultaneously. Demonstrated consistently in simulation and experiment at the front-end of the PW laser Draco, the full range of the ps temporal contrast defining the quality of relativistic laser-solid interaction could be measured with almost 80 dB dynamic range, 18ps temporal window, and 18fs temporal resolution. Additionally, spatio-temporal coupling as in the case of a pulse front tilt can be quantitatively explored.

© 2017 Optical Society of America

1. Introduction

In relativistic laser-matter interaction at peak laser intensities well beyond 1018 W/cm2 full knowledge of spatial and temporal focal spot characteristics is crucial. Prominent applications as the generation of intense high harmonic radiation and, in particular, advanced laser plasma ion acceleration [1] require the temporal pulse-contrast, i.e. the temporal evolution of the laser intensity relative to the peak intensity, of 100 TW to PW class lasers to be carefully controlled. With the processes relying on the clean interaction of ultra-short pulses of typically 30 fs duration with solid target surfaces, the temporal pulse profile has to be described with a dynamic range of at least 108 and few 10 fs resolution in order to assess target ionization, heating, and subsequent expansion during the rise of the laser pulse intensity in the few 10 ps range [2]. Subtle differences have been observed to strongly influence, e.g. proton acceleration performance [3] and, as a last resort, single-shot plasma mirrors are employed to boost contrast for the exploration of the performance limits [4,5].

Highest dynamic (~1011) and wide temporal range (~1 ns) combined with a temporal resolution on the scale of the pulse duration are routinely provided with delay-scanning third order auto-correlation techniques (for reference, cf. Sequoia, Table 1). Time-consuming measurements (requiring up to 105 pulses) validate ASE (amplified spontaneous emission) contrast and pre-pulses on the few 10 ps to ns-scale to be on a negligible level below 10−10 for state-of-the-art chirped pulse amplification (CPA) 100 TW class laser systems [e.g 3.]. Yet, even at a pulse repetition rate of 10 Hz the method proves inappropriate for the investigation of contrast sensitive problems in real time. Self-referenced spectral interferometry (SRSI) techniques [9–11] on the other hand (for reference, cf. Wizzler, Table 1) robustly provide highest resolution single-pulse information on the intensity contrast as well as on the spectral phase of the laser pulse. Though insufficient in temporal (1 ps) and dynamic (105) range for the complete analysis of the rising pulse, the method allows for feedback based improvement of the sub ps-contrast with already significant impact on proton acceleration [3].

Tables Icon

Table 1. Comparison between the presented single-shot realization of self-referenced spectral interferometry with extended time excursion (SRSI-ETE), recently developed high dynamic range single-shot cross-correlators (SSCC), and commercially available reference instruments (Sequoia, Tundra, and Wizzler).

Closing this gap in temporal and dynamic range represents one of the most challenging single shot metrology tasks in the field of high power lasers and related secondary radiation sources. Current approaches rely on single-shot cross-correlation (SSCC) between the pulse and a cleaned reference [7,8]. Although single-shot dynamics of 1010 have recently been demonstrated [8], the temporal encoding concepts significantly limit the number of sampling points as summarized in the Table 1.

Furthermore, none of these techniques provides information on spatio-temporal coupling, i.e. the spatial variation of temporal properties of the light and vice-versa [12,13]. This coupling requires attention in large aperture CPA laser systems as it significantly influences the final focus quality [14] and interaction dynamic [2]. To our knowledge, only one single shot compatible and completely self-referenced measurement has been performed in a new implementation of the SPIDER (spectral phase interferometry for direct electric field reconstruction) technique [15].

In the present work we demonstrate that a conceptually refined approach based on SRSI and implemented with cross-polarized wave (XPW) [16,17] reference beam preparation can be applied to characterize the laser pulse in single shot mode with an unprecedented combination of an extended time excursion (ETE) or wide range of up to 18ps and an ultra-fast resolution of 20fs. Together with the achieved increase in dynamic range to 108 this novel SRSI-ETE instrument allows for the full and high resolution characterization of the ps-contrast of typical 100 TW to PW class lasers. The paper details the concept of the apparatus illustrating high dynamic range and high resolution diagnostic capabilities both theoretically and experimentally. Measurements of the ps pulse contrast of the first CPA stage of the dual CPA Draco PW laser at HZDR as well as of a contrast improved XPW test beam confirm the performance of the apparatus and are quantitatively cross-checked against scanning third order CC devices. Finally, a similar set of simulations and experimental results demonstrates the additional single shot spatio-temporal pulse characterization capacity of the method.

2. Extended Self-Referenced Spectral Interferometry concept

SRSI [9–11] is an interferometric technique where, as sketched in Fig. 1(a), an input pulse replica experiences a variable delay τ and is recombined with a self-generated reference pulse. For ultrafast pulses reference pulse generation relies on non-linear temporal filtering by cross-polarized wave generation (XPW) [16,17] providing a broadened spectrum and flattened spectral phase. This is in analogy to well-known pulse cleaning in the spatial domain by a Fourier-plane filter like a pin-hole in the focal plane of a lens. Fourier Transform Spectral Interferometry (FTSI) processing [11] then enables the retrieval of the spectral amplitude and phase of both input and reference pulses from the spectral interferogram illustrated in Fig. 1(b).

 

Fig. 1 (a) Sketch of the concept of collinear beam self-referenced spectral interferometry (SRSI), and (b) sample spectral interferogram taken with a 2D imaging spectrometer.

Download Full Size | PPT Slide | PDF

In the following, we introduce two conceptual modifications of the original SRSI idea: first, taking advantage of the additional information provided by an imaging spectrometer in the spatial dimension, and second, introducing a well-controlled spatio-temporal coupling by adding an angular offset between the two beams entering the imaging spectrometer. These refinements of the concept simultaneously result in unprecedented contrast dynamic, temporal range and spatio-temporal capabilities, and are referred to as Self-Referenced Spectral Interferometry with Extended Time Excursion (SRSI-ETE).

Employing an imaging spectrometer increases the dynamic range of the pulse contrast measurement. We perform simulations assuming a transform limited pulse (50nm FWHM width, centered at a wavelength of 800 nm) with a super Gaussian spatial beam profile. This sample pulse exhibits a pre-pulse at an intensity ratio of 10−3 at a delay of τpp = −4 ps. The SRSI delay in the simulation is set to τ = 6ps. In the standard collinear SRSI configuration [9] the imaging spectrometer records identical spectral interferograms for all transverse coordinates of the pulse [Fig. 2(a)] representing the beam profile. Following inverse FT analysis in the spectral domain only, the non-interference or DC term centered around 0 in time domain and the two interference or AC terms, symmetrically shifted by + -τ in time domain, can be identified and filtered in the temporal domain. So the DC term is the one filtered by the red box, and the AC term the one filtered by the black box [Fig. 2(b)]. The green curve in Fig. 2(d) depicts the square of the AC term which under the assumption of an ideal reference pulse represents a good approximation of the temporal intensity contrast of interest of the pulse replica. Averaged over 100 spatial spectrometer lines the green curve shows a contrast dynamic limited to about 106 mainly by detector shot noise (Signal-to-Noise Ratio SNRω considered in the simulation amounts to 1500:1, corresponding to spectrometer specifications, see below). Applying FT analysis in both spectral and spatial dimensions [Fig. 2(c)] further enhances the dynamic range of the measurement by roughly one order of magnitude (factor of 100 compared to √100 for the averaging of the 100 lines) [10]. The black curve in Fig. 2(d), representing the square of only the central line in Fig. 2(c) evidences this substantial enhancement of the dynamic range.

 

Fig. 2 Simulation: Illustration of standard collinear SRSI signal formation employing a pulse with a 4ps −30dB pre-pulse and 6ps SRSI delay. (a) SRSI spectral intensity signal, the inset emphasizesthe independence of the spectral modulation from the spatial coordinate, (b) Amplitude of the FT signal in the spectral domain only of (a) in log scale, the red dotted limited area representing the central DC term, the black onethe AC term shifted by the SRSI delay, (c) same as (b) except that the FT is also applied in the spatial domain, (d) temporal intensity of the input pulse (grey filled area) and AC terms squared averaged over 100lines of (b) (green curve) and central line of (c) (black curve).

Download Full Size | PPT Slide | PDF

Figure 2(d) also directly reveals ambiguities in the signal reconstruction, and in particular in the straightforward interpretation of the square of the AC term. Though well reflecting the input pulse intensity including the pre-pulse at τpp = −4 ps (dark grey shaded areas), the particular choice of the τ = 6ps SRSI delay results in an artifact at τppa = −2 ps, where AC and DC origins cannot be distinguished by the applied filtering method. Such temporal aliasing issues limit the temporal range of the device to only one third of the 18ps complete range.

A simple change in the beam geometry, however, can be applied to completely resolve this fundamental aliasing issue. As spectral and spatial dimensions play a symmetric role in the Fourier domain, the filtering can either be applied in the temporal or the spatial frequency domain. We therefore extend the simulation by introducing an additional small angle between the pulse replica and the reference pulse in the axis of the spectrometer entrance slit. This acts as the spatial equivalent of the temporal delay. Together with the standard SRSI delay, the spectral interferogram now appears tilted on the detector [Fig. 3(a)]. FT in spectral and spatial domains [Fig. 3(b)] results in separated DC and AC terms not only in time but also in spatial frequency. Efficient filtering can now be performed in the spatial frequency domain, completely eliminating the previous aliasing issues. As a consequence the viable temporal range is extended by a factor of three up to the full 18ps range as illustrated in Figs. 3(c) and 3(d) and to be compared to Fig. 2(d). As evidenced by Fig. 3(b) the temporal window is asymmetrical relative to the AC term. Tuning the optical delay allows to tailor the contrast observation region either before or after the pulse.

 

Fig. 3 Illustration of the temporal range extension by spatio-temporal encoding for the same pulse conditions as in Fig. 2 leading to a tilted spectral interferogram (a). (b) Temporal amplitude of the dual domains (time and spatial frequency) of (a). (c) AC (black) and DC (blue) terms squared after the FT of the spectral intensity filtered in the spatial frequency domain. (d) temporal intensity of the fully reconstructed SRSI signal (red) compared to the AC term squared (black).

Download Full Size | PPT Slide | PDF

The full SRSI iterative algorithm [9,11] is also used to reconstruct the temporal intensity of the replica (red curve on Fig. 3(d)). Yet, direct comparison with the square of the AC term (black curve) shows that this process leads to a slightly higher noise level, possibly due to noise amplification in the data processing. As further illustrated by the inset of Fig. 3(d) the temporal intensity of the original pulse (grey filled curve) is nearly perfectly well recovered through the AC term squared for super Gaussian spectral amplitude shape. Furthermore, as for any cross-correlation device, all the different pulses are correlated with the same reference pulse so that their ratios compared to the main pulse are conserved and the square of the AC term represents a valid approximation for the contrast analysis of the pulse. . This property remains valid as long as the XPW filtered pulse has a clean contrast which extends the temporal contrast measurement capability beyond the usual SRSI limit. Also to optimize the contrast dynamic, the AC term should be maximized meaning that the modulation should be as high as possible.

3. Experimental setup

The SRSI-ETE setup relies on a conventional dispersion balanced Mach-Zehnder interferometer as sketched in Fig. 4. While the first arm generates the optical SRSI delay, the second is used for reference generation. This arm includes a telescope built from parabolic mirrors with a 1mm thick BaF2 crystal in its center for efficient XPW generation between crossed polarizers. Optimal signal-to-noise ratio in single-shot operation requires pulse energies of about 100 nJ in the reference beam obtainable with about 100 µJ at the interferometer input. The two beams are directly recombined onto the spectrometer slit with a small relative angle along the slit axis. This set-up is versatile, and depending on the choice of the final focusing mirror, the complete beam, or only parts, can be analyzed. Care has been taken for the selection of optical components in order to avoid parasitic light or pulse distortions and spatial filtering is applied at the entrance of the spectrometer.

 

Fig. 4 SRSI-ETE experimental set-upbased on a Mach-Zehnder interferometer and emphasizing the small angle between the beams entering the spectrometer. BS1: first beamsplitter (R = 10%), PM: parabolic focusing mirror, Pol1&2: first and second polarizers in extinction configuration, Xtal: BaF2 crystal for XPW generation (efficiency≈0.1%), HWP: half-wave plate, BS2: second beamsplitter (R = 90%), CM: cylindrical mirror, Princeton 2D-Imaging Spectrometer (Iso-Plane 320) and PIXIS 16bit CCD camera.

Download Full Size | PPT Slide | PDF

The spectrum is recorded by an imaging spectrometer (Princeton Iso-Plane 320) read-out by a cooled PIXIS 16 bits CCD camera with 256x1024 pixels. The horizontal dimension of the output image represents the spectral domain (from 350THz≈856nm to 400THz≈750nm) while the vertical represents the selected spatial dimension (6.6mm over 256 pixels).

To experimentally investigate the dynamic range of the SRSI-ETE and to demonstrate its qualification for single shot wide range high resolution contrast measurement, the instrument was tested on the first CPA stage of the double CPA Petawatt laser system DRACO at Helmholtz-Zentrum Dresden-Rossendorf as sketched in Fig. 5. For this test, stretched pulses with 10 mJ energy are picked off from the amplification chain and compressed with a Treacy compressor in air to about 25 fs pulse duration (FWHM). These pulses are either used directly, or contrast-improved with an additional XPW filter. Reference measurements are performed with a scanning third order cross-correlator (Sequoia, cf. Tab. 1).

 

Fig. 5 Experimental set-up at the Draco laser, (a) compressed beam output of the first CPA stage of the Draco frontend, (b) optional XPW cleaning setup (L focusing lens, XPW crystal (CaF2), SM spherical mirror for recollimation, M folting mirror, P polarizer), (c) Third-order cross-correlator for reference measurements (Amplitude Technologies Sequoia), (d) SRSI-ETE device.

Download Full Size | PPT Slide | PDF

4. Temporal characterization properties

As already introduced with the simulation results in section 2, the SRSI concept intrinsically provides a higher dynamic range on the temporal signal than expected from the dynamic range of the spectrometer [10,18]. Assuming uniform spreading of white noise over the recorded image of the interferogram the same holds true for its Fourier equivalent in temporal and spatial frequency domains, while the signal is concentrated on few pixels. Following [10], the dynamic range of the contrast measurement can be estimated by the product of the filling factor of the detector array F, the number of pixels Npixels, and the signal-to-noise ratio SNRωto

Ct=FNpixelsSNRω
The imaging spectrometer uses a 16 bit CCD camera with 1024x256 pixels. The dominant source of noise is the detector shot noise at a given quantum efficiency of around η = 50% at 800nm, limiting the signal-to-noise ratio to less than √(N/(1-η))≈1000:1 for a pixel depth of N = 6x105 electrons.The spectrometer is adapted to match the pulse bandwidth with about half of the 1024 pixels. As shown in Figs. 2 and 3, the filling factor can be maximized up to the 256 lines of the spatial dimension, leading to a temporal contrast of
Ct5001000256108=80dB
This maximum dynamic range of 80dB is realized when the beam completely fills the camera, which can be reached in one dimension if no spatial information is to be gained as shown in the dedicated simulation presented in Fig. 6(a). Experimentally, the full beam profile was sampled and thus less than a third of the image could be used for the analysis (cf. insets of Figs. 6(b) and 6(c)), limiting the dynamic range to few times 108. In Fig. 6 the measurement of the temporal intensity profile is represented by the AC term squared (black curves) and compared with third-order cross-correlation diagnostics (orange curves). The overall agreement between the two measurement techniques is excellent. Few differences on pre- or post-pulses result from different non-optimal beam guiding optics. As an example, the pre-pulse observed at 8.6 ps on the SRSI-ETE signal is due to a front side reflection of the first beam splitter of the setup (BS1 in Fig. 4). The delay matches exactly the optical path difference of front and back reflections for 1.1mm UV-fused silica beamsplitter at 45°. In Fig. 6(b), the beam is analyzed directly at the output of the compressor. Around the main pulse a picosecond pedestal at a contrast level of 10−4 lasting for about 2ps is preceded and followed by few smaller pulses. The noise level reached with the SRSI-ETE lies between −70 and −80dB, while the third-order CC lowest level on the same temporal window is −90dB. To further check that only the pre-pulse at −8.6 ps is due to the instrument, the pedestal and the pre- or post-pulses are removed by an additional XPW cleaning stage. The reduced energy level of the XPW filtered pulse results in a smaller dynamic range of the third-order CC measurement (80dB despite longer accumulation for each point) while the SRSI-ETE dynamic range remains unchanged.

 

Fig. 6 Comparison between theoretical and achieved instrument performances. (a) Simulation results on optimum contrast dynamic showing theAC term squared (black curve) andthe recovered SRSI temporal intensity (red curve)with the input pulse intensity (grey filled area). The inset represents the spectrometer images on linear scale. (b, c) Measured contrast curves of the direct compressor output (b) and after additional XPW cleaning (c). The AC term squared (black curves) is compared to data taken with scanning third-order CC diagnostic (orange curves). Right insets represent the main peak intensity on a linear scale.

Download Full Size | PPT Slide | PDF

The temporal resolution of the device is defined by the inverse of the bandwidth in the frequency domain Δω to δt=2/Δω yielding 18fs. Correspondingly, the temporal range of the instrument is defined by the inverse of the spectrometer resolution δω to ΔTspectro=2/δω=18ps as confirmed by the measurements presented in Figs. 6(b) and 6(c). The SRSI delay used was about 1 ps resulting in a 10ps time window ahead of the pulse. The inset on the right of Figs. 6(b) and 6(c) highlights the achieved temporal resolution, 18fs for SRSI-ETE compared to more than 100fs for the scanning third-order CC .

Some post- and pre-pulses on Fig. 6(b) are symmetric with respect to the main pulse. This symmetry can hint on their origin. If it is before amplification we expect non-linear temporal diffraction as demonstrated by Liu et al. [19] and illustrated in [20]. Post- or pre-pulses before amplification give rise to symmetric pre- or post-pulses even at low B integral values (non linear diffraction efficiency is proportional to B2 [20]). To ensure that this observation is not an artifact, the measurementwas repeated with an additional marker post-pulse generated by a thin glass plate after the compressor and in Fig. 7(a) (and b zoomed) the grey dotted curve shows the result mirrored in time with respect to the main peak. Peaks marked A, B and C correspond to post-pulses that have symmetrical pre-pulses. The intentional post-pulse marked D shows no significant corresponding pre-pulse. Non-linear diffraction efficiency for the cases A, B and C can be estimated to be about 10% indicating an origin before the main B integral contributor, the amplifier.

 

Fig. 7 Temporal contrast intensity with analysis of pre-pulse and post-pulse origins. Black curves depict SRSI-ETE contrast measurements;grey dotted curves represent the same data mirrored with respect to the main pulse to visualize matched pre- and post-pulses. (a) Initial pulse contrast of the laser with post-pulse added by a thin glass plate after the compressor and zoomed in (b). A,B, and C mark different post-pulses symmetric to pre-pulses in contrast to the intentional one marked D. (c) Spectrogram of the same pulse. (d) Normalized averaged spectra representing the white dotted areas of (c).

Download Full Size | PPT Slide | PDF

As the measurement gives access to amplitude and phase of the AC term, spectrogram information can be processed. The resulting spectrogram shown in Fig. 7(c) distinguishes the spectral amplitude of pre- or post-pulses and pedestals. As an illustration of these additional capabilities, an analysis for the areas 1 (main pulse), 2, and 3, averaging over ten data columns in time on the spectrogram, is shown in Fig. 7(d). The blue shift observed for the pedestal part before the pulse could be due to non-linear origin [19], but no significant red shift is observed on the pedestal part after the pulse.

5. Spatio-temporal characterization properties

The measurement uses temporal and spatial shifts simultaneously. The symmetric roles between spectral and spatial dimensions imply that “spatiogram” like spectrogram information can easily be processed from the data. Indeed, the AC terms of the Fourier domain image corresponds to the focal spot intensity both in time domain and along the spatial dimension defined by the slit. It thus represents a direct spatio-temporal characterization of the pulse.

We now present simulations of a pulse with a spatio-temporal shift, a pulse-front tilt of 18fs/mm [21]. The calculated interferogram looks similar to a pulse without pulse front tilt [Fig. 8(a)] but the 2D Fourier domain [Fig. 8(b)] clearly indicates a time spreading of the temporal intensity in the focal plane. The shift is easier to evaluate if the AC term is filtered out and Fourier transformed back into the spatial domain only [Fig. 8(c)]. In this way the slope of the pulse front tilt is perfectly well recovered. When the temporal intensity is compared between a single spatial point and the complete beam, the effective pulse duration rises from 31fs to 44fs [Fig. 8(d)].

 

Fig. 8 Illustration of spatio-temporal characterization capability of the instrument: (a)spatio-spectral interferogram, (b)temporal intensity of the dual domains (time and spatial frequency) of (a), (c) temporal amplitude back-transformed into the spatial domain of the filtered part shown in the inset of (b), (d) normalized temporal intensities of the part of the pulse along the red dot line of (c) (red curve) and sum over the complete spatial dimension of the pulse (black curve).

Download Full Size | PPT Slide | PDF

To experimentally confirm the accuracy of this unique spatio-temporal measurement, a 0.5° wedge was inserted into the input beam just in front of the SRSI-ETE device so that it introduced a pulse front tilt of about 18fs/mm [Fig. 9(c)]. The pulse front tilt could be perfectly well measured if the initial pulse front tilt (without the wedge) and beam distortion is taken into consideration. The measurement confirm the pulse duration stretching from 31fs to 44fs from a single spatial point to the complete beam [Fig. 9(f)]. To check that this pulse front tilt was not introduced by the instrument, the XPW filtered pulse was also measured and compared to its seeding pulse [Figs. 9(b) and 9(c)]. As expected from the cubic spatial, temporal and spatio-temporal effects at the focal spot, the XPW generation filters out the temporal, spatial and spatio-temporal defaults. The remaining pulse front tilt is extremely low and probably due to residual wedge effects on the optics of the instrument. At this low pulse front tilt value, the effect on pulse duration is negligible [Figs. 9(d)-9(e)].

 

Fig. 9 Spatio-temporal characterization of the main peak for (a) the XPW filtered pulse, (b) the pulse without the wedge, (c) the pulse front tilted pulse generated by a 0.5° wedge on the input beam of the recompressed pulse. (d), (e), (f) respective intensities along one spatial line (red curve) and for the sum (projection) over the complete beam (black curve), the indicated pulsedurations are full-width at half maximum.

Download Full Size | PPT Slide | PDF

6. Conclusion

In conclusion, we have simulated and demonstrated experimentally that self-referenced spectral interferometry in an extended time excursion configuration enables an unprecedented combination of temporal resolution and dynamic range for a single-shot measurement with intrinsic spatio-temporal capability. Temporal intensity contrast could be analyzed with almost 80 dB dynamic range and an 18 ps excursion time, only limited by the currently used camera. These values perfectly well match the rising slope of state-of-the-art 100 TW to PW class lasers. Detailed knowledge and understanding of the temporal behavior of the pulse in this range is fundamental for the control of laser absorption mechanisms in laser-solid interactions and thus essential for the development of, e.g., application oriented laser driven particle accelerators. We thus expect the novel instrument presented here to not only provide new insight into relativistic laser matter interaction but to serve as an online reference tool for the shot-to-shot analysis of modern high power lasers. A single data set provides access to spectrograms, spatio-temporal characterization of the main pulse or pre- and post-pulses, as well as spatial and temporal focus intensity of the pulse.

Higher performance than presently achieved can be expected with the next generation of imaging spectrometer read-out cameras. The dynamic is limited by pixel quantum efficiency, well depth and active pixels number. It can be maximized exceeding 109 in single shot with 2048 x 512 pixels having a well depth of 6x105 electrons and a quantum efficiency higher than 70% over the laser pulse bandwidth. The temporal range also benefits from a higher number of active pixels along the spectral dimension, and up to 36ps can be expected.

References and links

1. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013). [CrossRef]  

2. K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012). [CrossRef]   [PubMed]  

3. J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014). [CrossRef]  

4. C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012). [CrossRef]   [PubMed]  

5. I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013). [CrossRef]   [PubMed]  

6. C. Dorrer, J. Bromage, and J. D. Zuegel, “High-dynamic-range single-shot cross-correlator based on an optical pulse replicator,” Opt. Express 16(18), 13534–13544 (2008). [CrossRef]   [PubMed]  

7. R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009). [CrossRef]  

8. Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014). [CrossRef]   [PubMed]  

9. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010). [CrossRef]  

10. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010). [CrossRef]   [PubMed]  

11. T. Oksenhendler, “Self-Referenced Spectral Interferometry theory,” arXiv:1204.4949 (2012).

12. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal coupling in ultrashort laser pulses,” J. Opt. 12(8), 093001 (2010). [CrossRef]  

13. C. Bourassin-Bouchet, M. Stephens, S. de Rossi, F. Delmotte, and P. Chavel, “Duration of ultrashort pulses in the presence of spatio-temporal coupling,” Opt. Express 19(18), 17357–17371 (2011). [CrossRef]   [PubMed]  

14. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016). [CrossRef]  

15. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002). [CrossRef]  

16. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchpare, “Non linear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004). [CrossRef]  

17. A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007). [CrossRef]  

18. L. Lepetit, G. Chériau, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral ineterferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467 (1995). [CrossRef]  

19. X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett. 20(10), 1163–1165 (1995). [CrossRef]   [PubMed]  

20. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Yu. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef]   [PubMed]  

21. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The General Theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
    [Crossref]
  2. K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
    [Crossref] [PubMed]
  3. J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
    [Crossref]
  4. C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
    [Crossref] [PubMed]
  5. I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
    [Crossref] [PubMed]
  6. C. Dorrer, J. Bromage, and J. D. Zuegel, “High-dynamic-range single-shot cross-correlator based on an optical pulse replicator,” Opt. Express 16(18), 13534–13544 (2008).
    [Crossref] [PubMed]
  7. R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
    [Crossref]
  8. Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
    [Crossref] [PubMed]
  9. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
    [Crossref]
  10. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010).
    [Crossref] [PubMed]
  11. T. Oksenhendler, “Self-Referenced Spectral Interferometry theory,” arXiv:1204.4949 (2012).
  12. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal coupling in ultrashort laser pulses,” J. Opt. 12(8), 093001 (2010).
    [Crossref]
  13. C. Bourassin-Bouchet, M. Stephens, S. de Rossi, F. Delmotte, and P. Chavel, “Duration of ultrashort pulses in the presence of spatio-temporal coupling,” Opt. Express 19(18), 17357–17371 (2011).
    [Crossref] [PubMed]
  14. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
    [Crossref]
  15. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
    [Crossref]
  16. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchpare, “Non linear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
    [Crossref]
  17. A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
    [Crossref]
  18. L. Lepetit, G. Chériau, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral ineterferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467 (1995).
    [Crossref]
  19. X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett. 20(10), 1163–1165 (1995).
    [Crossref] [PubMed]
  20. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Yu. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008).
    [Crossref] [PubMed]
  21. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The General Theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [Crossref] [PubMed]

2016 (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

2014 (2)

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

2013 (2)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

2012 (2)

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010).
[Crossref] [PubMed]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal coupling in ultrashort laser pulses,” J. Opt. 12(8), 093001 (2010).
[Crossref]

2009 (1)

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

2008 (2)

2007 (1)

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
[Crossref]

1995 (2)

Akturk, S.

Albert, O.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchpare, “Non linear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[Crossref]

an der Brügge, D.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Antonucci, L.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Behmke, M.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Belyanin, A.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Bierbach, J.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Borghesi, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Borot, A.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Boschetto, D.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Bourassin-Bouchet, C.

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal coupling in ultrashort laser pulses,” J. Opt. 12(8), 093001 (2010).
[Crossref]

Bromage, J.

Bussmann, M.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Canova, F.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Cerchez, M.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Cha, Y.-H.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Chaudet, P.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Chavel, P.

Chériau, G.

Chériaux, G.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Choi, I. W.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Cornaggia, C.

Coudreau, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

Cowan, T. E.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Crozatier, V.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

de Rossi, S.

Delmotte, F.

Didenko, N. V.

Dorrer, C.

C. Dorrer, J. Bromage, and J. D. Zuegel, “High-dynamic-range single-shot cross-correlator based on an optical pulse replicator,” Opt. Express 16(18), 13534–13544 (2008).
[Crossref] [PubMed]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
[Crossref]

Dromey, B.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Eckner, E.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Etchepare, J.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Etchpare, J.

Forget, N.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010).
[Crossref] [PubMed]

Fuchs, S.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Gabolde, P.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Ge, X.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

Goodman, E.

Grabielle, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010).
[Crossref] [PubMed]

Gu, X.

Hahn, T.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Hegelich, B. M.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

Hemmers, D.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Herzer, S.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Herzog, R.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

Jäckel, O.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Jeong, T. M.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Joffre, M.

Johnson, R. P.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

Jullien, A.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Kaluza, M. C.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Kaplan, D.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

Kim, C. M.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Kim, H. T.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Kim, I. J.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Kluge, T.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Konyashchenko, A. V.

Kosik, E. M.

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
[Crossref]

Kourtev, S.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Kraft, S. D.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Lee, C.-L.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Lee, J.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Lee, S. K.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Lepetit, L.

Liu, F.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Liu, X.

Lutsenko, A. P.

Ma, J.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Macchi, A.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Maksimchuk, A.

Metzkes, J.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Migus, A.

Minkovski, N.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchpare, “Non linear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[Crossref]

Moulet, A.

Nam, K. H.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Nickles, P. V.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Oksenhendler, T.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, “Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry,” Opt. Lett. 35(22), 3856–3858 (2010).
[Crossref] [PubMed]

Pae, K. H.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Passoni, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Paulus, G. G.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Petrov, G. I.

Pour, A. G.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Pretzler, G.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Pukhov, A.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Qian, L.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Quéré, F.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

Rödel, C.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Rousseau, J. P.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Saltiel, S. M.

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchpare, “Non linear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21(9), 1659 (2004).
[Crossref]

Sauerbrey, R.

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Schramm, U.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Shah, R. C.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

Shimada, T.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

Stephens, M.

Sung, J. H.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Tenyakov, S. Yu.

Toncian, T.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Trebino, R.

Umstadter, D.

Wagner, R.

Walmsley, I. A.

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
[Crossref]

Wang, J.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Willi, O.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Workman, J.

Xie, G.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Yeung, M.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Yu, T. J.

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Yuan, P.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Yuan, X.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Zeil, K.

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Zepf, M.

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

Zhu, H.

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Zuegel, J. D.

Appl. Phys. B (3)

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99(1), 7–12 (2010).
[Crossref]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry,” Appl. Phys. B 74(1), S209 (2002).
[Crossref]

A. Jullien, F. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87(4), 595–601 (2007).
[Crossref]

Eur. Phys. J. D (1)

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, “Large temporal window contrast measurement using optical parametric amplification and low sensitivity detectors,” Eur. Phys. J. D 55(11), 305–309 (2009).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal coupling in ultrashort laser pulses,” J. Opt. 12(8), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, and U. Schramm, “Direct observation of prompt pre-thermal laser ion sheath acceleration,” Nat. Commun. 3(6), 874 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10(8), 547–553 (2016).
[Crossref]

New J. Phys. (1)

J. Metzkes, T. Kluge, K. Zeil, M. Bussmann, S. D. Kraft, T. E. Cowan, and U. Schramm, “Experimental observation of transverse modulations in laser-driven proton beams,” New J. Phys. 16(2), 023008 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. G. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M. C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G. G. Paulus, “Harmonic generation from relativistic plasma surfaces in ultrasteep plasma density gradients,” Phys. Rev. Lett. 109(12), 125002 (2012).
[Crossref] [PubMed]

I. J. Kim, K. H. Pae, C. M. Kim, H. T. Kim, J. H. Sung, S. K. Lee, T. J. Yu, I. W. Choi, C.-L. Lee, K. H. Nam, P. V. Nickles, T. M. Jeong, and J. Lee, “Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses,” Phys. Rev. Lett. 111(16), 165003 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85(2), 751–793 (2013).
[Crossref]

Sci. Rep. (1)

Y. Wang, J. Ma, J. Wang, P. Yuan, G. Xie, X. Ge, F. Liu, X. Yuan, H. Zhu, and L. Qian, “Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers,” Sci. Rep. 4(1), 3818 (2014).
[Crossref] [PubMed]

Other (1)

T. Oksenhendler, “Self-Referenced Spectral Interferometry theory,” arXiv:1204.4949 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Sketch of the concept of collinear beam self-referenced spectral interferometry (SRSI), and (b) sample spectral interferogram taken with a 2D imaging spectrometer.
Fig. 2
Fig. 2 Simulation: Illustration of standard collinear SRSI signal formation employing a pulse with a 4ps −30dB pre-pulse and 6ps SRSI delay. (a) SRSI spectral intensity signal, the inset emphasizesthe independence of the spectral modulation from the spatial coordinate, (b) Amplitude of the FT signal in the spectral domain only of (a) in log scale, the red dotted limited area representing the central DC term, the black onethe AC term shifted by the SRSI delay, (c) same as (b) except that the FT is also applied in the spatial domain, (d) temporal intensity of the input pulse (grey filled area) and AC terms squared averaged over 100lines of (b) (green curve) and central line of (c) (black curve).
Fig. 3
Fig. 3 Illustration of the temporal range extension by spatio-temporal encoding for the same pulse conditions as in Fig. 2 leading to a tilted spectral interferogram (a). (b) Temporal amplitude of the dual domains (time and spatial frequency) of (a). (c) AC (black) and DC (blue) terms squared after the FT of the spectral intensity filtered in the spatial frequency domain. (d) temporal intensity of the fully reconstructed SRSI signal (red) compared to the AC term squared (black).
Fig. 4
Fig. 4 SRSI-ETE experimental set-upbased on a Mach-Zehnder interferometer and emphasizing the small angle between the beams entering the spectrometer. BS1: first beamsplitter (R = 10%), PM: parabolic focusing mirror, Pol1&2: first and second polarizers in extinction configuration, Xtal: BaF2 crystal for XPW generation (efficiency≈0.1%), HWP: half-wave plate, BS2: second beamsplitter (R = 90%), CM: cylindrical mirror, Princeton 2D-Imaging Spectrometer (Iso-Plane 320) and PIXIS 16bit CCD camera.
Fig. 5
Fig. 5 Experimental set-up at the Draco laser, (a) compressed beam output of the first CPA stage of the Draco frontend, (b) optional XPW cleaning setup (L focusing lens, XPW crystal (CaF2), SM spherical mirror for recollimation, M folting mirror, P polarizer), (c) Third-order cross-correlator for reference measurements (Amplitude Technologies Sequoia), (d) SRSI-ETE device.
Fig. 6
Fig. 6 Comparison between theoretical and achieved instrument performances. (a) Simulation results on optimum contrast dynamic showing theAC term squared (black curve) andthe recovered SRSI temporal intensity (red curve)with the input pulse intensity (grey filled area). The inset represents the spectrometer images on linear scale. (b, c) Measured contrast curves of the direct compressor output (b) and after additional XPW cleaning (c). The AC term squared (black curves) is compared to data taken with scanning third-order CC diagnostic (orange curves). Right insets represent the main peak intensity on a linear scale.
Fig. 7
Fig. 7 Temporal contrast intensity with analysis of pre-pulse and post-pulse origins. Black curves depict SRSI-ETE contrast measurements;grey dotted curves represent the same data mirrored with respect to the main pulse to visualize matched pre- and post-pulses. (a) Initial pulse contrast of the laser with post-pulse added by a thin glass plate after the compressor and zoomed in (b). A,B, and C mark different post-pulses symmetric to pre-pulses in contrast to the intentional one marked D. (c) Spectrogram of the same pulse. (d) Normalized averaged spectra representing the white dotted areas of (c).
Fig. 8
Fig. 8 Illustration of spatio-temporal characterization capability of the instrument: (a)spatio-spectral interferogram, (b)temporal intensity of the dual domains (time and spatial frequency) of (a), (c) temporal amplitude back-transformed into the spatial domain of the filtered part shown in the inset of (b), (d) normalized temporal intensities of the part of the pulse along the red dot line of (c) (red curve) and sum over the complete spatial dimension of the pulse (black curve).
Fig. 9
Fig. 9 Spatio-temporal characterization of the main peak for (a) the XPW filtered pulse, (b) the pulse without the wedge, (c) the pulse front tilted pulse generated by a 0.5° wedge on the input beam of the recompressed pulse. (d), (e), (f) respective intensities along one spatial line (red curve) and for the sum (projection) over the complete beam (black curve), the indicated pulsedurations are full-width at half maximum.

Tables (1)

Tables Icon

Table 1 Comparison between the presented single-shot realization of self-referenced spectral interferometry with extended time excursion (SRSI-ETE), recently developed high dynamic range single-shot cross-correlators (SSCC), and commercially available reference instruments (Sequoia, Tundra, and Wizzler).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C t =F N pixels SN R ω
C t 5001000256 10 8 =80dB

Metrics