Abstract

A high visibility Hong-Ou-Mandel (HOM) interference between two independently prepared photons plays an important role in various photonic quantum information processing. In a standard HOM experiment using photons generated by pulse-pumped spontaneous parametric down conversion (SPDC), larger detection time windows than the coherence time of photons have been employed for measuring the HOM visibility and/or drawing the HOM dip. If large amounts of stray photons continuously exist within the detection time windows, employing small detection time windows is favorable for reducing the effect of background noises. Especially, such a setup is helpful for the HOM experiment using continuous wave (cw)-pumped SPDC and the time-resolved coincidence measurement. Here we argue that the method for determining the HOM visibility used in the previous cw experiments tends to suffer from distortion arising from biased contribution of the background noises. We then present a new method with unbiased treatment of the cw backgrounds. By using this method, we experimentally demonstrate a high visibility HOM interference of two heralded telecom photons independently generated by SPDC with employing cw pump light. An observed HOM visibility is 0.87 ± 0.04, which is as high as those observed by using pulse-pumped SPDC photons.

© 2017 Optical Society of America

1. Introduction

Indistinguishability of photons is one of the most important prerequisites for many applications of photonic quantum information processing [1–3]. The Hong-Ou-Mandel (HOM) interference [4] is a quantum phenomenon of two indistinguishable photons, and has been widely used as a criterion for testing the indistinguishability of photons [5–11]. A conventional HOM experiment is performed by injecting two photons into two input ports of a half beamsplitter (HBS) and detecting coincidence counts of photons coming from the output ports as shown in Fig. 1(a). When arrival time difference of the two photons is sufficiently large, the detected photons are completely distinguishable as if they are classical particles. As a result a coincidence probability becomes the product of a single detection probabilities of the two detectors. On the other hand, when they simultaneously arrive at the HBS, the coincidence probability will be decreased by bunching effect of bosonic photons while the single detection probability at each detector do not change as shown in Fig. 1(b) and 1(c). Due to such an effect, a dip known as the HOM dip can be observed in the coincidence counts by sweeping the arrival time difference of the input photons. The depth of the HOM dip reflects the degree of indistinguishability of the two input photons which is evaluated by the so-called HOM visibility.

 

Fig. 1 (a) The schematic diagram of the HOM interference. The relative delay is adjusted by changing the timing of the photon in mode 2. The widths of the coincidence windows at D3 and D4 are set to be infinitely larger than the wavepacket duration. The HOM interference is observed when the photons in mode 1 and mode 2 arrive at the HBS simultaneously. (b) The sketch of the single detection probability at D3 (D4). (c) The sketch of the coincidence probability between D3 and D4.

Download Full Size | PPT Slide | PDF

Such HOM experiments have been performed by using two heralded photons produced by a spontaneous parametric down conversion (SPDC) employing pulsed pump, in which detection time windows are usually set to be much larger than the wavepacket duration (also see Fig. 1(a)). On the other hand, when there are non-negligible amounts of temporally-continuous stray photons within the detection time windows, as in the case of the HOM experiment using continuous wave (cw) pump, it is favorable to open detection windows only when the signal photon wavepackets come for reducing the contribution of stray photons. Recently, such measurement has been performed with the use of two photons heralded by one halves of photon pairs produced by cw-pumped SPDC [12, 13]. In [13], Halder et al. reported that an observed visibility was 0.77 ± 0.03. But as we will explain later, the visibility determined in [12,13] does not completely reflect the conventional HOM visibility commonly used in pulsed regime and tends to result in an artificial increase in the observed value.

In this paper, we present a new method to determine the HOM visibility with the use of detection windows smaller than the coherence time of the photons. We experimentally observed a HOM visibility of 0.87 ± 0.04 using two heralded single photons in separated time bins prepared by detecting halves of telecom photon pairs. The observed HOM visibility is as high as those observed by using pulsed pump [5–11]. If we evaluate our experimental result by using the same method used in [12,13], we observe the visibility of 0.93 ± 0.03, which is clearly much higher than that observed in [12,13].

2. Method

We first review the standard method for observing the HOM interference experiments. Then we discuss an extended method that reduces an effect of stray photons or accidental coincidences by shortening a detection time window even below the durations of light wavepackets. As shown in Fig. 1(a), the light wavepackets in modes 1 and 2 are mixed by a HBS followed by photon detectors D3 and D4. We assume that a relative delay (timing difference) Δt between two incoming light wavepackets is precisely determined in advance. The delay line is introduced in mode 2 for the adjustment of Δt.

As is well known, by counting the two-fold coincidence events between D3 and D4 with detection time windows much larger than the light wavepacket duration for various values of Δt, the HOM dip will be observed, while the single counts of D3 and D4 take constant values [4–11] as shown in Fig. 1(b) and 1(c). The visibility of the HOM interference is represented by V = 1 − P0/P, where P0 and P are the two-fold coincidence probabilities with Δt = 0 and Δt = T, respectively, where T is chosen to be much larger than the wavepacket duration of input light.

The two-fold coincidence probability P can be understood as follows: As shown in Fig. 2, we assume that a common fixed time window of width 2T is adopted for D3 and D4, regardless of the amount of delay Δt. Let us divide the window into two and denote the two halves by x and y. Figs. 2(a) and 2(b) show the sketches of the light wavepackets with Δt = 0 (a) and that with Δt = T (b), respectively. The light from mode 1 is always detected at the center of x, while the one from mode 2 is detected in x for Δt = 0 and in y for Δt = T. Let us denote by 3x a detection event at D3 in period x, which may be caused by the input signal light, stray background photons, or dark counting, and define 4x, 3y, 4y similarly. Then, the coincidence probability P determined in this conventional setup corresponds to the rate of the sum of event (3x & 4x), (3y & 4x), (3x & 4y) and (3y & 4y). An underlying assumption in this method is that the contribution of backgrounds should be the same for Figs. 2(a) and 2(b), which is satisfied if the statistical properties of stray photons are time-invariant.

 

Fig. 2 The configurations for the detection time windows. Each time window is divided into the two temporal modes x and y. The solid and dashed wavepackets correspond to the light wavepackets coming from mode 1 and mode 2, respectively. (a,b) Each of the time windows is set to be much larger than the wavepacket duration. Two incoming wavepackets at D3(D4) are shown without time delay (a) and with time delay T (b). (c,d) Each of the time windows is set to be shorter than the wavepacket duration for suppressing stray photon detection. Two incoming wavepackets at D3(D4) are shown without time delay (c) and with time delay T (d).

Download Full Size | PPT Slide | PDF

If background photons are not negligible, shortening the widths of time windows x and y is favorable. In this case, each width of the time window may be close to or even much shorter than the wavepacket of signal light width as shown in Fig. 2(c) and 2(d). In this paper, we adopt this regime for suppressing stray photons. The coincidence probability P is calculated from the rate of the sum of event (3x & 4x), (3y & 4x), (3x & 4y) and (3y & 4y), just as in the conventional setup. The contribution of stray photons should be the same for Figs. 2(c) and 2(d) if the statistical properties of stray photons are time-invariant, which is also normally assumed in the conventional setup.

We emphasize that in order to observe a HOM dip, one may change delay Δt of the input signal light coming from mode 2 with sweeping the coincidence windows of modes 3y and 4y synchronously, which was indeed the method used in the previous experiments [12, 13]. P corresponds to the rate of the sum of event (3x & 4x), (3y & 4x), (3x & 4y) and (3y & 4y) as in the conventional HOM experiment as shown in Fig. 2(b) and 2(d). However, when the time difference of the two signal light becomes small, the tail of the signal light wavepacket outside of the coincidence window in mode x (y) invades the inside of the window in mode y(x), which leads to the increase of the detection probability at D3(D4). To make matters worse, when the two coincidence windows are completely overlapped (Δt = 0), the coincidence windows in modes (3y & 4y) in Fig. 2(c), which include only background stray photons, are removed. As a result, the amount of background photons becomes half of that with Δt = T, which fakes a higher HOM visibility than the proper one in the original method or ours.

3. Experiment

3.1. Photon pair source

Our experimental setup is shown in Fig. 3(a). An initial beam from an external cavity diode laser (ECDL) working at 1560 nm with a linewidth of 1.8 kHz is frequency doubled by using a periodically-poled lithium niobate waveguide (PPLN/W) [14]. The frequency of the ECDL is stabilized by the saturated absorption spectroscopy of rubidium atoms. The obtained cw light at 780 nm is set to be vertically (V) polarized and is coupled to a 40-mm-long and type-0 quasi-phase-matched PPLN/W. It generates non-degenerate photon pairs at 1541 nm and 1580 nm by SPDC. The V-polarized photons at 1541 nm and 1580 nm are separated into different spatial modes by a dichroic mirror (DM). The photons at 1541 nm are flipped to horizontal (H) polarization by a half-wave plate (HWP), and they are coupled to a polarization maintaining fiber (PMF) followed by a fiber-based Bragg grating (FBG). The photons at 1580 nm are also coupled to a PMF followed by a FBG.

 

Fig. 3 (a) The experimental setup of a photon pair source. The cw pump beam at 780 nm is obtained by the second-harmonic generation based on a periodically-poled lithium niobate waveguide (PPLN/W) pumped by an external cavity diode laser working at 1560 nm. Non-degenerate photon pairs are generated by SPDC by another PPLN/W. (b) The experimental setup of the HOM interference. We performed the experiment of the HOM interference between photons at 1541 nm which are heralded by the photon detection at D1 and D2 with a time difference of Δt.

Download Full Size | PPT Slide | PDF

We first characterized our photon pair source by measuring the single counts and the coincidence counts just after the FBGs in Fig. 3(b). In order to evaluate the photon pair generation efficiency, we set the bandwidths of FBG1541 and FBG1580 to be 1 nm. For preventing the saturation of the detectors, we set the pump power to be p = 105 μW. The observed coincidence count rate is C = 1.8×105 counts/(s·nm) and single count rates are S1541 = 2.0×106 counts/(s·nm) for 1541 nm and S1580 = 3.0 × 106 counts/(s·nm) for 1580 nm. The single count rates and the coincidence count rate are represented by S1541 = γpη1541, S1580 = γpη1580 and C = γpη1541η1580, where γ is a photon pair generation efficiency and ηλ is a overall transmittance of the system for the photon at λ nm. We estimated γ = S1541S1580/(Cp) just after the PPLN/W to be about 3.2 × 108 pairs/(s·mW·nm). When we performed the HOM experiment described in detail later, we connected the output of the FBGs to the fiber-based optical circuit and set the bandwidths of FBG1541 to be 30 pm and FBG1580 to be 10 pm, respectively. In addition, we set the coincidence window to be 80 ps and the pump power to be 2.5 mW. In this setup, the observed coincidence count rate between detectors D1 and D3 was 1.0 × 103 counts/s.

3.2. Detection system

Next, we measured the timing jitter of the overall timing measurement system with superconducting nanowire single photon detectors (SNSPDs) [15]. For the measurement of the timing jitter, we used bandwidths (3 nm) for FBG1541 and FBG1580 which correspond to the temporal width of 1.2 ps, and measured the arrival time of the picosecond photons by directly connecting the output of the FBGs to the detectors. In this setup, since the temporal widths of the photons are sufficiently shorter than the timing jitter of the system, the distribution of arrival time difference of the photons reflects the timing jitter of the system. The typical experimental result is shown in Fig. 4(a). By fitting the experimental data by Gaussian, the deconvolved timing jitter is estimated to be 85 ps FWHM for all of the four detectors. We also estimated the coherence time τ, which is defined by the temporal width of the photon after FBG1541(30 pm) heralded by the half of the photon pairs which is filtered by FBG1580(10 pm). In our experiment, the temporal distribution obtained by the coincidence detection reflects the convolution of τ and timing jitters of the photon detectors. Fig. 4(b) shows the two-fold coincidence count between D1 and D3, and the fitted Gaussian curve. By subtracting the effect of the timing jitter of each detector from the FWHM of the fitted Gaussian, τ is estimated to be 231 ps FWHM.

 

Fig. 4 The relations between two-fold coincidence counts and detection timings. The red solid curves are the Gaussian fit to the obtained data. (a) The result of the measurement of the timing jitter. The pump power coupled to PPLN/W is set to be 3.5 μW, and we directly connected the output of the FBGs (3 nm) to D1 & D3. The other combinations of detectors (D1, D2), (D1, D4) and (D2, D3) are almost the same as (a). (b) The measurement result of the coherence time τ. The pump power coupled to PPLN/W is set to be 2.5 mW, and we used FBG1580(10 pm) and FBG1541(30 pm).

Download Full Size | PPT Slide | PDF

3.3. HOM interference

The HOM interference is performed by using a fiber-based optical circuit as shown in Fig. 3(b). The photons at 1580 nm are filtered by FBG1580 with a bandwidth of 10 pm. After the FBG, the photons are split into two different spatial modes by a fiber-based half beamsplitter (FHBS) followed by SNSPDs. The photon detections by D1 and D2 with a time difference of Δt heralds two photons at 1541 nm with the same time difference Δt. They are filtered by FBG1541 with a bandwidth of 30 pm as shown in Fig. 3(b). After passing through a fiber-based polarizing beamsplitter (FPBS), the two H-polarized photons propagate in a single-mode fiber (SMF), and they are separated into a long path and a short path by a FHBS. The photons are reflected by a Faraday mirror (FM) at the end of each path, at which the polarizations of the photons are flipped. After going back to the FHBS, the two photons are split into two paths and they are detected by D3 and D4. We note that each of the two photons receives polarization fluctuation in the SMF. In the optical circuit, such fluctuations are much slower than the round-trip time of the photon propagation in each path and thus the birefringence effect in the SMF is automatically compensated after passing through each path by using the FM [16].

We collect the four-fold coincidence events by using a time-digital converter (TDC). The electric signal from D1 is used as a start signal, and the electric signals from D2, D3 and D4 are used as stop signals. When the photons are detected at D1, the histograms of the delayed coincidence counts in the stop signals at D2 and D3 are obtained as shown in Figs. 5(a) and 5(b), respectively. In Fig. 5(b), left peak S and right peak L indicate the events where the photons at 1541 nm passed through the short and long paths, respectively. When we postselect the events where the stop signal of D2 has a delay Δt, additional two peaks S′ and L′ appear in the histogram of D3 as in Fig. 5(c), which shows the three-fold coincidence among D1, D2 and D3. The two-fold coincidence between D1 and D4, and the three-fold coincidence among D1, D2 and D4 show almost the same histograms as Fig. 5(b) and 5(c), respectively. We chose a value of Δt = t1 such that the two peaks S′ and L are separated, and defined the timing of the peak S′ as y and that of peak L as x. Then we determined the four-fold coincidence count C from the events where the stop signals of D2, D3 and D4 were recorded at the timings t1, (x or y) and (x or y), respectively, with all of the coincidence windows having a width of 80 ps. This corresponds to the situation shown in Fig. 2(d). If we chose the delay for D2 to be Δt = t0 such that peak S′ is overlapped on L, the post-selected histogram of the three-fold coincidence among D1, D2 and D3 becomes as shown in Fig. 5(d). In this case, we determined the four-fold coincidence count C0 by selecting the stop signals with the timing of t0 for D2, and (x or y) for D3 and D4. This corresponds to the situation shown in Fig. 2(c). The visibility is obtained by V = 1 − C0/C.

 

Fig. 5 The coincidence counts between (a) D1 & D2 and (b) D1 & D3, respectively. (c) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time of the stop signal of D2 is chosen to be Δt = 2.6 ns. (d) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time is chosen such that Δt is equal to the time lag between photons coming from long and short paths. During the experiment, the pump power coupled to PPLN/W is set to be 2.5 mW.

Download Full Size | PPT Slide | PDF

We set the pump power coupled to PPLN/W to be 2.5 mW. The total measurement time is 156 hours. By the experimental data, we obtained C and C0 as 87 counts and 11 counts, respectively. The observed visibility was 0.87 ± 0.04. This value is as high as those observed by using pulsed sources.

We mention that if we employ the same method used in [12,13] instead of the present method, the visibility was calculated to be 0.93. This value is clearly much higher than that observed in [12,13].

4. Discussion

We consider the reason for the degradation of the observed visibility of the HOM interference. In our experiment, since the effect of the timing jitters of the detectors is estimated to be small due to the large coherence time, we only consider the effect of stray photons including multiple pair emission. Below we derive a simple relationship among the visibility and the intensity autocorrelation functions of the signal light wavepackets and stray photons. For simplicity, we assume that the signal photons and stray photons observed in a time window x or y are in a single mode. We define creation operators of the input and the output light of the HBS as a^ik and b^jk, respectively, where i = 1, 2, j = 3, 4 and k = x, y. The above operators satisfy the commutation relations [a^ik,a^ik]=δiiδkk and [b^jk,bjk]=δjjδkk. As in our experiment, we assume that the transmittance ηi of the system including the detection efficiency of Di for i = 3, 4 is much less than 1 such that the events where two or more photons are simultaneously detected at the single detector are negligible, and the detection probabilities are proportional to the photon number in the detected mode. The two-fold coincidence probability P is expressed as P = η3η4〈: (3x + 3y)(4x + 4y) :〉, where n^jk=b^jkb^jk is the number operator for output modes j = 3, 4 and k = x, y. P0 and P are calculated by using P for the input signal light wavepackets coming from 1x & 2x and 1x & 2y, respectively. As is often the case with practical settings, we assume that the signal light wavepackets and stray photons have no phase correlation and are statistically independent. We characterize the property of stray photons alone by the average photon number n and the normalized intensity correlation function gn(2). That is to say, if mode ik does not include the signal light, a^ika^ik=n and :(a^ika^ik)2/n2=gn(2) holds. Similarly, we define s and gs(2) such that, when mode ik includes the signal light as well as stray photons, a^ika^ik=s and :(a^ika^ik)2:/s2=gs(2) holds. From the definitions, we obtain P0=η3η4(s2gs(2)+n2gn(2)+4sn)/2 and P=η3η4(s2gs(2)+n2gn(2)+(s+n)2)/2. Here we used a unitary operator Û of the HBS satisfying U^b3kU^=(a^1k+a^2k)/2 and U^b4kU^=(a^1k+a^2k)/2. Thus Vtheory is represented by

Vtheory=(1χ)2gs(2)+χ2gn(2)+(1+χ)2,
where χ = n/s. When ns, the visibility is approximated by Vtheory=1/(1+gs(2)), and it takes maximum of Vtheory = 1 for the input of genuine single photons [17].

In our experimental setup in Fig. 3, the intensity correlation gs(2) of the signal light could be measured by using the coincidence between D3 and D4 under the heralding of D1 if we run an additional experiment with the short arm detached from the FHBS. Instead, we calculated the same quantity from the same experimental data gathered for the main result. This implies that the determined value gex(2) includes the contribution of the stray photons coming into FHBS from the short arm as shown in Fig. 6(a). The single count probability S3(4) at D3(4) and coincidence count probability C34 between D3 & D4 conditioned on the photon detection at D1 are represented by Si = ηi(s + n)/2 and C34=η3η4(s2gs(2)+n2gn(2))/4. The measured quantity is then given by gex(2)C34/(S3S4)=(gs(2)+χ2gn(2))/(1+χ)2, which is equal to gs(2) for χ = 0. Using this measured quantity, the visibility in Eq. (1) is represented by

Vtheory=(1χ)2(1+χ)2(1+gex(2)).
So far, we have assumed that each detector receives only a single mode per window for simplicity. Rather surprisingly, the relation (2) still holds when detectors also receive stray photons in other modes, as long as the statistical independence among different modes is fulfilled (see Appendix).

 

Fig. 6 (a) The setup for gex(2) measurement. The signal photons which include temporally-continuous stray photons from the long arm and the stray photons from the short arm are mixed at a HBS. gex(2) is obtained by the single counts of D3(4) and coincidence counts between D3 & D4 conditioned on photon detection at D1. (b) The single counts at D3 conditioned on photon detection at D1. χ is estimated from the single count probability of the signal and stray photons (S3 = η3(s + n)/2) and that of stray photons (S3,∞ = η3n) conditioned on photon detection at D1.

Download Full Size | PPT Slide | PDF

The number of the single counts at D3 conditioned on the photon detection at D1 is shown in Fig. 6(b). The single count probability with (without) the signal within the time window is represented by S3 = η3(s + n)/2 (S3,∞ = η3n). Hence χ is estimated from the observed values S3 and S3,∞ as

χ=ns=S3,2S3S3,.
From the experimental data, we obtain gex(2)=5.3×102 and χ = 1.4 × 10−2. The visibility is calculated to be Vtheory = 0.90 from Eq. (2), which is in good agreement with the observed visibility of V = 0.87 ± 0.04. Furthermore, we performed the HOM experiment for three different values of the pump power, and compared V and Vtheory. The experimental results are shown in Table 1. χ and gex(2) increase according to the pump power because the amount of the temporally-continuous stray photons increases. We see that the visibilities Vtheory estimated from χ and gex(2) are in good agreement with directly-observed visibilities V for the pump powers. These results indicate that the degradation of the visibilities is mainly caused by the stray photons. Since the main cause of the stray photons is the multiple emission of photon pairs from SPDC, a higher visibility will be obtained by the suppression of the multiple emission with the use of a lower pump power and a shorter timing selection for the photon detection.

Tables Icon

Table 1. The pump power dependence of V, Vtheory, χ and gex(2).

5. Conclusion

In conclusion, we have performed an experiment of the HOM interference between two photons produced by the two independent SPDC processes with cw pump light. In order to evaluate the unbiased interference visibility of the heralded signal light wavepackets, we introduced a new method to observe the HOM visibility. We observed the visibility of 0.87 ± 0.04, which is comparable to those observed by using pulsed sources. We also presented a simple relation between the visibility and the second order intensity correlation function, and showed that it holds with a good approximation in this experiment. The relation is convenient for the estimation of the possible visibility from the second order intensity correlation functions of the various input light sources. The results presented here will be useful for many applications such as quantum relays [18,19], quantum repeaters [20,21], mesurement-device-independent quantum key distribution [22–24] and distributed quantum computation [25] without the necessity of performing active synchronizations of the photon sources.

Appendix

We show that the relation among V, χ and gex(2) in the main text holds true even under the presence of stationary photon noise in modes different from the signal modes, as long as noise photons in different modes are statistically independent. The situation is shown in Fig. 7. The additional noises accompanying the input signal wavepacket of mode 1x are decomposed into mutually orthogonal modes labeled by index l, and its creation operator is denoted by a^l,1x. The signal mode is orthogonal to every noise mode, namely, [a^1x,al,1x]=0. We further define the creation operators a^l,2x, b^l,3x, and b^l,4x such that the four modes with a common index l form the input and output modes of HBS. We define the modes in window y similarly as a^l,iy, b^l,jy. Let us define sums of the photon number operators by N^ik=la^l,ika^l,ik and N^jk=lbl,jkb^l,jk. Since the noise photons are assumed to be stationary, we have 〈ix〉 = 〈iy〉 and 〈:3x4x:〉 = 〈:3y4y:〉. Define N := (〈1x〉 + 〈2x〉)/2 = (〈1y〉 + 〈2y〉)/2.

 

Fig. 7 The left figure shows the photon distribution considered in the main text. The right figure presents the sketch in the case where additional stray photons in other modes are detected.

Download Full Size | PPT Slide | PDF

We first calculate the two-fold coincidence probability P = η3η4〈:(n̂′3x + n̂′3y)(n̂′4x + n̂′4y):〉 between D3 and D4 in Fig. 1 in the main text, where n̂′jk = jk + jk. When the input signal light wavepackets come from 1x & 2x, one of the four terms in P is calculated as :n^3xn^4x:=:(n^3x+N^3x)(n^4x+N^4x):=(:n^1x2:+:n^2x2:+2n^1x+n^2xN^1x+N^2x)/4+:N^3xN^4x:=s2gs(2)/2+2sN+:N^3xN^4x:, where 〈1x〉 = 〈2x〉 = s and :n^1x2:=:n^2x2:=s2gs(2). Here we used 〈ikik〉 = 〈ik〉〈ik〉 from the assumption, and a unitary transformation by the HBS as U^b^l,3kU^=(a^l,lk+a^l,2k)/2 and U^b^l,4kU^=(a^l,1ka^l,2k)/2 in addition to the transformation of the signal modes. Similarly, 〈:n̂′3yn̂′4y:〉 is calculated as n2gn(2)/2+2nN+:N^3xN^4x:, where 〈1y〉 = 〈2y〉 = n and :n^1y2:=:n^2y2:=n2gn(2). 〈n̂′3xn̂′4y〉 and 〈n̂′4xn̂′3y〉 are calculated as sn + N (s + n) + N2. As a result,

P0=η3η4(14(s2gs(2)+n2gn(2))+2N2+4N(s+n)+2sn+2:N^3xN^4x:).
On the other hand, when the input signal light wavepackets come from 1x & 2y, 〈:n̂′3xn̂′4x:〉 and 〈:n̂′3yn̂′4y:〉 are calculated as (s2gs(2)+n2gn(2))/4+N(s+n)+:N^3xN^4x:. Similarly, 〈n̂′3xn̂′4y〉 and 〈n̂′3yn̂′4x〉 are calculated as (s + n)2/4 + N (s + n) + N2. As a result, we obtain
P=η3η4(12(s2gs(2)+n2gn(2))+2N2+4N(s+n)+12(s+n)2+2:N^3xN^4x:).

Next, we introduce the relation among gex(2), gs(2) and gn(2) in our experimental setup in Fig. 3 in the main text. The single count S3(4) at D3(4) and coincidence count C34 between D3 & D4 conditioned on the photon detection at D1 are described by S3(4) = η3(4)(s + n + 2N)/2, and C34=η3η4(s2gs(2)+n2gn(2)+4N(s+n)+4:N^3xN^4x:)/4. The observed correlation function is expressed as

gex(2)=C34S3S4=s2gs(2)+n2gn(2)+4N(s+n)+4:N^3xN^4x:(s+n+2N)2.
By combining equation (4), (5) and (6), the visibility Vtheory = 1 − P0/P is described by
Vtheory=(1χ)2(1+χ)2(1+gex(2)),
where χ = (n + N)/(s + N).

Funding

Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST) JPMJCR1671; Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research JP16H02214, JP25286077, JP26286068, JP15H03704 and JP16K17772; Japan Society for the Promotion of Science (JSPS) Bilateral Open Partnership Joint Research Projects. Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Research Fellow JP16J05093.

References and links

1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012). [CrossRef]  

2. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012). [CrossRef]   [PubMed]  

3. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013). [CrossRef]  

4. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]   [PubMed]  

5. H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003). [CrossRef]  

6. T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006). [CrossRef]   [PubMed]  

7. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009). [CrossRef]  

8. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010). [CrossRef]  

9. M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express 20, 15275–15285 (2012). [CrossRef]   [PubMed]  

10. A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013). [CrossRef]   [PubMed]  

11. Y. Tsujimoto, Y. Sugiura, M. Ando, D. Katsuse, R. Ikuta, T. Yamamoto, M. Koashi, and N. Imoto, “Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength,” Opt. Express 23, 13545–13553 (2015). [CrossRef]   [PubMed]  

12. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007). [CrossRef]  

13. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008). [CrossRef]  

14. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mw sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled zn:linbo3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009). [CrossRef]   [PubMed]  

15. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with gifford-mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013). [CrossRef]   [PubMed]  

16. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997). [CrossRef]  

17. R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016). [CrossRef]  

18. B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002). [CrossRef]  

19. D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005). [CrossRef]  

20. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef]   [PubMed]  

21. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]  

22. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012). [CrossRef]   [PubMed]  

23. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

24. A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011). [CrossRef]   [PubMed]  

25. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  2. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
    [Crossref] [PubMed]
  3. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
    [Crossref]
  4. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  5. H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
    [Crossref]
  6. T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
    [Crossref] [PubMed]
  7. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
    [Crossref]
  8. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
    [Crossref]
  9. M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express 20, 15275–15285 (2012).
    [Crossref] [PubMed]
  10. A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
    [Crossref] [PubMed]
  11. Y. Tsujimoto, Y. Sugiura, M. Ando, D. Katsuse, R. Ikuta, T. Yamamoto, M. Koashi, and N. Imoto, “Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength,” Opt. Express 23, 13545–13553 (2015).
    [Crossref] [PubMed]
  12. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
    [Crossref]
  13. M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
    [Crossref]
  14. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mw sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled zn:linbo3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [Crossref] [PubMed]
  15. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with gifford-mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [Crossref] [PubMed]
  16. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
    [Crossref]
  17. R. Ikuta, T. Kobayashi, K. Matsuki, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, T. Mukai, and N. Imoto, “Heralded single excitation of atomic ensemble via solid-state-based telecom photon detection,” Optica 3, 1279–1284 (2016).
    [Crossref]
  18. B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
    [Crossref]
  19. D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
    [Crossref]
  20. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
    [Crossref] [PubMed]
  21. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  22. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  23. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).
  24. A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
    [Crossref] [PubMed]
  25. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
    [Crossref]

2016 (1)

2015 (2)

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Y. Tsujimoto, Y. Sugiura, M. Ando, D. Katsuse, R. Ikuta, T. Yamamoto, M. Koashi, and N. Imoto, “Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength,” Opt. Express 23, 13545–13553 (2015).
[Crossref] [PubMed]

2014 (1)

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

2013 (3)

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled nbtin superconducting nanowire single photon detectors with gifford-mcmahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref] [PubMed]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

2012 (4)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express 20, 15275–15285 (2012).
[Crossref] [PubMed]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

2011 (2)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[Crossref] [PubMed]

2010 (1)

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

2009 (2)

2008 (2)

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

2007 (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

2006 (1)

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

2005 (1)

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

2003 (1)

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

2002 (1)

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

1997 (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Aboussouan, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Alibart, O.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Andersen, U. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Ando, M.

Anisimova, E.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Asobe, M.

Aspelmeyer, M.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Baldi, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Bell, B.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Beveratos, A.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Braunstein, S. L.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Brown, K. R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Chen, S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Chen, T.-Y.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Chen, Y.-A.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Clark, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Collins, D.

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Dakic, B.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Duan, L.-M.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Franson, J. D.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Gehring, T.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Halder, M.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Hänsch, T. W.

Heilmann, R.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Herbst, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Hong, F.-L.

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Ikuta, R.

Imoto, N.

Jacobs, B. C.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Jacobsen, C. S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Jennewein, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Jorel, C.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Kaltenbaek, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Katsuse, D.

Kim, J.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Koashi, M.

Kobayashi, T.

Kofler, J.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Kropatschek, S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Labonté, L.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Lloyd, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Lu, S.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Ma, X.-S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Makarov, V.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Marcikic, I.

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Martin, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Matsuki, K.

Maunz, P.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

McMillan, A.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Mech, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Miki, S.

Monroe, C.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Mukai, T.

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Naylor, W.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Nishida, Y.

Nishikawa, T.

Nolte, S.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Okamoto, R.

Ostrowsky, D. B.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Ottaviani, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Ozawa, A.

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Pirandola, S.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Pittman, T. B.

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

Prevedel, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Rarity, J.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Raussendorf, R.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Riedmatten, H. d.

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

Ruthven, A.

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Sanders, B. C.

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Scheidl, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Scherer, A.

Schmiedmayer, J.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

Spedalieri, G.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Sugiura, Y.

Szameit, A.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Takeuchi, S.

Tanida, M.

Tanzilli, S.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Terai, H.

Thew, R. T.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Tian, J.-R.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Tillmann, M.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Tittel, W.

A. Scherer, B. C. Sanders, and W. Tittel, “Long-distance practical quantum key distribution by entanglement swapping,” Opt. Express 19, 3004–3018 (2011).
[Crossref] [PubMed]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Tsujimoto, Y.

Ursin, R.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wadsworth, W.

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Walther, P.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Wang, D.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wang, Z.

Weedbrook, C.

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Wei, Z.-Y.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Wittmann, B.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Yamamoto, T.

Yamashita, T.

Yang, T.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Yin, J.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Yuan, Z.-S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Zbinden, H.

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Zeilinger, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

Zhang, J.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Zhang, Q.

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

Zhao, B.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

Zukowski, M.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Applied Physics Letters (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Applied Physics Letters 70, 793–795 (1997).
[Crossref]

Journal of Modern Optics (1)

D. Collins, N. Gisin, and H. De Riedmatten, “Quantum relays for long distance quantum cryptography,” Journal of Modern Optics 52, 735–753 (2005).
[Crossref]

Nat. Photonics (1)

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate measurement-device-independent quantum cryptography,” Nat. Photonics 9, 397–402 (2015).

Nature (2)

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature 454, 1098–1101 (2008).
[Crossref] [PubMed]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Nature Photonics (1)

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nature Photonics 7, 540–544 (2013).
[Crossref]

Nature Physics (1)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nature Physics 3, 692–695 (2007).
[Crossref]

New Journal of Physics (1)

M. Halder, A. Beveratos, R. T. Thew, C. Jorel, H. Zbinden, and N. Gisin, “High coherence photon pair source for quantum communication,” New Journal of Physics 10, 023027 (2008).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. A (5)

B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Quantum relays and noise suppression using linear optics,” Phys. Rev. A 66, 052307 (2002).
[Crossref]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302 (2009).
[Crossref]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

H. d. Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Quantum interference with photon pairs created in spatially separated sources,” Phys. Rev. A 67, 022301 (2003).
[Crossref]

C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
[Crossref]

Phys. Rev. Lett. (3)

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

T. Yang, Q. Zhang, T.-Y. Chen, S. Lu, J. Yin, J.-W. Pan, Z.-Y. Wei, J.-R. Tian, and J. Zhang, “Experimental synchronization of independent entangled photon sources,” Phys. Rev. Lett. 96, 110501 (2006).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Scientific reports (1)

A. McMillan, L. Labonté, A. Clark, B. Bell, O. Alibart, A. Martin, W. Wadsworth, S. Tanzilli, and J. Rarity, “Two-photon interference between disparate sources for quantum networking,” Scientific reports 3, 2032 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic diagram of the HOM interference. The relative delay is adjusted by changing the timing of the photon in mode 2. The widths of the coincidence windows at D3 and D4 are set to be infinitely larger than the wavepacket duration. The HOM interference is observed when the photons in mode 1 and mode 2 arrive at the HBS simultaneously. (b) The sketch of the single detection probability at D3 (D4). (c) The sketch of the coincidence probability between D3 and D4.
Fig. 2
Fig. 2 The configurations for the detection time windows. Each time window is divided into the two temporal modes x and y. The solid and dashed wavepackets correspond to the light wavepackets coming from mode 1 and mode 2, respectively. (a,b) Each of the time windows is set to be much larger than the wavepacket duration. Two incoming wavepackets at D3(D4) are shown without time delay (a) and with time delay T (b). (c,d) Each of the time windows is set to be shorter than the wavepacket duration for suppressing stray photon detection. Two incoming wavepackets at D3(D4) are shown without time delay (c) and with time delay T (d).
Fig. 3
Fig. 3 (a) The experimental setup of a photon pair source. The cw pump beam at 780 nm is obtained by the second-harmonic generation based on a periodically-poled lithium niobate waveguide (PPLN/W) pumped by an external cavity diode laser working at 1560 nm. Non-degenerate photon pairs are generated by SPDC by another PPLN/W. (b) The experimental setup of the HOM interference. We performed the experiment of the HOM interference between photons at 1541 nm which are heralded by the photon detection at D1 and D2 with a time difference of Δt.
Fig. 4
Fig. 4 The relations between two-fold coincidence counts and detection timings. The red solid curves are the Gaussian fit to the obtained data. (a) The result of the measurement of the timing jitter. The pump power coupled to PPLN/W is set to be 3.5 μW, and we directly connected the output of the FBGs (3 nm) to D1 & D3. The other combinations of detectors (D1, D2), (D1, D4) and (D2, D3) are almost the same as (a). (b) The measurement result of the coherence time τ. The pump power coupled to PPLN/W is set to be 2.5 mW, and we used FBG1580(10 pm) and FBG1541(30 pm).
Fig. 5
Fig. 5 The coincidence counts between (a) D1 & D2 and (b) D1 & D3, respectively. (c) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time of the stop signal of D2 is chosen to be Δt = 2.6 ns. (d) The three-fold coincidence among D1, D2 and D3 for the start signal of D1. The delay time is chosen such that Δt is equal to the time lag between photons coming from long and short paths. During the experiment, the pump power coupled to PPLN/W is set to be 2.5 mW.
Fig. 6
Fig. 6 (a) The setup for g ex ( 2 ) measurement. The signal photons which include temporally-continuous stray photons from the long arm and the stray photons from the short arm are mixed at a HBS. g ex ( 2 ) is obtained by the single counts of D3(4) and coincidence counts between D3 & D4 conditioned on photon detection at D1. (b) The single counts at D3 conditioned on photon detection at D1. χ is estimated from the single count probability of the signal and stray photons (S3 = η3(s + n)/2) and that of stray photons (S3,∞ = η3n) conditioned on photon detection at D1.
Fig. 7
Fig. 7 The left figure shows the photon distribution considered in the main text. The right figure presents the sketch in the case where additional stray photons in other modes are detected.

Tables (1)

Tables Icon

Table 1 The pump power dependence of V, Vtheory, χ and g ex ( 2 ).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V theory = ( 1 χ ) 2 g s ( 2 ) + χ 2 g n ( 2 ) + ( 1 + χ ) 2 ,
V theory = ( 1 χ ) 2 ( 1 + χ ) 2 ( 1 + g ex ( 2 ) ) .
χ = n s = S 3 , 2 S 3 S 3 , .
P 0 = η 3 η 4 ( 1 4 ( s 2 g s ( 2 ) + n 2 g n ( 2 ) ) + 2 N 2 + 4 N ( s + n ) + 2 s n + 2 : N ^ 3 x N ^ 4 x : ) .
P = η 3 η 4 ( 1 2 ( s 2 g s ( 2 ) + n 2 g n ( 2 ) ) + 2 N 2 + 4 N ( s + n ) + 1 2 ( s + n ) 2 + 2 : N ^ 3 x N ^ 4 x : ) .
g ex ( 2 ) = C 34 S 3 S 4 = s 2 g s ( 2 ) + n 2 g n ( 2 ) + 4 N ( s + n ) + 4 : N ^ 3 x N ^ 4 x : ( s + n + 2 N ) 2 .
V theory = ( 1 χ ) 2 ( 1 + χ ) 2 ( 1 + g ex ( 2 ) ) ,

Metrics